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Epidemiological models can be used to study the impact of an infection within a population. These models often involve
parameters that are not known with certainty. Using a method for verified solution of nonlinear dynamic models, we can
bound the disease trajectories that are possible for given bounds on the uncertain parameters. The method is based on the
use of an interval Taylor series to represent dependence on time and the use of Taylor models to represent dependence on
uncertain parameters and/or initial conditions. The use of this method in epidemiology is demonstrated using the SIRS
model, and other variations of Kermack-McKendrick models, including the case of time-dependent transmission.

Keywords: nonlinear dynamics, epidemiology, interval analysis, verified computing, ordinary differential equations.

1. Introduction

Ordinary Differential Equations (ODEs) are the basis for
many mathematical models in the sciences, including pop-
ulation models used in epidemiology. Specifically, the
Kermack-McKendrick model was one of the first devel-
oped to simulate the spread of infectious diseases such as
bubonic plague and cholera. This and other compartmen-
tal models in epidemiology partition the population into
classes and describe the rate of population change in each
class.

Many variations of the original Kermack-
McKendrick model have been described, typically
using names based on acronyms of the involved classes.
The Kermack-McKendrick model is an SIR (Susceptible,
Infected, Recovered) model with a simple type of flux
between the three classes. Generalizations of this model
are sometimes referred to as SEIRS models. These
models incorporate a fourth class (Exposed) within the
population, accounting for diseases with an incubation
period. These models also account for nonpermanent
immunity, thus allowing individuals to again become
Susceptible (thus the second S in the acronym). Ander-
son and May (1979) investigated an SIRS model with
various mechanisms for transition between the population
classes, but assuming a constant total population (either
by assuming no deaths within the population or that the
number of births of Susceptible persons was equivalent

to the number of deaths of all population classes). They
discussed this use of modeling as it applies to a variety
of diseases, including measles, smallpox, and tetanus.
Hethcote (1976) investigated a variety of mathematical
models whose classes and interactions are a subset of
the SEIRS model, including SI, SIS, and SIR variations.
Several investigators have focused on a single specific
model, computing theoretical bifurcation points as well as
some transient and steady-state solutions. This includes
work on an SEI model (Pugliese, 1990), an SEIR model
(Li et al., 1999), and an SEIS model (Fan et al., 2001).
Models can be either closed or open. In a closed model,
the population is assumed to remain constant, while
models with variable total populations are open. In open
models, there are fluxes other than those between the
compartments, such as the birth and death of individuals.

In the simplest version of the SEIRS model, the
mechanisms for transfer between classes lead to transfer
rates (fluxes) that are a function of the population of one
class (first-order process) or of two classes (second-order
process). For example, the rate of exposure is propor-
tional to the product of the susceptible population and the
infected population, and the rate of recovery is propor-
tional to the infected population. However, other nonlin-
ear and constant contact rates have also been considered in
the literature (Liu et al., 1986; Greenhalgh, 1997; Dushoff
et al., 2004). These models have been studied in both
continuous (differential equation) and discrete (Markov
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chain) form.
Our focus here is on continuous epidemiological

models that are systems of ODEs and are formulated as
Initial Value Problems (IVPs). Thus, the model is inte-
grated over time, starting with specified initial values for
the different population classes. Some population mod-
els are simple enough to be solved analytically, at least
for steady-state values. However, in most cases, no an-
alytical solution exists and thus numerical schemes are
necessary to obtain the population trajectories of each
class. Of interest here is verified (i.e., mathematically and
computationally guaranteed) solution of such systems of
ODEs, especially systems that involve uncertainty in ini-
tial conditions or model parameters. Even in the absence
of uncertainty, traditional numerical methods, such as Eu-
ler’s method or the Runge-Kutta schemes, only approxi-
mate the solution of an ODE system, since numerical er-
rors from both discretization and machine arithmetic are
present. When there is uncertainty in the initial conditions
and/or model parameters, normal use of traditional meth-
ods cannot account rigorously for the uncertainties.

Accounting for uncertainties is particularly impor-
tant in the context of epidemiological models, since in
many, if not most, cases, initial populations and model pa-
rameters (e.g., rate constants) are not known exactly. We
will assume that, for such uncertain quantities, only upper
and lower bounds are available. That is, uncertain quan-
tities will be represented by intervals. Since this implies
that there are infinitely many possible values for the un-
certain quantities, it follows that we have infinitely many
possible solutions of the underlying ODE system, corre-
sponding to different values of the uncertain quantities.
Therefore, we seek rigorous, verified bounds on all the
possible trajectories.

