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The article considers the effectiveness of various methods used to solve systems of linear equations (which emerge while
modeling computer networks and systems with Markov chains) and the practical influence of the methods applied on
accuracy. The paper considers some hybrids of both direct and iterative methods. Two varieties of the Gauss elimination
will be considered as an example of direct methods: the LU factorization method and the WZ factorization method. The
Gauss-Seidel iterative method will be discussed. The paper also shows preconditioning (with the use of incomplete Gauss
elimination) and dividing the matrix into blocks where blocks are solved applying direct methods. The motivation for such
hybrids is a very high condition number (which is bad) for coefficient matrices occuring in Markov chains and, thus, slow
convergence of traditional iterative methods. Also, the blocking, preconditioning and merging of both are analysed. The
paper presents the impact of linked methods on both the time and accuracy of finding vector probability. The results of an
experiment are given for two groups of matrices: those derived from some very abstract Markovian models, and those from
a general 2D Markov chain.
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1. Introduction

Computer networks are continuously extended. Users de-
mand bands, they want to send in real time both pic-
ture and sound. That is why modeling network work be-
comes an important problem regarding both predicting its
work and preventing breakdown. One of computer net-
works modeling methods are Markovian models. They
need some information: in what states network can exist
and what the probabilities (or rates) of transitions among
states are. Based on the above, a system of equations is
built to describe transition rates among particular states to
determine the probability of a particular network’s state
occurrence. After solving the system of equations and ob-
taining state probabilities, it is possible to determine the
parameters of network work (e.g., capacity, packets loos-
ing probability, delay, packets dropping rate).

In the steady state (independent of time), while mod-
eling with Markov chains, we obtain the following system
of linear equations:

QT x = 0, x ≥ 0, xT e = 1, (1)

where Q is the transition rate matrix, and x is a vector
of state probabilities and the vector e = (1, 1, . . . , 1)T .

The matrix Q is an n × n matrix, usually a big one,
of rank n − 1, sparse, with a dominant diagonal. It is
also a singular matrix, thus demanding adequate meth-
ods to solve it. Solving Markovian models demands over-
coming both numerical and algorithmic problems. Solv-
ing (1) generally demands applying iterative methods,
projection methods or decomposition methods but, oc-
casionally (for the need of an accurate solution), direct
methods are used. Information concerning applying di-
rect methods in Markov chains can be found in (Harrod
and Plemmons, 1984; Golub and Meyer, 1986; Funder-
lic and Meyer, 1986; Funderlic and Plemmons, 1986). It-
erative methods are described, for example, in (Jennings
and Stewart, 1975; Stewart and Jennings, 1981), and
projection methods are discussed in (Saad and Schultz,
1986; Bylina, 2003), while decomposition methods are
described in (Schweitzer and Kindle, 1986; Haviv, 1987).
A rich material concerning all methods mentioned above
can be found in (Stewart, 1994).

Both direct and iterative methods have advantages
and disadvantages. One of the ways to take advantage
of both methods to solve big sparse problems is link-
ing them together. This kind of approach is described in
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(Duff, 2004), among others.
In our article—which is an improved and extended

version of (Bylina and Bylina, 2007; 2008)—we will
point at two ways of merging iterative and direct meth-
ods: preconditioning and blocking, as well as their link-
ing. The novelty of this elaboration concerns applying the
WZ factorization method instead of the LU factorization
method—regarding both incomplete factorization in pre-
conditioning techniques as well as during solving with the
block Gauss-Seidel method. These methods are described
in (Bylina and Bylina, 2007).

We would like to try to answer some questions about
hybrid methods. Is there any point in linking iterative
methods with direct methods? For what matrices is it
worth doing? What are matrices’ general properties that
affect the behaviour of the algorithms? Is it advisable to
apply preconditioning and blocking to an iterative method
both at the same time? What is the influence of various
methods and their combinations on accuracy?

