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In process robustness studies, it is desirable to minimize the influence of noise factors on the system and simultaneously
determine the levels of controllable factors optimizing the overall response or outcome. In the cases when a random effects
model is applicable and a fixed effects model is assumed instead, an increase in the variance of the coefficient vector should
be expected. In this paper, the impacts of this assumption on the results of the experiment in the context of robust parameter
design are investigated. Furthermore, two criteria are considered to determine the optimum settings for the control factors.
In order to better understand the proposed method and to evaluate its performances, a numerical example for the case of
‘the smaller the better’ is included.
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1. Introduction

Response surface methodology (RSM) has become an
important tool in process and product development.
RSM consists of mathematical and statistical optimization
techniques that are used to improve existing processes
or develop new ones. In both of these situations, RSM
can be used to obtain optimal conditions resulting in a
better overall product or service. Applications of RSM
can be found in many industrial settings where several
variables influence the desired outcome. Moreover, there
are many excellent discussions and practical examples
illustrating RSM and its applications in the literature,
and many authors have contributed to this area including
Vining and Myers (1990), Lucas (1994), Pledger (1996),
Khattree (1996), Myers et al. (1992, 1997, 2004),
Montgomery (1999).

Taguchi (1987) introduced the idea of Robust

Parameter Design (RPD). He argued that not only the
controllable factors of interest in a process, x, should be
considered, but also those uncontrollable or noise factors,
z, that often cause variation in the response. It is desirable
to find settings of the controllable factors such that the
process or product is robust or insensitive to variability
transmitted from these variables. His approach consists
of placing the controllable factors in one design called the
inner array and the noise factors in a second design called
the outer array, and then running the set of experiments
given by the Cartesian product of these two designs.
This strategy produces a crossed array design. Then an
analysis is performed and the signal-to-noise ratios are
computed across the outer array observations. References
on this issue include Box et al. (1988), Pignatiello and
Ramberg (1991), Nair (1992), Box and Jones (1992), and
Kunert et al. (2007).

In general, RSM is well suited to the RPD problem

Ardakani@cua.edu
{Rassoul,H_lahijani}@iust.ac.ir
Niaki@sharif.edu


60 M. K. Ardakani et al.

and process robustness studies. Myers et al. (2004)
believe that the solution of the robust parameter design
problem in the RSM framework would be one of the most
important areas of research. In RPD problems, authors
usually assume that the levels of the noise variables
are fixed in the experiment and random in the process.
Noise variables in experimentation could and, in many
cases, should be considered random and not fixed as
is commonly used. Myers and Montgomery (2002)
discussed the bias that can occur where estimates of the
response variance may exceed the actual variance due to
treating the noise variables as fixed. Estimates of this
variance depend on estimates of the model parameters,
and in some cases they are positively biased; i.e., the
mean variance estimates may exceed the actual variance.
Emphasizing noise factors and their related assumptions
in the estimating process of the response(s) obtained from
RSM is necessary. For instance, Khuri (1996) pointed out
that in many situations the noise effects in the experiment
are random and should be treated as such in the modeling
and analysis. Drain et al. (2005) used numeric and visual
displays to assess these effects given the presence of
noise variable correlation. Del Castillo et al. (2007) tried
to achieve robustness in parameter design based on the
appropriate estimation of the parameters.

The major aspect of this research is to investigate the
effects of different estimation methods related to noise
variables on final optimum solutions in RPD. In other
words, we measure the impact of regression estimation
affected by the noise variables on the robustness of the
product. In this regard, two optimization techniques,
namely, Copeland and Nelson’s method and the Lp

method, are applied for the purpose of a fruitful
illustration.

The rest of the paper is organized as follows: A
brief introduction to RPD and its different approaches
are presented in Section 2. Section 3 contains the two
optimization techniques: of Copeland and Nelson, and
Lp. In Section 4, we provide a brief review on the
ordinary least squares (OLS) and weighted least squares
(WLS) methods. A numerical example comparing the
performance of the optimization criteria is presented in
Section 5. Finally, our concluding remarks are given in
Section 6.

