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Dual-mode fuzzy dynamic matrix control (fuzzy DMC-FDMC) algorithms with guaranteed nominal stability for con-
strained nonlinear plants are presented. The algorithms join the advantages of fuzzy Takagi-Sugeno modeling and the
predictive dual-mode approach in a computationally efficient version. Thus, they can bring an improvement in control
quality compared with predictive controllers based on linear models and, at the same time, control performance similar to
that obtained using more demanding algorithms with nonlinear optimization. Numerical effectiveness is obtained by using a
successive linearization approach resulting in a quadratic programming problem solved on-line at each sampling instant. It
is a computationally robust and fast optimization problem, which is important for on-line applications. Stability is achieved
by appropriate introduction of dual-mode type stabilization mechanisms, which are simple and easy to implement. The
effectiveness of the proposed approach is tested on a control system of a nonlinear plant—a distillation column with basic
feedback controllers.
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1. Introduction

Predictive control algorithms for nonlinear plants are
widely investigated nowadays. A general and theoreti-
cally optimal approach consists in solving a constrained
nonlinear programming problem at each sampling instant.
Unfortunately, this optimization problem is in general
nonconvex. Therefore, the solution itself, even if found
by an applied numerical procedure, could only be a lo-
cal extremum. However, the stability results presented in
most theoretical papers are based on the assumption that a
global optimum is found (Mayne et al., 2000).

On the other hand, the amount of computations
needed to solve the constrained nonlinear programming
problem on-line usually makes the approach inapplicable
in practical implementations. Moreover, the time needed
to obtain the result cannot be anticipated and guaranteed.
These are the reasons why, despite problems with theoret-
ical analysis, in particular with the formulation of stabil-
ity conditions, “. . . linearization is the only method which
has found any wider use in industry beyond demonstration
projects. For industry there has to be a clear justification
for solving non-linear programs on-line in a dynamic set-
ting and there are no examples to bear that out in a con-
vincing manner.” (Morari and Lee, 1999). That is why

algorithms using linearization, though sub-optimal, were
developed in order to formulate the problem of predictive
control calculation as a convex linear-quadratic optimiza-
tion problem (Garcia, 1984; Gattu and Zafiriou, 1992; Lee
and Ricker, 1994; Li and Biegler, 1989; Marusak and Tat-
jewski, 2000; Mutha et al., 1997; 1998).

In this paper, stable fuzzy DMC (FDMC) algorithms
using Takagi-Sugeno (TS) fuzzy models and a successive
linearization approach are proposed. They are based on
a DMC model predictive control (MPC) algorithm. The
DMC algorithm is a standard one in industrial applications
(Blevins et al., 2003; Rossiter, 2003; Tatjewski, 2007).
Rossiter (2003) claims that it is the most popular algo-
rithm in industrial applications, and Blevins et al. (2003)
remark that “Most MPC implementations to date use step
response models proven in DMC applications.” It is so
despite the fact that step response models can be applied
only to open-loop stable plants. However, it should be
emphasized that MPC is usually applied in a multilayer
control structure, in the advanced control (constraint con-
trol) layer being above the basic control (direct control)
layer which is responsible for the stabilization of the con-
trol plant, see, e.g., (Tatjewski, 2007). Thus, MPC is,
in most cases, applied to stable or pre-stabilized control
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plants (as it is done in an example discussed later). That
is why DMC type algorithms are widely used in practical
applications.

The idea of the discussed FDMC algorithms is to ob-
tain at each iteration (at each sampling instant) an approx-
imate, linearized process model and then to use the same
numerical calculations as in the standard DMC algorithm
(with a linear process model). The advantage of the use of
the fuzzy nonlinear model is that the approximate process
model is obtained in a simple and natural way using fuzzy
reasoning.

In the first part of the paper, the idea of Takagi-
Sugeno fuzzy models is shortly reminded. Then, a general
formulation of FDMC algorithms based on fuzzy reason-
ing and a solution of an approximate quadratic optimiza-
tion problem at each sampling instant is described. Later,
the explicit unconstrained FDMC algorithm (a control law
resulting from an analytical solution to the optimization
problem) is presented. The next section details original re-
sults concerning modifications of FDMC algorithms per-
formed in such a way that nominal stability can be proved.
Finally, an application of the presented approach to a con-
trol system of a distillation column is described. The pa-
per is concluded by a short summary. For sake of simplic-
ity, but without loss of generality, all formulae in the paper
are derived for the single-input single-output case.

2. Takagi-Sugeno fuzzy modeling

In this section, the idea of Takagi-Sugeno fuzzy models
(Takagi and Sugeno, 1985) is shortly reminded. Takagi-
Sugeno fuzzy models consist of a set of rules. The algo-
rithms described in the paper exploit models which consist
of the following rules:

Rule i : (1)

if yk is Bi
1 and . . . and yk−nP +1 is Bi

nP
and

uk is Ci
1 and . . . and uk−mP +1 is Ci

mP
︸ ︷︷ ︸

antecedent

then yi
k+1 = bi

1 · yk + · · · + bi
nB

· yk−nB+1

+ci
1 · uk + . . . + ci

mC
· uk−mC+1,

︸ ︷︷ ︸

consequent

where bi
1, . . . , b

i
nB

, ci
1, . . . , c

i
mC

are the coefficients of the
i-th local (linear) model, yk stands for the value of the out-
put variable of the control plant model at the k-th sampling
instant, uk stands for the value of the manipulated variable
at the k-th sampling instant, Bi

1, . . . , B
i
nP

, Ci
1, . . . , C

i
mP

denote fuzzy sets, i = 1, . . . , l, and l is the number of
rules.