The article is composed as follows: Section 2 in-
cludes a discussion on the features of direct and iterative
methods used in solving linear equation systems derived
from Markov chains. Section 3 presents the idea of pre-
conditioning and incomplete factorizations as precondi-
tioning techniques. Section 4 describes the block Gauss-
Seidel method. Section 5 is devoted to the matrix group
inverse, which is needed to find a condition number of sin-
gular matrices. Section 6 presents the results of a numeri-
cal experiment conducted for various matrices describing
some Markov chains. In the last section there are conclu-
sions regarding the conducted experiments.

2. Scope and constraints in the methods of
solving systems of equations

In the literature we can find four approaches (mentioned
above) concerning solving the system of linear equa-
tions (1). In the article we describe two methods: direct
and iterative ones.

2.1. Direct methods. Direct methods (also known as
accurate ones) are those which would lead to an accurate
solution of the system of equations after a finite number
of steps if all calculations were done without rounding.
All direct methods are modifications of the Gauss elimi-
nation method, which enables determining LU factoriza-
tion, where the matrix L is lower triangular and the matrix
U is upper triangular.

The features of the direct methods are as follows:

• They give a solution in a finite number of steps by
applying decomposition.

• In solving equations applying direct methods, elim-
ination of one non-zero element in the reduction

phase is often followed by creating some non-zero
elements where earlier there were zeros. This fill-
in effect not only makes matrix storage organization
more complicated but also the size of the fill-in can
be so big that the accessible memory ends fast.

• Direct methods enable determining the demanded
number of operations before calculations (for the
Gauss elimination: n3/3 + n2/2 − 5n/6 multipli-
cations and n2/2 + n/2 divisions).

• For some problems, solving with the use of di-
rect methods provides a more precise answer more
quickly than with the application of iterative meth-
ods.

WZ factorization is another version of the Gauss
elimination (see Fig. 1), which was designed and de-
scribed in (Evans and Hatzopoulos, 1979) especially for
SIMD computers (Single Instruction Stream—Multiple
Data Stream) in 1979. It was adapted to existing com-
puter architectures (Evans and Barulli, 1998; Chawla and
Khazal, 2003; Rao and Sarita, 2008). The paper (Yalamov
and Evans, 1995) presents WZ factorization as the one
that can be faster on computers with a parallel architecture
than LU factorization for matrices with a dominant diag-
onal, which is the feature of transition rate matrices Q.

Regarding the WZ factorization features mentioned
above, this direct method was chosen for the system (1)
to be solved. That method can be applied successfully
to determining small numbers, where there is a need to
implement calculations with a greater accuracy.

2.2. Iterative methods. Iterative methods start with
some approximation and create a sequence of inaccurate
results which converges—as expected—to a solution of
the problem. It is difficult to know in advance how many
iterations are demanded to gain assumed accuracy so it is
impossible to determine the number of operations before
finishing the calculations. The Gauss-Seidel method is an
example of the iterative method and it is described below.

The matrix QT = L + D + U, where L is a
strictly lower triangular matrix, D is a diagonal one and
U is a strictly upper triangular one. Assuming that an
approximation x(i) = [x(i)

1 , . . . , x
(i)
n ]T is given, in the

Gauss-Seidel method the next approximation x(i+1) =
[x(i+1)

1 , . . . , x
(i+1)
n ]T is determined to comply with the

equation

ak1x
(i+1)
1 + . . . + akkx

(i+1)
k

+ ak,k+1x
(i)
k+1 + . . . + a

(i)
kn = bk. (2)

Transforming (2), we have the following result:

(L + D)x(i+1) + Ux(i) = 0, (3)
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Fig. 1. Form of the output matrices in WZ factorization (left: W; right: Z).

which gives the following iterative formula, known as the
Gauss-Seidel method,

x(i+1) = −(L + D)−1Ux(i). (4)

Equation (4) shows that in every iteration there are
applied the newly computed vector values.

Advantages of iterative methods are as follows:

• they are easy to implement because there is no mod-
ification of matrices in the calculation process;

• they enable memory saving;

• the calculations can be done very precisely (the more
precise they are, the longer the algorithm takes).

Problems concerning iterative methods include the
following:

• difficulties with convergence for ill-conditioned ma-
trices;

• sometimes a substantial number of iterations is re-
quired to arrive at convergence.