2. Robust parameter design

RPD is an engineering methodology intended as a cost-
effective approach for improving the quality of products
and processes. If we refer to a product and process
as a system, there are two types of inputs that operate
on a system: control factors and noise factors. Control
factors are easily controlled and manipulated, whereas
noise factors are difficult or costly to control and
considered uncontrollable in the experiment. Common

examples of noise factors are environmental qualities
such as temperature, humidity, or properties of incoming
materials. In a mathematical perspective, RPD is a
special case of the multiple response problem, where
two responses, the mean μy and the standard deviation
σy of the characteristics of interest (y), are measured
simultaneously for each setting of a group of design
or control variables (xs) during the experiment. After
estimating these two responses as μ̂y and σ̂y , we should
apply optimization techniques to determine the levels of
the control factors that lead to an optimum solution. In
other words, control variables should be chosen such
that the noise variables have less effect on the process
or product; and, consequently, the process or product
is insensitive to noise variables. In order to find the
responses related to the mean and standard deviation of
the process, there are two well-known approaches in the
literature that follow.

2.1. Dual-response method. The dual-response
system assumes that the two responses of interest can
be categorized as primary and secondary. It then solves
the decision variables that produce an optimum value
for one response while the other one is considered as a
constraint. These responses are assumed to be second-
order polynomial regressions of μ̂y and σ̂y . The sample
means and variances of the responses from what is called
the outer array are taken as the data for fitting the
responses. After estimating the location and dispersion
parameters, Lagrangian multipliers are used to find the
optimum solution(s). Del Castillo and Montgomery
(1993) solved the dual-response problem by a nonlinear
programming approach. Fan and Del Castillo (1999)
proposed a method to find the optimal solution for
a dual-response system fitted from experimental data.
Their method further considered the inherent sampling
variability of the fitted response by using the Monte Carlo
simulation. Vining and Myers (1990) proposed a response
surface approach to solve the dual response model with
the added constraint x′x = ρ2 for restricting the search
area to a spherical region of radius ρ. However, since
the constraints in the optimization problem all involve
equalities, we cannot often find a feasible solution. To
overcome this obstacle, one can replace the equality in
the constraint with an inequality and apply the method
proposed by Del Castillo and Montgomery (1993), which
uses the generalized reduced gradient (GRG) algorithm
to optimize the problem. Fathi (1991) also proposed
using nonlinear programming techniques to solve the
dual response problem assuming the functional form of
the response is known. Kim and Lin (1998) proposed
an optimization method to optimize dual problems in a
fuzzy environment. A membership function in fuzzy set
theory is used to measure the decision-maker’s degree of
satisfaction concerning the mean and standard deviation
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of the responses. Kim and Cho (2002), Tang and Xu
(2002), Koksoy and Doganaksoy (2003) presented various
extensions for solving the dual response approach.

2.2. Single-response model. A significant departure
from the dual-response approach suggested by Welch
et al. (1990) is to simultaneously consider both the
control and the noise factors in a single design called
the combined array. Useful references on the combined
array and its applications include Montgomery (1990),
Shoemaker et al. (1991), Lucas (1994), Borkowski and
Lucas (1997), Borror and Montgomery (2000), Romano
et al. (2004). These designs typically require fewer
runs than Taguchi’s crossed arrays used in the dual-
response model and also allow the experimenter to
estimate potentially important interactions.