The consequents in Takagi-Sugeno models are called
local models. They are usually linear (it is possible to
use nonlinear models). The Takagi-Sugeno models can be
therefore treated as a kind of a nonlinear generalization of

linear models. This is the reason why they are also called
quasi-linear models. Since the consequents are functions,
using Takagi-Sugeno models one can describe relatively
complicated dynamics employing relatively few rules. In
the paper, input-output type models are used.

In order to derive the output of the model, one should
perform fuzzy reasoning. It consists in:

1. Calculation, for each rule, of values of weight-
ing coefficients wi (called levels of activation or firing
strengths), i = 1, . . . , l.

2. Determination of the values of the consequent
functions yi

k+1, i = 1, . . . , l.
3. Calculation of a weighted sum of the consequent

values according to the formula

yk+1 =

l
∑

i=1

wi · yi
k+1

l
∑

i=1

wi

, (2)

where

wi =
nP
∏

j=1

μBi
j (yk−j+1) ·

mP
∏

j=1

μCi
j (uk−j+1), (3)

μBi
j (yk−j+1) and μCi

j (uk−j+1) are the values of the
membership functions obtained for a current operat-
ing point. Further in the text, the normalized weights
w̃i = wi/

∑l
i=1 wi are used.

A thorough description of the idea of fuzzy logic and
fuzzy modelling can be found in the abundant literature,
e.g., in (Driankov et al., 1993; Piegat, 2001; Yager and
Filev, 1994).

Remark 1. Antecedents used in the fuzzy control plant
model (1) are the most common ones. However, not only
conjunction but also the disjunction operation can be used
in them. Moreover, even more complex antecedents can
be used (Chen et al., 1998). It is also possible to use dif-
ferent operators during fuzzy reasoning. Stable fuzzy al-
gorithms proposed in the paper can use a TS model with
practically any type of antecedents. The only demand is
that the weights wi should be normalized. It is, thus, also
possible to use models in which the weights are given as
analytical formulae for each rule and in the model there is
no explicit antecedent part (Cao et al., 1997).

3. Nonlinear fuzzy DMC algorithms

In this section, numerical fuzzy DMC (FDMC) algorithms
will be presented. They are based on two approaches:
the DMC predictive control technique and the Takagi-
Sugeno fuzzy modeling, inheriting advantages of both ap-
proaches (Marusak and Tatjewski, 2000). More detailed
discussions of these algorithms and their properties are
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presented in (Marusak, 2002). The usage of these algo-
rithms usually gives satisfactory results even for highly
nonlinear plants with large time delays.

3.1. Standard DMC algorithm. In the DMC algo-
rithm based on a linear control plant model, the following
performance index is minimized (Garcia and Morshedi,
1986):

min
Δu

p
∑

i=1

(

ysp
k − yk+i|k

)2 + λ ·
s

∑

i=0

(

Δuk+i|k
)2

, (4)

subject to the constraints

Δumin ≤ Δu ≤ Δumax, (4a)
umin ≤ u ≤ umax, (4b)
ymin ≤ y ≤ ymax, (4c)

where ysp
k is a set-point value, yk+i|k is an output value

for the (k + i)-th sampling instant predicted at the k-th
sampling instant, Δuk+i|k is a change in the manipulated
variable for the (k + i)-th sampling instant calculated at
the k-th sampling instant, p and s denote prediction and
control horizons, respectively, λ ≥ 0 is a penalty coef-

ficient, Δu =
[

Δuk|k, . . . , Δuk+s−1|k
]T

is a vector of
future manipulated variable changes,

u =

[

uk−1 + Δuk|k, . . . , uk−1 +
s−1
∑

i=0

Δuk+i|k

]T

is a vector of future manipulated variable values,

y =
[

yk+1|k, . . . , yk+p|k
]T

is a vector of predicted out-
put values, Δumin, Δumax, umin, umax, ymin, ymax are
vectors of upper and lower bounds on changes and values
of the control signals and on the output variable values,
respectively.

The standard (nonfuzzy) DMC algorithm uses the
control plant model in the form of its step response (Ca-
macho and Bordons, 1999; Cutler and Ramaker 1979;
Maciejowski, 2002; Tatjewski, 2007):

yM
k =

pd−1
∑

i=1

ai · Δuk−i + apd
· uk−pd

, (5)

where yM
k is the output of the plant model at the k-th sam-

pling instant, Δuk is a change in the manipulated variable
at the k-th sampling instant, ai (i = 1, . . . , pd) are step re-
sponse coefficients of the control plant, pd is equal to the
number of sampling instants after which the step response
coefficients can be assumed as settled (the value of apd

is assumed equal or close to the static gain of the control
plant), uk−pd

is the value of the manipulated variable at
the (k − pd)-th sampling instant.

The predicted output values are then calculated using
the following formula:

yk+i|k =
i

∑

j=1

aj · Δuk−j+i|k +
pd−1
∑

j=i+1

aj · Δuk−j+i

+ apd
· uk−pd+i + dk, (6)

where dk = yk − yM
k−1 is an unmeasured disturbance esti-

mate assumed to be the same at each instant in the predic-
tion horizon (a DMC type disturbance model). Using (5),
Eqn. (6) can be transformed to the form

yk+i|k = yk +
pd−1
∑

j=i+1

aj · Δuk−j+i

+ apd
·

pd+i−1
∑

j=pd

Δuk−j+i

−
pd−1
∑

j=1

aj · Δuk−j +
i

∑

j=1

aj · Δuk−j+i|k,

(7)

where only the last component depends on future changes
in the manipulated variable. Thus, the vector of predicted
output values y can be decomposed into the following
components:

y = yfr + A · Δu, (8)

where yfr =
[

yfr
k+1|k, . . . , yfr

k+p|k
]T

= yk + Ap · Δup

is called a free response of the plant, because it contains
future output values calculated assuming that the control
signal does not change on the prediction horizon (it de-
scribes the influence of the manipulated variable values
applied to the control plant in previous iterations),

Ap =

⎡

⎢

⎢

⎢

⎣

a2 − a1 a3 − a2 . . .
a3 − a1 a4 − a2 . . .