3. Preconditioning

The convergence rate of iterative methods depends upon
the attributes of matrix Q. The matrix Q is an ill-
conditioned matrix, which can affect iterative methods ap-
plied to that matrix as they are slowly convergent or some-
times even divergent. One of the ways to prevent that is
transforming the system of equations into an equivalent
system, having the same solution but better attributes to
solve it with iterative methods. So, preconditioning is an
example of applying the above.

System (1) is transformed into the following:

M−1QT x = 0, x ≥ 0, xT e = 1, (5)

where the matrix M approximates the matrix QT in some
way. So, instead of solving the system (1), we find a so-
lution of the system (5). Applying any preconditioning
is tightly connected with a high cost of calculations. It
concerns the construction and application of the precon-
ditioner (which means finding a matrix M approximating
the matrix QT and inverting the matrix M). The cost of
preconditioner construction can be amortized by a lower
number of iterations or by using the same preconditioner
for different systems of equations.

Various techniques are applied to determine the ma-
trix M. It is very difficult to find good preconditioning to
solve sparse systems of linear equations. It happens very
often that theoretical results cannot be confirmed in prac-
tice. There are not enough tools and means to prove the
above (besides numerical experiments).

Preconditioners are usually built based on the orig-
inal matrix QT . In (Benzi and Ucar, 2007), the authors
consider preconditioned Krylov subspace methods for
solving large singular linear systems arising from Marko-
vian modeling. In the next section preconditioner con-
struction will be described based upon incomplete factor-
izations applied to classical iterative methods.

3.1. Incomplete LU factorization. A preconditioning
example based on incomplete LU factorization (marked
with ILU) consists in the calculation of a lower triangu-
lar matrix L and an upper triangular matrix U. The prod-
uct of these matrices’ product gives an approximating ma-
trix M. ILU has different variants but the simplest form
of incomplete LU factorization is ILU(0), in which calcu-
lations are like in full LU factorization (that is, the Gauss
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elimination) but only those elements lij and uij of the ma-
trices L and U are stored for which adequate elements
qij of the given matrix QT were non-zero. That is why
the output matrices have the number of non-zero elements
exactly the same as that for the matrix QT . In that way
the most important problem associated with sparse ma-
trix factorization—the fill-in (non-zero elements in places
where in the original matrix were only zeros, which is fol-
lowed by the matrix change from sparse into a dense one
and widening the room to store it)—is eliminated.

The matrix QT can be written as

QT = LU + RLU , (6)

where the matrix RLU is expected to be a small one (in a
sense). Let

M = LU, (7)

that is,
M−1 = U−1L−1, (8)

and then Eqn. (5) has the form

U−1L−1QT x = 0, x ≥ 0, xT e = 1. (9)

Let
SLU = U−1L−1QT . (10)

Then, Eqn. (9) has the following form:

SLUx = 0, x ≥ 0, xT e = 1. (11)

Now, we can solve (11) with another algorithm, e.g.,
the Gauss-Seidel method.

3.2. Incomplete WZ factorization. Just like the in-
complete LU factorization above, we can define IWZ
(incomplete WZ factorization) more precisely: IWZ(0),
whose details are given in (Bylina and Bylina, 2008).

In IWZ(0) there are remembered only those elements
wij and zij of the matrices W and Z for which adequate
elements qij of the given matrix QT were non-zeros.
Hence, the output matrices have the number of non-zero
elements accurately the same as that for the matrix QT ,
and the fill-in is eliminated.

The matrix QT can be written as

QT = WZ + RWZ , (12)

where the matrix RWZ is expected to be a small one (in a
sense). Let

M = WZ, (13)

that is,
M−1 = Z−1W−1, (14)

and then Eqn. (5) has the form

Z−1W−1QT x = 0, x ≥ 0, xT e = 1. (15)

Let
SWZ = Z−1W−1QT . (16)

Then, Eqn. (15) has the following form:

SWZx = 0, x ≥ 0, xT e = 1. (17)

Just like in Section 3.1, we can now solve (17) with
another algorithm, e.g., the Gauss-Seidel method.