The single-response model is generally given in the
following form:

y(x, z) = β0 + x′β + x′Bx + z′γ + x′Δz + ε, (1)

where y(x, z), x (rx × 1), and z (rz × 1) denote the
response, the control factors and the noise vectors,
respectively. The quantity β0 is the intercept, β is a vector
of coefficients for the linear effects in control variables,
B contains the coefficients for the quadratic effects in
control factors and the control × control interactions,
γ is a vector of coefficients for the linear effects in
the noise variables, and Δ contains the coefficients of
the interaction effects between control and noise factors,
which is critical for the success of RPD. The experimental
error, i.e., the error due to the inability of the model
to explain the real physical phenomenon, is defined by
ε. It is assumed that Var(ε) = σ2

εI, where I is the
identity matrix and E(ε) = 0. The response surface
model for the mean, assuming E(z) = 0, is given by
E [y(x, z)] = β0 + x′β + x′Bx. The response surface
model for the process variance is given by Var [y(x, z)] =
(γ + Δ′x)

′
Σz (γ + Δ′x) + σ2

ε , where Var(z) = Σz

is usually assumed to be σz2 I. In much the same may
as in the dual model approach, here two responses are
also considered, a location response corresponding to μ̂y

and a dispersion response corresponding to σ̂y , which are
necessary to formulate the standard RPD problems.

In order to determine the factor settings that lead
to an optimum solution, there are various optimization
techniques that are available in the multi-objective
decision making (MODM) area. According to Jeong
and Kim (2005), different multi-objective optimization
methods are classified into three major categories by the
timing of a decision maker (DM)’s preference information
articulation into the model: prior, progressive, and
posterior preference articulation. Prior preference
articulation methods require that all the preference
information of a DM be extracted prior to solving the

problem. Progressive preference articulation methods
require that a DM input his or her preference information
into a model during the problem solving process.
Posterior preference articulation methods do not need
any substantial articulation of a DM’s preference before
or during the problem solving process. Some of these
optimization techniques are discussed in the next section.

3. Some available optimization methods

In dealing with several objective functions, due to the
contradiction of objective functions, it is very unlikely
to find a single solution which could optimize all the
objective functions simultaneously. Consequently, we
are usually interested in finding Pareto optimal solutions.
In a Pareto optimal solution, any criterion cannot be
improved without deteriorating the value of at least one
other criterion. As has been mentioned earlier, there exist
many optimization methods in the MODM framework
which could be considered for optimization purposes. In
order to bring the effects of a wrong estimation problem
to light, we need to apply optimization methods through
simulation. A brief discussion of the methods used in this
study is given below.

3.1. Weighted metric method (Lp method). The Lp

method belongs to the first category of MODM problems,
i.e., the case where a DM gives all required information
before solving the problem. It is discussed in MODM
references such as Hwang and Masud (1979), Asgharpour
(1998) and Deb (2001), and it combines multiple objective
functions into a single one. This method is considered
for two main reasons. The first one is that this method
requires less information from a DM, and the second one
is its ease of implication in practice.

For ‘the smaller the better’ problems, the Lp method
is defined as follows:

MinLp

= {w(σ̂y − σmin)p + (1 − w)(μ̂y − μmin)p}1/p, (2)

where the quantities of σmin and μmin are the optimum
values for the response functions. The quantities w and
1−w indicate the importance of the standard deviation and
the mean response, respectively, and are determined by
the DM as a value between zero and one. Here p indicates
the importance of each objective function deviation from
its ideal value. When p = 1 is used, the problem is
changed to a weighted sum of deviations. When p = 2
is used, a weighted Euclidean distance of any point in the
objective space from the ideal point is minimized. When
p = ∞ is considered, the largest deviation should be
minimized, i.e.,

Min
x

(
Max{w(σ̂y − σmin); (1 − w)(μ̂y − μmin)}) ,
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which is equivalent to
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Min
x

z

s.t.

z ≥ w(σ̂y − σmin),
z ≥ (1 − w)(μ̂y − μmin).