...
...

. . .
ap+1 − a1 ap+2 − a2 . . .

. . . apd−1 − apd−2 apd
− apd−1

. . . apd
− apd−2 apd

− apd−1

. . .
...

...
. . . apd

− apd−2 apd
− apd−1

⎤

⎥

⎥

⎥

⎦

, (9)

yk =
[

yk, . . . , yk
︸ ︷︷ ︸

p elements

]T
,

Δup = [Δuk−1, . . . , Δuk−pd
]T is a vector of past ma-

nipulated variable changes, A · Δu is called the forced
response, where A is the dynamic matrix of the form

A =

⎡

⎢

⎢

⎢

⎣

a1 0 . . . 0 0
a2 a1 . . . 0 0
...

...
. . .

...
...

ap ap−1 . . . ap−s+2 ap−s+1

⎤

⎥

⎥

⎥

⎦

. (10)
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Details concerning the formulation of the DMC algo-
rithm can be found, e.g., in (Camacho and Bordons, 1999;
Cutler and Ramaker 1979; Maciejowski, 2002; Tatjewski,
2007).

The optimal vector of changes in the manipulated
variable is obtained as a solution to the optimization prob-
lem (4). From this vector, the first element is taken and ap-
plied to the control plant. Then, optimization is repeated
at the next sampling instant.

3.2. Fuzzy DMC algorithms. There will be two
FDMC algorithms presented, based on Takagi-Sugeno
(TS) fuzzy models described in Section 2. The idea of all
these algorithms is as follows: At each algorithm iteration
(sampling instant):

• the process outputs are measured and a correspond-
ing linear process model is obtained from the nonlin-
ear TS model (linearization);

• using the linearized model for the prediction of the
process behaviour, the optimization problem (4) is
formulated (which is then a quadratic programming
problem) and solved;

• the optimal value Δuk|k is applied to the process.

The differences between the algorithms result from
different ways in which the approximated, linear plant
models are obtained and utilized.

The FDMC algorithm with successive lineariza-
tion (FDMC-SL) is the simplest one. In this algorithm
the same linear model is used for the calculation of the
free and forced responses (the prediction of the influence
of both past and future values of the manipulated variable
on the future plant outputs). This model is obtained at
each algorithm iteration for current values of the manip-
ulated and output variables using the nonlinear TS plant
model. A detailed description of the algorithm formula-
tion is presented below, and its diagram is given in Fig. 1.

At each algorithm iteration, the following sequence
is repeated:

1. Using the TS fuzzy model (1), a linear (linearized)
model for the current sampling instant is derived. Let
us recall that the TS model is composed of the rules (1),
where, for clarity of presentation, the delay was not spec-
ified. However, in order to take the delay into consider-
ation, it is sufficient to assume ci

1 = . . . = ci
d = 0 in

the local models, where d is the delay. The output of the
model is derived using the standard formula

yk+1 =
l

∑

i=1

w̃i · yi
k+1, (11)

where the weights w̃i are calculated as was described in
Section 2. The formula (11) can be written in the follow-
ing form:

yk+1 = b1 · yk + · · · + bnB · yk−nB+1

+ c1 · uk + · · · + cmC · uk−mC+1, (12)

where bj =
l

∑

i=1

w̃i · bi
j , cj =

l
∑

i=1

w̃i · ci
j .

The next steps of the FDMC-SL algorithm are the
same as in the standard DMC algorithm:

2. The derived linear model (12) is used to calculate
the step response coefficients. Using these coefficients, a
dynamic matrix is generated (Section 3.1).

3. The linear model (12) is used to generate the free
response of the plant.

4. The free response and the dynamic matrix are used
to formulate the quadratic optimization problem.

5. The optimization problem is solved and, using the
obtained solution, the manipulated variable value is gen-
erated. Then, the controller passes to the next iteration.

If the control plant is highly nonlinear, the inaccuracy
of the approximated model used for prediction may lead
to insufficient control performance offered by the FDMC-
SL algorithm. An improvement may be then achieved by
the application of the modified FDMC-SL algorithm, as
presented below.

The FDMC algorithm with successive nonlinear
prediction and linearization (FDMC-NPL) calculates
the free response of the control plant using a nonlinear
(in our case, TS fuzzy) plant model instead of a linearized
model calculated at the current process point. Then, only
the calculation of the forced response is based on the
linear model. This rather simple modification consider-
ably improves the ability to cope with plant nonlinearities.
Compared with the FDMC-SL algorithm, Steps 1, 2, 4 and
5 do not change (they are the same as in the FDMC-SL al-
gorithm). The difference occurs in Step 3:

3. The free response of the control plant is derived
using the nonlinear process model, available past out-
put measurements and past manipulated variable values.
Moreover, the manipulated variable values at present and
future sampling instants (not known yet) can be chosen in
one of the following ways:

(a) They can be assumed equal to the value of the
manipulated variable recently applied to the plant uk−1

(the standard free response).
(b) The free response is derived assuming the appli-

cation of values of the manipulated variable generated by
the algorithm in the previous, (k − 1)-st, sampling in-
stant, i.e., uk|k−1, uk+1|k−1, . . . , uk+s−2|k−1. Such an
approach usually gives better results than the first one.
This is because the manipulated variable increments ob-
tained after solving the optimization problem are usually
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Fig. 1. Block diagram of FDMC-SL algorithm formulation.

smaller than in the first approach. Thus, the modelling
inaccuracy caused by the linearization is also smaller.