4. Blocking: Block Gauss-Seidel method

It is possible to divide the transition rate matrix into blocks
and develop iterative methods based on that division. Gen-
erally, iterative block methods demand more calculations
per iteration, which is recompensed by a faster conver-
gence rate.

The homogeneous system of equations (1) is divided
into K2 blocks in the following way:

⎡
⎢⎢⎣

Q11 Q12 · · · Q1K

Q21 Q22 · · · Q2K

· · · · · · · · · · · ·
QK1 QK2 · · · QKK

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎣

x1

x2

...
xK

⎤
⎥⎥⎥⎦ = 0. (18)

We introduce block splitting

QT = DK − (LK + UK), (19)

where DK is a block-diagonal matrix, LK is a strictly
block lower triangular one, UK is a strictly block upper
triangular one:

DK =

⎡
⎢⎢⎣

D11 0 . . . 0
0 D22 . . . 0

. . . . . . . . . . . .
0 0 . . . DKK

⎤
⎥⎥⎦ , (20)

LK =

⎡
⎢⎢⎣

0 0 . . . 0
L21 0 . . . 0
. . . . . . . . . . . .
LK1 LK2 . . . 0

⎤
⎥⎥⎦ , (21)

UK =

⎡
⎢⎢⎣

0 U12 . . . U1K

0 0 . . . U2K

. . . . . . . . . . . .
0 0 . . . 0

⎤
⎥⎥⎦ . (22)

The block Gauss-Seidel method is given by

(DK − LK)x(i+1) = UKx(i). (23)

Describing the equation mentioned above in a scalar-like
form, we get

Djjx
(i+1)
j =

i−1∑
l=1

Ljlx
(i+1)
l

+
K∑

l=j+1

Ujlx
(i)
l ,

(24)
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where j = 1, 2, . . . , K and x(i)
j is the j-th sub-vector (of

the size n/K) of the vector x(i).
As a result, in each step we must solve K systems of

equations, each of the size n/K , in the following form:

Djjx
(i+1)
i = z(i+1)

j , (25)

where

z(i+1)
j =

i−1∑
l=1

Ljlx
(i+1)
l +

K∑
l=j+1

Ujlx
(i)
l (26)

and j = 1, 2, . . . , K .
We can apply different direct and iterative methods

to solve Eqn. (25). When using direct methods, for ev-
ery block we make factorization only once before itera-
tions, in the loop we change only right-hand sides of the
equations. If the matrices Dii have a special structure,
for example, they are diagonal, upper triangular, lower
triangular or tri-diagonal matrices, then LU or WZ fac-
torizations are very simple to get and the block iterative
method becomes very attractive. If the matrices Dii do
not have any of the mentioned structures, then it may ap-
pear that block solving demands iterative methods. Then,
we have an inner iterative method within the main iterative
method. It demands selecting a proper method as the in-
ner one to be convergent and choosing an initial vector for
the given method. There is a small number of outer itera-
tions demanded to obtain convergence for a small number
of blocks (the sub-matrices are big).

If we choose a direct method as the inner one, we
have merging of an iterative method (Gauss-Seidel) and a
direct method (WZ or LU), but their order is different.

5. Group inverse

The problem of solving a linear equation Ax = b con-
cerns the condition number κ(A) usually defined as

κ(A) = ||A|| · ||A−1||, (27)

where ||A|| denotes any norm of the matrix A.
If the solution of the equation Ax = b is not very

sensitive to small changes in A and b, the matrix A (or the
equation) is said to be well conditioned and it coincides
with a low condition number. Otherwise, if the matrix
has a high condition number, which means that the solu-
tion is sensitive to small changes in the coefficient matrix,
the matrix (and the equation) is said to be ill conditioned.
For ill conditioned matrices, the solutions obtained in a
straight way from the equation Ax = b could be very
inaccurate.