Chankong and Haimes (1983) showed that when the
Lp method is used, all solutions corresponding to 1 ≤
p ≤ ∞ and w > 0 are efficient solutions. In Eqn. (2),
it is assumed that the objective functions have the same
scale. Otherwise, each objective function could be made
scale-less using either of the following equations:

Lp =
(

w(
σ̂y − σmin

σmin
)p + (1 − w)(

μ̂y − μmin

μmin
)p

)1/p

(3)
or

Lp =
(

w(
σ̂y − σmin

σmax − σmin
)p

+(1 − w)(
μ̂y − μmin

μmax − μmin
)p

)1/p

.

(4)

Since the values for Lp in Eqn. (4) are between zero and
one, i.e., 0 ≤ Lp ≤ 1, one can also formulate and solve
the problem in a fuzzy environment.

3.2. Copeland and Nelson’s method (CN method).
Copeland and Nelson (1996) proposed a method that
allows the DM to determine the maximum distance Δ
from the desired target, T . They also showed that their
method is as effective as the approach proposed by Lin
and Tu (1995). They used the Nelder-Mead simplex
procedure proposed by Nelder and Mead (1965) for the
direct minimization of the problem as

Min σ̂y + ε

such that (μ̂y − T )2 ≤ Δ2,

where ε is defined as (μ̂y − T )2 when (μ̂y − T )2 >
Δ2; otherwise, ε is zero. In order to obtain the best
possible solution, one should apply this procedure twice.
In Table 1, we summarize optimization methods for ‘the
smaller the better’ scenario. The two criteria, CN and
Lp, are formulated in Methods I and II, respectively; see
Table 1, where σT refers to the target value of σ̂y .

Table 1. Two different optimization methods.

Method I Method II

Min(μ̂y)
s.t.

σ̂y ≤ σT

Min Lp =
{
w(σ̂y − σmin)p

+(1 − w)(μ̂y − μmin)p
}1/p

4. Estimation methods

This section briefly discusses properties of the estimators
obtained by ordinary and weighted least squares methods.
The basic model in (1) can be written in the form of
the linear model Y = Xα + ε, where X = [x, z]; x
and z are control and noise factors vectors, respectively.
In the above expression, ε is a random error vector
with a covariance matrix denoted by V. Table 2 shows
the mean, variance, and estimators for the coefficient
vector α for the ordinary and weighted least squares
methods. It should be pointed out that the OLS method
is applicable when the covariance matrix can be presented
as σ2

ε I, where I denotes an identity matrix. When this
condition does not hold, one should use the WLS method
instead. A third method referred to as an incorrect method,
henceforth denoted by IM, is also presented in this table.
This case, which often happens in practice, is discussed
by Draper and Smith (1998). They show that when the
OLS method is used incorrectly in place of the WLS one,
the variance of the estimator increases significantly. The
incorrect use of the OLS method instead of the WLS
one happens either when noise factors are present but
cannot be controlled in the experiment or when noise
factors are unknown to the experimenter. In general,
when a random effects model is applicable and a fixed
effects model is assumed for simplicity, then we should
expect an increase in the variance of the coefficient vector.
The impacts of this assumption will be shown through
numerical examples later. When noise factors are random
in an experiment, the covariance matrix is not a multiple
of the identity matrix and the WLS method must be used
so that more weight is given to the solutions having less
dispersion.

Matrix V determines which estimation method is
appropriate for use. As can be seen, all three estimation
methods provide unbiased estimators for the coefficient
vector, but as Draper and Smith (1998) state, the variance
of the third case is significantly larger than that of the
second case. The effects of a larger variance on RPD will
be investigated numerically in the next section.

5. Numerical example

In this section, a numerical example is provided
to investigate the effect of an incorrect selection of
estimation methods on the optimum solution affected
by an increase in the variance of the response model
coefficients. The example is solved using the two
aforementioned methods. In this example, it is assumed
that actual observations required for the estimation
process can be generated by a predefined response model.
The Optimization Toolbox of MATLAB is used for
generating 15000 vectors of coefficients assuming that
the vector of coefficients follows a multivariate normal
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Table 2. Three different estimation methods.