The second approach will be now described in de-
tail. The first element of the plant response can be derived
using the following formulae:

Rule i : (13)

if yk is Bi
1 and . . . and yk−nP +1 is Bi

nP
and

uk|k−1 is Ci
1 and . . . and uk−mP +1 is Ci

mP

then yfr,i
k+1|k = bi

1 · yk + · · · + bi
nB

· yk−nB+1

+ci
1 · uk|k−1 + · · ·

+ci
mC

· uk−mC+1,

yfr
k+1|k =

l
∑

i=1

w̃i
1 · yfr,i

k+1|k. (14)

The next elements of the response (for further sam-
pling instants in the prediction horizon) are obtained re-
cursively using the values of the manipulated variable
uk|k−1, uk+1|k−1, . . . , uk+s−2|k−1, derived by the algo-
rithm in the (k − 1)-st sampling instant and already cal-
culated elements of the plant response. Thus, for the j-th
sampling instant (j = 1, . . . , p), one obtains

Rule i : (15)

if yfr
k+j−1|k is Bi

1 and . . . and yk−nP +j is Bi
nP

and
uk+j−1|k−1 is Ci

1 and . . . and uk−mP +j is Ci
mP

then yfr,i
k+j|k = bi

1 · yfr
k+j−1|k + · · · + bi

nB
· yk−nB+j

+ci
1 · uk+j−1|k−1 + · · ·

+ci
mC

· uk−mC+j ,

yfr
k+j|k =

l
∑

i=1

w̃i
j · yfr,i

k+j|k. (16)

The predicted output values are described by the fol-
lowing equation:

yk+j|k =
j

∑

i=1

ai · Δũk−i+j|k + yfr
k+j|k + dk, (17)

where ai are step response coefficients, Δũk−i+j|k are
future manipulated variable increments used during full
plant response derivation in the optimization problem,
yfr

k+j|k are elements of the system response derived us-
ing the procedure described above, dk is the DMC dis-
turbance estimate. The block diagram of the FDMC-NPL
algorithm formulation is shown in Fig. 2.

There is a possibility to iteratively improve the non-
linear free and linear forced responses in the FDMC-
NPL algorithm, according to the general NPL+ struc-
ture, as presented in (Tatjewski, 2007). The idea con-
sists in repeating the linearization and the optimization
several times during one iteration of the algorithm (sub-
iterations are performed). Then the obtained plant re-
sponse is changing each time the optimization is repeated.
As a result, the obtained manipulated variable increments
(calculated using a linear model) become smaller at each
sub-iteration. Thus, the modelling inaccuracy caused by
the linearization becomes smaller at each sub-iteration.

3.3. Explicit, unconstrained fuzzy DMC control laws.
The idea of the DMC algorithm is to minimize the perfor-
mance index (4) at each sampling instant, see Section 3.1.
The problem without inequality constraints (4a–c) has a
unique solution, which can be expressed as (Camacho and
Bordons, 1999; Tatjewski, 2007)

Δu =
(

AT · A + λ · I
)−1

· AT · (ysp − yfr
)

, (18)

where I is the identity matrix,

ysp =
[

ysp
k , . . . , ysp

k
︸ ︷︷ ︸

p elements

]T
.

Only the first element of the vector Δu is applied to
the process. Therefore, it is possible to define the structure
of the controller. The control law is as follows:

Δuk = −r0 · ek +
pd−1
∑

i=1

ri · Δuk−i, (19)
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Fig. 2. Block diagram of FDMC-NPL algorithm formulation.

Fig. 3. Block diagram of the analytical FDMC controller.

where ek = ysp
k − yk is a control error at the k-th sam-

pling instant, r0 =
∑p

j=1 b1j , [r1, . . . , rpd
] = K1 · Ap,

K1 = [b11, . . . , b1p] is the first row of the matrix

K =
(

AT · A + λ · I
)−1

· AT .

The fuzzy DMC controller based on an explicit, un-
constrained formulation consists of several linear DMC
controllers of the form (19) (Marusak and Tatjewski,
2000; Tatjewski, 2007). The idea of the algorithm con-
sists in obtaining a vector of step response coefficients for
every linear local model in the TS fuzzy model (1). Then,
using these responses, coefficients of local controllers de-
scribed by (19) are calculated. The weights for the local
controllers are derived, at each iteration, using fuzzy rea-
soning. Then, the output of the controller is calculated
as the following weighted sum of the outputs of the local
controllers:

Δuk =
l

∑

i=1

w̃i · Δui
k, (20)

where Δui
k is the output of the i-th local controller given

by (19), w̃i are the normalized weights (activating lev-
els of the corresponding fuzzy rules), i = 1, . . . , l, and l
means the number of local controllers. The block diagram
of the analytical FDMC controller is shown in Fig. 3.

It is possible to analyze the stability of the non-
linear control system with the discussed explicit uncon-
strained fuzzy DMC controller (Marusak and Tatjewski,
2001; 2002). The method of stability analysis is based

on a transformation of the control system description to
the appropriate form using a quasi-state vector. Then, the
Tanaka-Sugeno stability criterion (Tanaka and Sugeno,
1992) can be applied, consisting in solving a set of Lya-
punov type linear matrix inequalities. Using this proce-
dure, a Lyapunov matrix for the nonlinear control system
under consideration can be found. Further in the paper, P
denotes this Lyapunov matrix.