In Markov chain problems, the infinitesimal gener-
ator matrix Q is singular, so its inverse does not exist.
In such cases we cannot obtain a condition number from
(27). However, then the concept of a group inverse or a

generalized inverse plays a role analogous to that of the
matrix inverse. The group inverse of Q is denoted by Q#

and is defined as a unique matrix satisfying

QQ#Q = Q,

Q#QQ# = Q#, (28)

QQ# = Q#Q.

Thus, the condition number of a singular matrix Q can be
defined as

κ(Q) = ||Q|| · ||Q#||. (29)

It is shown in (Campbell and Meyer, 1979) that Q#

fulfills the equation

I = QQ# + eπ, (30)

where π = xT is the stationary probability vector satisfy-
ing the equation QT x = 0.

For any nonsingular matrix, we can write AA−1 = I
as

A[z1, z2, . . . , zn] = [e1, e2, . . . , en], (31)

and then
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Az1 = e1,
Az2 = e2,

...
Azn = en,

(32)

where ei = (eij )T , eij = δij . For the nonsingular ma-
trix A, we can compute LU decomposition and then de-
termine the columns of A−1:

zi = U−1L−1ei, i = 1, 2, . . . , n (33)

and, analogously, we can write it with the use of WZ de-
composition:

zi = Z−1W−1ei, i = 1, 2, . . . , n. (34)

The algorithm presented below for the computation
of the group inverse of an infinitesimal generator Q is
based on this approach and on the fact that the group in-
verse of Q is the unique matrix that satisfies Eqns. (30)
and (35) (which can be easily proved from (1) and (28)
(Stewart, 1994)):

πQ# = 0. (35)

The algorithm for determining the group inverse with
LU factorization was given in (Funderlic and Meyer,
1986). Here we present an analogous algorithm, but with
the use of WZ factorization.

1. Compute WZ decomposition of Q.

2. Compute the stationary probability vector π with
the use of the zero determinant method (Bylina and
Bylina, 2004).
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3. For i = 1, 2, . . . , n:

• compute zi = Z−1W−1(ei − πie);
(Every zi satisfies the equation QQ# = I−eπ,
that is, Q[z1, z2, . . . , zn] = [e1, e2, . . . , en] −
e[π1, π2, . . . , πn].)

• compute q#
i = zi − (πzi)e.

4. Set Q# = [q#
1 ,q#

2 , . . . ,q#
n ].

6. Numerical experiment

The implementation of the algorithms was done in the C
language. Data structures to store the matrices QT , W, Z,
L, U were full two-dimensional arrays situated in RAM.
The numerical experiment was conducted on a PC com-
puter with 1GB RAM and a Pentium IV 2.80 GHz proces-
sor. The algorithms were tested in the Linux environment,
and the compilator gcc with the -03 option was used in
the compilation.

The main goal of the tests was to check the behavior
of preconditioning and blocking techniques and to com-
pare them for some matrices and their influence on the
accuracy of the results. The tests were carried out for
some sparse matrices generated by the authors. The gen-
erated matrices described some Markov chains and they
had all the attributes of the transition rate matrices QT .
Tables 1 and 4 show some information about the test ma-
trices. In these tables, n means the number of columns and
nz means the number of nonzero elements. It is worth not-
ing that the condition numbers κ of all the presented ma-
trices (in both tables) are very high—it is the reason why
we should try to apply a technique enhancing the conver-
gence of iterative methods.

6.1. Tests for abstract Markov chains. The matrices
tested here differed in the average number of nonzero el-
ements per column. Two matrices had more than 10 ele-
ments in a column (group I), and the other two had about
four elements in a column (group II). That essentially af-
fected calculations accuracy and iterative methods conver-
gence.

The matrices were selected in the way allowing us
to check the algorithms’ behavior on various matrices, es-
pecially regarding their sparseness—it was caused by an
observation of (Benzi and Ucar, 2007), where the conver-
gence of some algorithms, such as GMRES (Saad and
Schultz, 1986), for a matrix with the greatest density
(nz/n > 8) was much worse.