Method V α̂ E(α̂) Cov(α̂)
OLS = σ2

εI (X′X)−1X′Y α (X′X)−1σ2
ε

WLS �= σ2
εI (X′V−1X)−1X′V−1Y α (X′V−1X)−1

IM �= σ2
εI (X′X)−1X′Y α (X′X)−1X′VX(X′X)−1

distribution defined by N (α, Cov(α̂)), where Cov(α̂) is
given in Table 2. Note that we assume that the variance
in the experiment related to estimation is similar to that of
the process related to optimization.

In a typical ‘the smaller the better’ scenario, the goal
is to minimize the mean while holding the variance at a
constant level. However, in robust parameter design, the
control variables should be selected so that a desirable
mean response with a low variance is obtained. The
response surface model that Myers and Montgomery
(2002) used is defined as

y(x, z) = 30.37− 2.92x1 − 4.13x2 + 2.87x1x2

− 2.6x2
1 + 2.18x2

2 + 2.73z1 − 2.33z2

+ 2.33z3 − 0.27x1z1 + 0.89x1z2 + 2.58x1z3

+ 2.01x2z1 − 1.43x2z2 + 1.56x2z3.

(5)

It can be shown that

E [y(x, z)] = 30.37 − 2.92x1 − 4.13x2 − 2.87x1x2

− 2.6x2
1 + 2.18x2

2

(6)

and

Var [y(x, z)]

=

⎛

⎜
⎝

⎛

⎜
⎝

2.73
−2.33
2.33

⎞

⎟
⎠

+

(
−.27 0.89 2.58
2.01 −1.43 1.56

)′ (
x1

x2

)⎞

⎠

′

× Σz

⎛

⎜
⎝

⎛

⎜
⎝

2.73
−2.33
2.33

⎞

⎟
⎠

+

(
−.27 0.89 2.58
2.01 −1.43 1.56

)′ (
x1

x2

)⎞

⎠+σ2
ε.

(7)

We arbitrarily keep σ2
ε at a constant value of

one. We consider the model in Eqn. (5) along with a
modified 23-run central composite design (CCD) given in
Table 3 to generate observations needed to estimate the

model coefficients. In the original problem, Myers and
Montgomery (2002) considered zis as fixed factors in the
experiment, whereas in the example discussed here zis
are assumed to be uncontrollable factors. Two cases are
considered in this study. In the first one, it is assumed
that there is no correlation between the noise factors, and
in the second case a high correlation of 0.9 in magnitude
is assumed between the noise factors. The reason for
selecting a high correlation on the one hand is its effect on
yielding relatively higher values in the variance response.
On the other hand, it allows us to investigate the impact
of correlation between noise factors on the estimation
methods in a much easier way. The correlation matrices
corresponding to the first and second cases are denoted by
ΣI

z and ΣII
z , respectively, and are defined as

ΣI
z =

⎡

⎢
⎣

1 0 0
0 1 0
0 0 1

⎤

⎥
⎦

and

ΣII
z =

⎡

⎢
⎣

1 −0.9 0.9
−0.9 1 −0.9
0.9 −0.9 1

⎤

⎥
⎦ .

To determine the optimum solutions, we can apply the
methods presented in Table 1. The results are discussed
below.

Method I. This method uses the formulation proposed
by Copeland and Nelson (1996) to optimize the problem.
Based on the design in Table 3 and the correlation matrices
defined as ΣI

z and ΣII
z , a set of observations for the

response is generated and then the vector of coefficients
using the WLS method and the IM is estimated. Since
we now have the estimates for the coefficients of the
response in (5), the equations for the mean and standard
deviation of the response, i.e., Eqn. (6) and the square
root of Eqn. (7), can be constructed. Using Method
I, the settings for the control factors leading to the
optimum values of the mean and standard deviation are
determined. This step is repeated 15000 times and the
average values for the mean and standard deviation are
presented in Figs. 1 and 2, and Figs. 3 and 4, respectively.
Figures 1 and 3 correspond to the case when ΣI

z is used,
and Figs. 2 and 4 correspond to the case when ΣII

z is
considered as the correlation matrix. In each figure, the
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Table 3. Modified central composite design with 23 runs.