4. Stable dual-mode fuzzy DMC algorithms

FDMC algorithms with guaranteed nominal stability,
which combine several different elements applied to sta-
bilize control systems with predictive controllers, will be
presented in this section. The algorithms, the idea of
which was generally presented in (Marusak and Tatjew-
ski, 2003), use the suboptimal dual-mode approach as
discussed in (Scokaert et al., 1999), being a mutation of
the dual-mode algorithm introduced in (Michalska and
Mayne, 1993). In fact, in this approach two controllers
are designed. The first one, a constrained MPC controller,
should bring the trajectory of the control system into a
(convex) target set W , which contains the equilibrium
point in its interior. This set and the second (stabilizing)
unconstrained feedback controller, which is used if the
state of the process is inside the set W , should be chosen
in such a way that the following conditions are fulfilled:

1. The set W is inside the admissible set.

2. The control system (with the stabilizing controller) is
asymptotically stable in this set.

3. Any trajectory of the control system starting in the
set W remains there (W is an invariant set).

The idea of the dual-mode approach is reminded in
Fig. 4. In the proposed approach, outside the set W a
numerical FDMC algorithm with an additional stabilizing
constraint put on manipulated variable values is used. As
a stabilizing controller, standard or fuzzy unconstrained
DMC algorithms, recalled in Section 3.3, are used. This
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Fig. 4. Idea of the dual-mode approach.

leads to a simplification of the proposed stable FDMC al-
gorithms, in the way explained later. Any version of the
numerical FDMC algorithm can then be used as a first
stage algorithm.

4.1. Preliminary assumptions. For further analysis, it
is assumed that the control plant is stable. It is a standard
assumption in DMC and FDMC algorithms (a detailed
discussion was presented in Introduction). Moreover, it
is assumed that the control plant is described by a Takagi-
Sugeno fuzzy model and that there are no modelling errors
(the nominal case).

In the sequel, the following quasi-state vector con-
sisting of past output and input values is used:

xk = [yk − ysp . . . yk−n+1 − ysp

uk−d−1 − us . . . uk−d−pd
− us]

T
, (21)

where us is the manipulated variable value in a steady-
state for ysp, d is the time delay in the control plant and n
is the number of the past output values used in the con-
trol plant model. It is also assumed that the set-point
value remains constant during the stability analysis, i.e.,
ysp

k = ysp.

4.2. FDMC algorithms with a stabilizing constraint.
Let us consider the following nonlinear optimization prob-
lem:

min
u

φk (22)

=
p−1
∑

j=0

θ(xk+j|k)
(

xT
k+j|kQxk+j|k + R(uk+j|k − us)2

)

subject to the constraints

yk+1 = f(yk, . . . , yk−a, uk, . . . , uk−b), (22a)
xk+p ∈ W, (22b)

Δumin ≤ Δuk+j|k ≤ Δumax, (22c)
umin ≤ uk+j|k ≤ umax, (22d)
ymin ≤ yk+j|k ≤ ymax, (22e)

where

θ(xk+j|k) =
{

0 for xk+j|k ∈ W,
1 for xk+j|k /∈ W,

and (22a) is a Takagi-Sugeno fuzzy model of the form (1),

a = max {k − nP + 1, k − nB + 1} ,

b = max {k − mP + 1, k − mC + 1} .

In the standard nonlinear dual-mode approach, the
problem (22) is typically used in the algorithm that acts
outside the set W and generates a control signal that
should bring the plant state into the set W . However, this
problem is in general nonconvex and difficult to solve.
This difficulty can be omitted using the following ap-
proach: Namely, if the state of the system is outside the
set W , the control signal is obtained using one of the nu-
merical FDMC algorithms (as described in Section 3.2)
solving the quadratic optimization problem (4). However,
the FDMC algorithms used must be slightly modified by
adding the following stabilizing constraint to the prob-
lem (4):

us = uk−1 +
s−1
∑

i=0

Δuk+i|k. (23)

This constraint is an analogue of the constraint (22b)
in the problem (22). However, it is a different constraint
than a direct demand for the state to approach the set
W . Because a stable control plant was assumed, the state
will asymptotically approach the equilibrium point (by as-
sumption located inside W ) if the constraint (23) is ful-
filled at the end of the control horizon. This means that it
will approach the set W .

4.3. Stabilizing controller. Typically, in dual-mode
predictive controllers, a linear state-feedback controller
is used inside the set W as a stabilizing controller. But
different stabilizing controllers ensuring stability inside
W can be used as well. In particular, a nonlinear feed-
back controller, which could perform better, can be used.
Therefore, we will further assume that an unconstrained
explicit FDMC controller (Section 3.3) is used. Let this
controller be denoted as u = hFDMC(x).

Now, only the set W must be derived. It is worth
noticing that the explicit FDMC controller is a natural
nonlinear generalization of a linear controller and actually
consists of several such controllers. This fact will be used
to find the set W . In the case of a linear controller, the
method presented below is simpler because then a smaller
number of optimization problems must be solved to cal-
culate W .

4.4. Efficient algorithm for target set derivation. In
dual-mode predictive controller design, the main problem
is to obtain the set W . Typically, in order to find the set W ,
a complicated method from (Michalska and Mayne, 1993)
is used. This method is sufficient if one has a good proce-
dure for solving nonlinear optimization problems. But this
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Fig. 5. Idea of the approach applied to find the set W .

condition is not always easy to fulfil. In this paper, a sim-
pler method was developed, taking advantage of the struc-
ture of the proposed algorithms. In this method, which is
much simpler than the mentioned original one, it is suffi-
cient to solve a number of simple quadratic-programming
problems, each with one linear equality constraint only.
The W set is to be found among the hyper-ellipsoidal sets,
defined by xT

k P xk ≤ α. Thus, the proper value of α
should be chosen, in such a way that the hyper-ellipsoid is
contained inside the admissible set. The set W calculated
this way is invariant because P is the Lyapunov matrix of
the control system with the stabilizing controller.