The vector of probabilities π was determined for
each tested matrix applying the usual Gauss-Seidel itera-
tive method (GS) and the block Gauss-Seidel, the method
where the blocks were solved using LU factorization
(GSLU) and WZ factorization (GSWZ). For the block

methods, K2 was the number of blocks the transition ma-
trices were divided into. Table 2 shows the time needed
for the algorithms (GS, GSWZ, GSLU) as well as the im-
pact of the above algorithms on result accuracy. The sym-
bol i(e–∗) means the number of iteration steps needed to
get the accuracy e–∗.

Applying block GS (in the variants GSLU and
GSWZ) when to classic GS resulted the following obser-
vations:

• For all the matrices dividing into a small number of
blocks gives faster method convergence. But divid-
ing into a great number of blocks makes the accuracy
to be obtained at the same number of steps as for the
usual GS.

• The time of algorithm calculating depends only upon
the number of blocks, independently of the groups
of matrices. The smaller the number of blocks, the
longer the time of calculations, which is normal for
big matrices solved with accurate methods, where
cost depends on size. Division into a large number of
blocks shortens the time of calculations. The more
blocks, the more similar the solving time to the usual
Gauss-Seidel method.

• Calculation accuracy does not depend on factoriza-
tion: WZ or LU. But factorization influences the time
of the calculation. Dividing the matrices into a large
number of blocks, we get a 1.5 time faster algorithm
GSWZ than GSLU.

• The accuracy did not depend on the condition num-
ber, but rather on the matrix sparsity—sparser matri-
ces gave worse results.

Incomplete factorizations IWZ and ILU were applied
for the matrix QT as preconditioning. The traditional
Gauss-Seidel method was applied for the obtained equa-
tion systems, and so was the block Gauss-Seidel method.

Table 3 shows the comparison of the methods: the
traditional Gauss-Seidel algorithm (GS), preconditioned
GS—both with IWZ (IWZ+GS) and with ILU (ILU+GS),
and block GS, where the blocks were treated with WZ
(GSWZ(K)) and with LU (GSLU(K)). Here, the number
of blocks is K2. K = 2 was chosen because of the best
accuracy. The time was compared, as well as the conver-
gence after 5, 10 and 20 iterations.

Some selected results from Table 3 are shown in
Figs. 2 and 3.

In those tests we also linked together the iterative
method with both preconditioning and blocking. The re-
sults are as follows:

• The convergence of matrices from group II (more
sparse matrices) is weak so they need a larger number
of iterations, or applying preconditioning or block-
ing.
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Table 1. Test matrices attributes for some abstract Markov chains (Section 6.1).
group ID n nz average nonzeros per column (nz/n) magnitude of condition number

I 1 1000 12678 12.68 e+09
2 4000 42041 10.51 e+09

II 3 1500 5873 3.92 e+08
4 4000 16946 4.24 e+09

Table 2. Comparison of algorithms calculation time (GS, GSWZ, GSLU) and the impact of the algorithms on result accuracy. The
given time is for 20 iterations. The symbol i(e–∗) denotes the number of iterations needed to achieve the given accuracy.

ID(n) GSWZ GSLU GS
K = 2 K = 20 K = 2 K = 20

1(1000) time: 6.59 0.29 11.57 0.3 0.18
i(e–05): 4 6 4 6 6
i(e–10): 8 12 8 12 13
i(e–15): 12 18 12 18 19

2(4000) time: 376.95 4.92 709.93 5.87 2.13
i(e–05): 4 6 4 6 6
i(e–10): 8 12 8 12 13
i(e–15): 12 19 12 19 20

3(1500) time: 21.68 0.58 40.13 0.63 0.33
i(e–05): 7 11 7 11 11
i(e–10): 17 >20 17 >20 >20
i(e–15): >20 >20 >20 >20 >20

4(4000) time: 347.75 4.71 647.8 5.6 1.86
i(e–05): 6 10 6 10 10
i(e–10): 15 >20 15 >20 >20
i(e–15): >20 >20 >20 >20 >20

Fig. 2. Accuracy of the investigated algorithms for two selected matrices (2 and 4) from Section 6.1 and i = 10. The double asterisk
** denotes all the other algorithms (GSWZ(2), GSLU(2), IWZ+GSWZ(2), IWZ+GSLU(2), ILU+GSWZ(2), ILU+GSLU(2)),
because they have the same accurcy for those matrices and i = 10.