Design points x1 x2 z1 z2 z3

1 −1 −1 −1 −1 1
2 −1 1 −1 −1 −1
3 −1 −1 1 −1 −1
4 1 1 1 −1 −1
5 −1 −1 −1 1 −1
6 1 1 −1 1 −1
7 1 −1 1 1 −1
8 −1 1 1 1 −1
9 −1 −1 −1 −1 1

10 1 1 −1 −1 1
11 1 −1 1 −1 1
12 −1 1 1 −1 1
13 1 −1 −1 1 1
14 −1 1 −1 1 1
15 −1 −1 1 1 1
16 1 1 1 1 1
17 0 0 0 0 −2
18 0 0 0 0 2
19 0 0 0 −2 0
20 0 0 0 2 0
21 0 0 0 0 0
22 0 0 0 0 0
23 0 0 0 0 0

Table 4. Ideal points and their locations.

x1 x2 μ̂y σ̂y

σmin 0.003775 −1.4785 41.214 1.0052
μmin 0.060831 0.90721 28.408 11.65

mean values obtained from the WLS and IM estimation
methods and the exact values obtained from the true mean
response equation are presented. Figures 5 and 6 show
the standard deviation of the mean and standard deviation,
respectively. Figures 5 and 6 are related to the estimation
methods described in Figs. 1 and 2, and Figs. 3 and 4,
respectively. For comparison purposes, the values of the
mean and standard deviation when the exact values of the
coefficients are used in Eqns. (6) and (7) are also shown
in Figs. 1–4. Negative and positive signs in the figures
are related to uncorrelated and correlated, namely ΣI

z and
ΣII

z , noise matrices, respectively.
Figures 1 and 2 show that the WLS method produces

results which are closer to the actual values than the
IM. Figures 3 and 4 show that for both correlated
and uncorrelated cases, the results yielded by the two
estimation methods are close to the values obtained

Fig. 1. Average values for the mean response with no
correlation.

Fig. 2. Average values for the mean response with correlation.

Fig. 3. Average values for the standard deviation response with
no correlation.

Fig. 4. Average values for the standard deviation response with
correlation.

from the actual standard deviation response. Figures 5
and 6 show the standard deviation of the mean and
standard deviation values estimated by the two methods
for both correlated and uncorrelated cases. In these two
figures, the results obtained by the estimation method
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Fig. 5. Average values for the standard deviation of the mean
response.

Fig. 6. Average values for the standard deviation of the standard
deviation response.

when correlation exists are denoted by “a+” superscripts,
and the results obtained when no correlation exists are
shown by “a−” superscripts. From the figures we
see that, as expected, the standard deviation related to
the uncorrelated case is relatively smaller than for the
correlated case.

Method II. This method uses the Lp metric discussed in
the previous section. The Lp metric requires the ideal
values for the mean and the standard deviation. In our
example, the ideal value for the mean response is 28.408,
i.e., μmin = 28.408. In Eqn. (7) we arbitrarily set the
value of σ2

ε equal to one. Hence, the ideal value for
the square root of the variance response becomes 1.0052,
i.e., σmin = 1.0052. Table 4 shows the values of the
controllable factors which lead to ideal points for the mean
and standard deviation responses. Note that we perform
optimization in the feasible region 4 × 4, that is, x1 and
x2 take values between −2 and 2.

The results for the Lp metric method for the case
of p = 1 are presented in Figs. 7–12. Figures 7 and 8
show the results for the mean equation as a function
of w determined by the DM in the Lp equation. The
weight value should be selected in advance by the DM.
It determines the importance of the standard deviation
response. For instance, if the standard deviation response
is more important compared with the mean response, then
a relatively larger value should be assigned to it. The

Fig. 7. Average values for the mean response with no
correlation and p = 1.