The proposed algorithm is based on the fact that con-
straints (4a–c) are linear and uses the observation that it
is sufficient to check if a particular constraint (defining a
hyper-plain) has common points with the hyper-ellipsoid
given by the constraint xT

k Pxk ≤ α, for an assumed
value of a parameter α. If this is true, the value of α is
decreased. If not, then the condition for a next constraint
is checked. At the end of the procedure, when there are no
common points, the desired value of α is found. The idea
of this approach is shown in Fig. 5.

The detailed algorithm is as follows:
1. An initial value of α is chosen (it should not be

too small).

2. Optimization problems

min
xk

(

xT
k Pxk

)

, (24)

subject to
Gqxk = gq, (25)

are solved subsequently, where Gqxk = gq

(q = 1, . . . , 2m + 4l) is one of the linear constraints
from the following set of 2m + 4l (in the single-input
single-output case) constraints:

Ajxk = Ajxmin
k , j = 1, . . . , m, (25a)

Ajxk = Ajxmax
k , j = 1, . . . , m, (25b)

Kixk = umin
k , i = 1, . . . , l, (25c)

Kixk = umax
k , i = 1, . . . , l, (25d)

˜K
i
xk = Δumin

k , i = 1, . . . , l, (25e)

˜K
i
xk = Δumax

k , i = 1, . . . , l, (25f)

where

Aj =
[

j−1
︷ ︸︸ ︷

0 . . . 0 1 0 . . . 0
]T

is a vector with the same number of elements as the quasi-
state vector (21), with 1 at the j-th place, m is the length of
the quasi-state vector, xmin

k and xmax
k are lower and upper

bounds of the quasi-state vector, umin
k and umax

k are lower
and upper bounds on manipulated variable values, Δumin

k

and Δumax
k are lower and upper bounds on manipulated

variable changes, Ki is the vector of coefficients of the i-
th local controller, obtained after a suitable transformation

of the local control law given by (19), ˜K
i

is the vector
of coefficients of the i-th local controller, obtained after
a suitable transformation of the incremental form of the
local control law.

Remark 2. The first n constraints in (25a) and (25b)
are appropriately transformed constraints imposed on the
output variable, the next pd constraints are imposed on the
manipulated variable, as well as the constraints (25c) and
(25d). The constraints (25e) and (25f) are imposed on the
manipulated variable changes.

3. After solving the problem (24), (25), the condi-
tion x̂T

k Px̂k < α is checked, where x̂T
k denotes a so-

lution to the optimization problem. If this is true, then
the constraint has common points with the hyper-ellipsoid
defined by this condition. In such a case, the value of the
parameter α is decreased. If the condition is not fulfilled,
then the next problem from the set is solved (q := q + 1)
and so on until x̂T

k Px̂k ≥ α for all single-constrained
problems (24), (25).

Let us notice that the described algorithm of finding
the set W uses an effective optimization method and pro-
duces the solution very fast, which is important in the case
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considered, because after a set-point change a new set W
must be found again. The effectiveness is due to the fact
that the optimization problems (24), (25) have analytical
solutions (which can be formulated analogously as a solu-
tion to the optimization problem in the explicit version of
the DMC algorithm in Section 3.3).

Using the proposed algorithm and decreasing, grad-
ually, the value of α, the set W will be found. A desired
strictly positive value of α exists, due to the assumption
that the equilibrium point belongs to the controller admis-
sible set.

If the set W is small, then the design of a nonlinear
stabilizing controller is simpler because fewer local mod-
els in the plant model can be active. Moreover, it might
turn out that the linear stabilizing controller can be suffi-
cient.

It is also worth noticing that the new set W must be
found only after the change in the set-point value. If such
changes can be foreseen, it is possible to calculate the sets
W off-line, in advance.

4.5. Dual-mode FDMC algorithm and its stability
analysis. When the set W is obtained, the following
dual-mode algorithm, with the structure corresponding to
that proposed in (Scokaert et al., 1999), can be used:

1. Let μ ∈ (0, 1].
2. At time k = 0, the state x0 is known. If

x0 ∈ W , then u0 = hFDMC(x0). In the opposite case,
using the state x0, the future sequence of control incre-
ments Δπ0 = {Δu0|0, Δu1|0, . . . , Δus−1|0} and a cor-
responding sequence of states {x0, x1|0, . . . , xp|0} ful-
filling the assumed constraints are obtained using one of
the numerical FDMC algorithms (as described in Section
3.2) solving, at each iteration, the quadratic optimization
problem (4) with the stabilizing constraint (23). Then
Δu0 = Δu0|0 is applied to the control plant.

3. At the k-th sampling instant, if xk ∈ W , then
uk = hFDMC(xk). In the opposite case, the sequence of
future control increments

Δπk = {Δuk|k, Δuk+1|k, . . . , Δuk+s−1|k}
and suitable state sequence {xk, xk+1|k, . . . , xk+p|k} ful-
filling constraints assumed in the optimization problem
(4) are obtained. Moreover, the following condition is
checked:

φk(xk, πk) ≤φk−1(xk−1πk−1)

− μ
(

xT
k−1Qxk−1 + R(uk−1 − us)2

)

.

(26)

If this condition is true, then Δuk = Δuk|k is used.
If not, then the next control increment is taken from the
previously obtained sequence Δuk = Δuk|k−1. As an
initial sequence for the optimization problem (4), the se-
quence π = {uk|k−1, uk+1|k−1, . . . , Δuk+s−2|k−1, us}

can be used. It is an admissible sequence because
it is, in fact, a continuation of the realization of
the control sequence obtained in the previous step
of the algorithm, and nominal stability is considered.
Thus, after the application of the control sequence
π = {uk|k−1, uk+1|k−1, . . . , Δuk+s−2|k−1, us}, the
constraints will be satisfied. The same will be done if in
the next step the condition (26) is not fulfilled. The block
diagram of the algorithm is shown in Fig. 6.