• Applying either preconditioning or blocking im-
proves the convergence of GS iterative methods.

• Preconditioning accelerates the convergence of iter-
ative methods, especially using incomplete IWZ fac-
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Table 3. Comparison of the time of algorithms (GS, IWZ+GS, ILU+GS, GSWZ, GSLU and their combinations) and their accuracy.
The given time is for 20 iterations, the accuracies are given for i iterations (5, 10 and 20).

ID(n) algorithm time i = 5 i = 10 i = 20
1(1000) GS 0.18 e–04 e–08 e–16

IWZ+GS 0.18 e–08 e–12 e–18
ILU+GS 0.18 e–06 e–11 e–16
GSWZ(2) 6.59 e–06 e–13 e–15
GSLU(2) 11.57 e–06 e–13 e–15

IWZ+GSWZ(2) 6.95 e–06 e–11 e–16
IWZ+GSLU(2) 11.62 e–06 e–11 e–16
ILU+GSWZ(2) 6.98 e–06 e–11 e–16
ILU+GSLU(2) 11.52 e–06 e–11 e–16

2(4000) GS 2.13 e–04 e–08 e–15
IWZ+GS 2.54 e–09 e–14 e–19
ILU+GS 2.33 e–07 e–12 e–17
GSWZ(2) 376.95 e–06 e–12 e–15
GSLU(2) 709.93 e–06 e–12 e–15

IWZ+GSWZ(2) 379.61 e–06 e–12 e–15
IWZ+GSLU(2) 678.62 e–06 e–12 e–15
ILU+GSWZ(2) 391.34 e–06 e–12 e–15
ILU+GSLU(2) 704.34 e–06 e–12 e–15

3(1500) GS 0.33 e–03 e–04 e–08
IWZ+GS 0.38 e–05 e–09 e–16
ILU+GS 0.34 e–04 e–08 e–15
GSWZ(2) 21.68 e–04 e–07 e–12
GSLU(2) 40.13 e–04 e–07 e–12

IWZ+GSWZ(2) 21.89 e–04 e–08 e–16
IWZ+GSLU(2) 39.41 e–04 e–08 e–16
ILU+GSWZ(2) 21.99 e–04 e–08 e–16
ILU+GSLU(2) 39.87 e–04 e–08 e–16

4(4000) GS 1.86 e–03 e–05 e–08
IWZ+GS 2.38 e–05 e–09 e–17
ILU+GS 2.15 e–04 e–08 e–16
GSWZ(2) 347.75 e–04 e–07 e–13
GSLU(2) 647.18 e–04 e–07 e–13

IWZ+GSWZ(2) 359.92 e–05 e–07 e–15
IWZ+GSLU(2) 649.09 e–05 e–07 e–15
ILU+GSWZ(2) 391.34 e–05 e–07 e–15
ILU+GSLU(2) 704.37 e–05 e–07 e–15

torization for the usual GS regarding both the time of
calculations and accuracy.

• The properties (especially the sparsity) of the matri-
ces influence accuracy.

• Applying both preconditioning and blocking to the
Gauss-Seidel method does not improve the efficiency
more than applying only preconditioning or only
blocking.

6.2. Tests for a general 2D Markov model. The al-
gorithms were also tested for matrices describing a gen-
eral two-dimensional Markov chain model. The particular

example has been taken from (Ridler-Rowe, 1967; Pol-
lett and Stewart, 1994). The model is discussed there
and it was used to compare diferent solution methods in
(Stewart, 1994; Benzi and Ucar, 2007).

The state of the chain is described as a two-
dimensional vector. In the first dimension, the state vari-
able assumes all values from 0 through Nx. In the sec-
ond dimension, the state variable takes on values from 0
through Ny .