Fig. 8. Average values for the mean response with correlation
and p = 1.

case of w equal to one refers to a situation when the
DM does not want to allow a smaller value for μ̂y at
the expense of a larger value for σ̂y . From Figs. 7 and
8, one can infer that for both cases of correlated and
uncorrelated noise matrices, incorrect use of an estimation
method yields a relatively larger bias compared with the
weighted least squares method. As we expect, the bias for
the correlated case is larger than that for the uncorrelated
one. Figures 9 and 10 show the standard deviation
response as a function of w for uncorrelated and correlated
noise matrices, respectively. These figures indicate that
as the value of w increases, the standard deviation for
the response decreases. In addition, an inappropriate
estimation method leads to a larger bias in the standard
deviation response. Figures 11 and 12 show the standard
deviations for the mean and standard deviation responses
as a function of w, respectively. These two figures
indicate that an incorrect estimation method induces a
larger variation in the estimates and, consequently, a less
robust process.

In comparison with the CN method, the Lp method
seems to lead to better solutions. For instance, when
the weight in the WLS method is set equal to 0.6, we
obtain the value of 4.48 and 29.032 from Figs. 9 and 7,
respectively. In Fig. 3, the same standard deviation can be
obtained by the CN method when σT is set approximately
equal to 4.5. In Fig. 1, when σT is set equal to 4.5, the
value of 29.98 can be obtained for the mean response.



66 M. K. Ardakani et al.

Fig. 9. Average values for the standard deviation response with
no correlation and p = 1.

Fig. 10. Average values for the standard deviation response with
correlation and p = 1.

Fig. 11. Average values for the standard deviation of the mean
response and p = 1.

Fig. 12. Average values for the standard deviation of the
standard deviation response and p = 1.

Thus, the value of the mean response obtained by the CN
method is greater (worse) than that of the Lp method.
The results for the case of p equal to two are presented
in Figs. 13–18.

From Figs. 7–18 it can be inferred that, as the p
value increases, the slope of the curves also increases. It

Fig. 13. Average values for the mean response with no
correlation and p = 2.

Fig. 14. Average values for the mean response with correlation
and p = 2.

Fig. 15. Average values for the standard deviation response with
no correlation and p = 2.

Fig. 16. Average values for the standard deviation response with
correlation and p = 2.

indicates that the DM makes a more conservative decision
in the trade off between the standard deviation and mean
responses. Similar analyses in which the details are not
given were conducted for p = ∞ and the same results
were obtained. The results indicate that the Lp is a flexible
method by which researchers are able to express their
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Fig. 17. Average values for the standard deviation of the mean
response and p=2.

Fig. 18. Average values for the standard deviation of the
standard deviation response and p = 2.

preferences for responses through w and p. In addition, it
is less sensitive to the estimation errors compared with the
CN method. However, if an incorrect estimation method is
used for estimating the coefficients of the response model,
one should expect a larger variance for the estimated
coefficients.

6. Conclusion

In this paper, two different optimization criteria, namely,
CN and Lp, for ‘the smaller the better’ problems were
considered, and the impact of incorrect estimation method
on the estimates of the coefficients of the mean and
standard deviation responses in the context of robust
parameter design study was investigated. Numerical
results indicate that the use of the incorrect estimation
method leads to a relatively significant bias in the mean
and standard deviation responses. Hence, researchers
should be more cautious about the presence of noise
factors when estimating coefficients of the response
function. By comparing optimization criteria, we found
out that the solutions obtained by the first method, i.e.,
the CN method, are relatively less robust. The second
optimization method, or the Lp criterion, heavily depends
on the weights reflecting the importance of the responses
from the viewpoint of the decision maker. An advantage
of this method is its ability to yield efficient solutions
regardless of the values of p and w.
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