The stability of the control system with the presented
algorithm is ensured by the stability of the controller
working in the neighbourhood of the equilibrium point
and by the decrease in the performance index enforced by
the constraint (26), which implies that the quasi-state will
approach the set W in finite time. The proof is analogous
to that presented in (Scokaert et al., 1999), and therefore
the reader is referred there for detailed reasoning.

Remark 3. The theorem proved in (Scokaert et al., 1999)
considers nominal stability of the control system with ma-
nipulated variables generated by solving the nonlinear op-
timization problem (22) with a nonlinear model and was
used mainly in order to cope with problems that might
occur during nonlinear optimization. The suboptimal al-
gorithm detailed in Section 4.5 is applied in order to de-
sign stable versions of the FDMC algorithms described in
Section 3.2. Thanks to such an approach, nonlinear opti-
mization is avoided and the optimization problem solved
on-line by the algorithm is relaxed to the quadratic one.

5. Simulation examples

The proposed algorithms were tested in the control sys-
tems of two plants. The preliminary tests were performed
in a control system of a plant given in (Setnes and Rou-
bos, 2000). The obtained results are a good illustration of
the efficacy of the proposed stabilizing mechanisms. The
next experiments were performed on a control system of
an ethylene distillation column DA-303 from petrochem-
ical plant in Płock, Poland. In this case, various types of
stable FDMC algorithms were tested and the control qual-
ity offered by them was compared.

5.1. Preliminary example. The discrete-time TS plant
model is as follows (Setnes and Roubos, 2000):

Rule 1: if yk−1 is Low and yk−2 is Low then (27)

y1
k = 0.5402 · yk−1 + 0.1686 · yk−2 + uk−1 + 0.1413;

Rule 2: if yk−1 is Low and yk−2 is High then

y2
k = −0.4193 · yk−1 + 0.1575 · yk−2 + uk−1 − 0.0937;

Rule 3: if yk−1 is High and yk−2 is Low then

y3
k = −0.2699 · yk−1 + 0.0890 · yk−2 + uk−1 + 0.1327;
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Fig. 6. Block diagram of the dual-mode algorithm.

Rule 4: if yk−1 is High and yk−2 is High then

y4
k = 0.3213 · yk−1 + 0.0584 · yk−2 + uk−1 − 0.1716,

where y is the output of the plant, u is the input to the plant
(a manipulated variable). The parameters of the triangu-
lar membership functions are as follows (for the middle
process variable value, the membership function value is
equal to 1):

— for yk−1 : Low = (−4.7899,−1.4475, 1.2972),
High = (−0.6048, 0.9765, 4.7889);

— for yk−2 : Low = (−3.1795,−0.6248, 0.6600),
High = (−0.7942, 0.9789, 2.7312).

As the conjunction operator the product was used as in

(3). The weights were normalized. It was assumed that
the manipulated variable was constrained, −1 ≤ u ≤ 1.

During the experiments the efficacy of the stabilizing
mechanism was demonstrated. First, the FDMC-SL algo-
rithm with no stabilizing mechanism was designed using
the control plant model (27); λ = 1 was chosen in such a
way that unstable control system behaviour was obtained
(the dashed line in Fig. 7).

Next, the stabilization mechanism proposed in the
paper was used. First, an analytical FDMC controller was
designed for λ = 40. Then, a procedure presented in
(Marusak and Tatjewski, 2001; 2002) was applied and a
Lyapunov matrix of the control system with the analytical
controller was found using the Matlab LMI toolbox. The
analytical FDMC controller was then applied as a stabiliz-
ing controller operating near the equilibrium point.



Effective dual-mode fuzzy DMC algorithms with on-line quadratic optimization and guaranteed stability 137

Fig. 7. Responses of control systems with FDMC-SL algo-
rithms with (solid line) and without (dashed line) sta-
bilizing modification to a set-point change from y0 = 0
to ysp = 1; top—output signal, bottom—control signal.

Then, the stable version of the FDMC-SL algorithm
was used (with the stabilizing constraint (23) and the fol-
lowing values of parameters: μ = 1, R = λ = 1 and
Q = I). This time, the control system is stable (solid
lines in Fig. 7). The obtained result illustrates the effi-
ciency of the stabilizing mechanism introduced into the
FDMC algorithm.

5.2. Control system of a distillation column. A con-
trol plant is the ethylene distillation column DA-303 from
the petrochemical plant in Płock. It is a highly nonlinear
plant with a large time delay. The presented model was
designed at the Institute of Control and Computation En-
gineering of the Warsaw University of Technology jointly
with specialists from the Institute of Industrial Chemistry.
It was assumed that the model has Hammerstein’s struc-
ture. This means that it consists of a nonlinear static and
a linear dynamic block. The structure of this model is
shown in Fig. 8, where y is the product impurity counted
in ppm, u denotes the reflux to the product ratio and xf

is the feed composition (time constants in Fig. 8 are given
in minutes). The control plant under consideration has a
large time delay and is highly nonlinear. It is well illus-

Fig. 8. Block diagram of the control plant model; u—
manipulated variable, xf —measurable disturbance, y—
output variable.

Fig. 9. Static characteristics of the control plant.

trated by its static characteristics shown in Fig. 9. The
manipulated variable u was constrained, 4.05 ≤ u ≤ 4.4.

Attempts were made at designing a conventional
DMC controller for the control plant; however, the con-
troller designed to work well for large set-point values
worked too slowly for smaller set-point values, and the
controller designed for smaller set-point values caused a
lack of stability for larger set-point values. Satisfactory
results were obtained after the application of the FDMC
controllers described in Section 3, see (Marusak and Tat-
jewski, 2000) for a detailed description of these experi-
ments.