This two-dimensional Markov chain model allows
transitions from any nonboundary state to adjacent states
in fixed directions (chosen from among north, south, east,
west, north-east, north-west, south-east, south-west). A
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Fig. 3. Performance time (for i = 20) of the investigated algorithms for two selected matrices (2 and 4) from Section 6.1.

sample scheme of the model (with allowed directions:
south, east and north-west) is shown in Fig. 4.

In the data set corresponding to this model, the values
of Nx and Ny are shown in Table 4, along with the size
of the matrix generated and the number of nonzeros in the
matrix.

The accuracy of the results for this model is pre-
sented in Table 5. Here we tested only preconditioning,
as it gives better results (see Section 6.1).

For these matrices, we can observe the following:

• The GS method has a very little accuracy for Matrix
5. However, preconditioning with ILU enhances the
convergence a lot (IWZ is worse here).

• For Matrices 6 and 8 we have divergence for the tra-
ditional Gauss-Seidel method, but both the precondi-
tioners yield convergence (ILU slightly better).

• The GS method for the Matrix 7 is convergent and
both the preconditioners still enhance the conver-
gence.

The matrices from Section 6.1 were denser (at least
some of them) and had an undeniably better (i.e., smaller)
condition number. On the other hand, the matrices pre-
sented in Section 6.2 were sparser and more ill condi-
tioned, so they demanded some special treatment, such
as preconditioning, because the Gauss-Seidel algorithm
alone was not enough to find a solution quickly.

7. Conclusions

In the article the authors compared two techniques which
can affect iterative calculations accuracy, i.e., the precon-
ditioning and the blocking, in solving special linear equa-
tion systems. The coefficient matrices of those systems
describe transition rates from one state to another of a
model described by Markov processes.

The numerical experiment results show that for the
investigated systems it is better to apply preconditioning
than blocking to the Gauss-Seidel iterative method.

Moreover, applying both the enhancements to the
original Gauss-Seidel method makes no difference, so it
can be stated that preconditioning alone does suffice, giv-
ing a better performance time and accuracy.

For the first set of matrices (Section 6.1), both ways
of linking direct methods with the Gauss-Seidel method
give a similar improvement in the method convergence,
but also, without it, the iterative algorithm alone would
find a solution quite quickly (somewhat slower, though).

On the other hand, the second set (Section 6.2) seems
to be more susceptible to the application of precondition-
ing (tests with blocking were not carried out for them be-
cause of the conclusions from the tests with the former
set), and it corresponds to much higher condition numbers
of the matrices. Without merging with direct methods, the
Gauss-Seidel method alone has trouble finding stationary
probabilities whatsoever.

All the matrices display one more interesting trait:
regardless of the condition number, the relative density
of a matrix (nz/n) influences the original convergence of
the Gauss-Seidel method—the lower nz/n, the slower the
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Fig. 4. Sample scheme of a two-dimensional Markov chain.

Table 4. Test matrices attributes for a 2D Markov model (Section 6.2).
ID Nx Ny n nz average nonzeros per column (nz/n) magnitude of condition number

5 64 16 1105 9457 8.56 e+12
6 45 45 2116 8281 3.91 e+15
7 45 45 2116 12376 5.85 e+18
8 64 64 4425 16641 3.76 e+18

Table 5. Comparison of the accuracy of the algorithms (GS, IWZ+GS, ILU+GS).
ID(n) iteration number GS IWZ+GS ILU+GS

5(1105) 1 e–02 e–02 e–02
50 e–02 e–04 e–07
100 e–03 e–06 e–14

6(2116) 1 e–02 e–02 e–02
3 e–03 e–02 e–02
12 e–02 e–02 e–02
63 e–02 e–03 e–03
100 e–02 e–04 e–07

7(2116) 1 e–02 e–02 e–00
64 e–01 e–15 e–15
100 e–08 e–15 e–15

8(4425) 1 e–03 e–03 e–02
50 e–02 e–02 e–02
100 e–02 e–03 e–04

convergence and, thus, the sparser the matrix, the more of
a hybrid technique (namely, preconditioning) it needs.

And, finally, there are matrices for which applying
incomplete WZ preconditioning produces better results,
but there are also matrices for which it is worth using in-
complete LU factorization.
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