The discrete-time TS plant model for sampling time
Tp = 40 minutes is as follows:

Rule 1: if uk−2 is Z1, then (29)

y1
k+1 = 0.7659 · yk − 520.2638 · uk−2 + 2220.9067;

Rule 2: if uk−2 is Z2, then

y2
k+1 = 0.7659 · yk − 253.5771 · uk−2 + 1102.4471;

Rule 3: if uk−2 is Z3, then

y3
k+1 = 0.7659 · yk − 125.1030 · uk−2 + 563.8767,

with membership functions shown in Fig. 10.
In order to illustrate how the proposed stabilizing

mechanism can improve the control performance, the fol-
lowing experiment was done. The FDMC-NPL algo-
rithm without the stabilizing mechanism was designed
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Fig. 10. Membership functions of the control plant model.

Fig. 11. Responses of control systems with FDMC-NPL al-
gorithms with (solid line) and without (dashed line)
stabilizing modification to set-point change from
y0 = 100 ppm to ysp = 300 ppm; top—output signal,
bottom—control signal.

(using the discrete-time plant model) and the parameter
λ = 4e+5 was chosen, which is a value resulting in an un-
stable control system response (the dashed line in Fig. 11).
Then the stable FDMC-NPL algorithm was used.

First, an FDMC controller in an analytical version
was designed for λ = 8e + 6. The membership functions
shown in Fig. 12 were assumed. Then, utilizing the pro-
cedure presented in (Marusak and Tatjewski, 2001; 2002),
the Lyapunov matrix of the control system with this con-
troller was found using the Matlab LMI toolbox. The ana-

Fig. 12. Membership functions in controllers.

lytical FDMC controller was applied as a stabilizing con-
troller operating near the equilibrium point.

The FDMC-NPL algorithm with μ = 10−10,
R = λ = 0.4·106 and Q = I was then used in the control
system. Responses obtained with the stable FDMC-NPL
algorithm are marked in Fig. 11 with the solid line.

The obtained result illustrates the efficiency of the
stabilizing mechanism introduced into the FDMC algo-
rithm. The control system was stabilized. The large over-
shoot is implied by the value of the parameter λ assumed
in order to illustrate how the proposed mechanism works.
However, in the case when the controller is designed to
fulfil typically assumed criteria, a different value of λ
parameter should be presumed. In the discussed case,
λ = 0.8 ·107 yields satisfactory control system behaviour.
That is why such a value was assumed in the analytical
FDMC controller.

In Figs. 13 and 14, responses of the control systems
with stable FDMC-SL and FDMC-NPL algorithms are
shown; λ = 0.8 ·107 was assumed. The responses marked
with the solid line were obtained with the stable FDMC-
NPL algorithm and these marked with the dashed line—
with the stable FDMC-SL algorithm.

The obtained responses are practically unchanged
compared to the case without stabilizing modifications ex-
cept when the set-point changes from 400 ppm with the
FDMC-SL algorithm. Then the algorithm had to use ma-
nipulated variable values obtained in the previous iteration
in order to ensure a decrease in the performance index.

It is worth comparing the proposed algorithms with
the algorithm that consists in nonlinear optimization. In
Fig. 15, responses of the control system with such an al-
gorithm are shown; the same value of λ = 0.8 · 107

was assumed. It can be noticed that these responses are
similar to those obtained in the control system with the
FDMC-NPL algorithm. However, the latter are a little bit
faster at the cost of a slightly bigger overshoot and control
signal changes. As was already mentioned in Section 3,
the application of FDMC algorithms can result in obtain-
ing responses close to those generated in the control sys-
tem with a nonlinear optimization based algorithm. How-
ever, it should be noticed that the FDMC-NPL algorithm
is much more computationally efficient than the one with
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Fig. 13. Responses of control systems with FDMC-SL (dashed
line) and FDMC-NPL (solid line) algorithms to set-
point changes from y0 = 100 ppm; top—output signal,
bottom—control signal.

nonlinear optimization solved at each algorithm iteration.

6. Conclusions

Dual-mode fuzzy DMC (FDMC) algorithms with mech-
anisms ensuring nominal closed-loop stability have been
proposed. This is one of the first results concerning nom-
inal stability of predictive algorithms with constraints,
based on nonlinear models and successive linearization,
and the first one for predictive algorithms based on fuzzy
models and successive linearization. The algorithms are
of dual-mode type but are computationally effective, solv-
ing only quadratic optimization problems at each sam-
pling instant. The stabilization mechanisms introduced
are easy to implement and can be used in conjunction with
any FDMC algorithm. Thus, the algorithm version most
suitable for a given nonlinear control plant can be selected.
Comparative simulation results show the efficiency of the
proposed dual-mode extensions, supplementing the theo-
retical deliberations of the paper.

The algorithm of derivation of the invariant set W
is a key issue in dual-mode type algorithms applied for

Fig. 14. Responses of control systems with FDMC-SL (dashed
line) and FDMC-NPL (solid line) algorithms to set-
point changes from y0 = 400 ppm; top—output signal,
bottom—control signal.

output tracking problems. In the case of systems consid-
ered in the paper, the structure of the fuzzy Takagi-Sugeno
model was exploited in such a way that a fast and simple
algorithm for determining the invariant set W was pro-
posed. The proposed algorithm of finding the set W relies
on solving quadratic optimization problems which are for-
mulated in such a way that they can be solved analytically
(no numerical optimization is necessary), analogously to
the problem of manipulated variable calculation by the ex-
plicit controller described in Section 3.3. Thus, the algo-
rithm produces the solution very fast. This is important
because after a set-point change a new set W must be
found.
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