For determining rigorous bounds on the solution of
an ODE system, with or without uncertainties, the use of
interval methods (also called validated or verified meth-
ods) is a natural approach, as computations with inter-
vals, as opposed to floating-point numbers, can provide
both mathematically and computationally guaranteed en-
closures. Excellent reviews of interval methods for IVPs
are available in the literature (Nedialkov et al., 1999; Ne-
her et al., 2007). Much work has been done for the
case in which the initial values are given by intervals,
and there are several available software packages that
deal with this case, including AWA (Lohner, 1992), VN-
ODE (Nedialkov et al., 2001), and COSY VI (Berz and
Makino, 1998). However, relatively little work has been
done on the case in which parameters are given by in-
tervals. In the work described here, we will use a re-
cently developed solver for parametric ODEs (Lin and
Stadtherr, 2007) called VSPODE (Verifying Solver for
Parametric ODEs), which is used to produce guaranteed
bounds on the solutions of nonlinear dynamic systems
with interval-valued initial states and parameters. Both

COSY VI and VSPODE use Taylor models (Makino and
Berz, 1996; 1999; 2003), though in different ways, to deal
with the uncertain quantities (parameters and initial val-
ues). In this paper, we propose the use of Taylor-model
methods, specifically VSPODE, for propagating uncer-
tainties through nonlinear ODE models in population epi-
demiology. As examples, we will use several variants of
the original Kermack-McKendrick model.

This paper is divided as follows: The next section
will provide an overview of the general population epi-
demiology model used, and a general statement of the
ODE problem to be addressed. Section 3 gives back-
ground on interval analysis and Taylor models. In Sec-
tion 4, we outline the specific method that is used, and
in Section 5, we present examples and highlight results
of applying this method to solve population epidemiology
problems.

2. Problem statement

In this section, we introduce the notation used to describe
the epidemiological models of interest and state the gen-
eral ODE problem to be solved. In order to maintain a
consistent set of variables and parameters, we will outline
a general epidemiological population model that encom-
passes all of the specific models to be used as examples.
We adopt the notation of Edelstein-Keshet (2005) for this
general model and use it as consistently as possible both
here and in Section 5.

We assume that all members of a population belong
to a class with respect to a disease: either susceptible, ex-
posed, infected, or recovered. The disease is spread, re-
sulting in increased exposed and/or infected populations,
when a susceptible member encounters an infected mem-
ber. We also assume that all members within a class are
identical; this means, for instance, that they have the same
probabilities of being infected or of recovering. Mod-
els based on these assumptions may be developed on a
discrete-time scale, in which the populations can be mod-
eled either stochastically or deterministically (e.g., Allen
and Burgin, 2000), or on a continuous-time scale, in which
the populations are modeled using deterministic ODEs.
We consider only the latter approach here.

An individual can move from one class to another
via different processes, each of which is population (or,
elsewhere in the literature, population density) dependent.
These processes include the following:

1. Exposure. This is the process in which individuals
exit the susceptible class and enter the exposed class.
The exposure rate is given by βsi, where si, the prod-
uct of the susceptible population s and infected popu-
lation i, represents the frequency at which a suscepti-
ble member comes in contact with an infected mem-
ber, and β represents the probability that this contact
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spreads the disease agent. The use of the term βsi for
the exposure rate is often called simple mass-action
incidence (Li et al., 1999) or pseudo mass-action in-
cidence (de Jong et al., 1995).

2. Infection. In this process, individuals move from the
exposed class to the infected class. This occurs at a
rate proportional to the exposed population e, with a
proportionality constant of ε, the infection rate con-
stant. Thus, the infection rate is εe.

3. Recovery. In this process, members move from the
infected class to the recovered class, at a rate propor-
tional to the infected population. Thus, the recovery
rate is represented by νi, where the proportionality
constant ν is the recovery rate constant.

4. Loss of immunity (susceptibility). In this process,
which implies that immunity is only temporary, in-
dividuals move from the recovered class to the sus-
ceptible class, with a rate proportional to the recov-
ered population r, and expressed by γr, with γ as the
proportionality constant.

The population of a class also depends on assump-
tions made regarding births and deaths and their respective
rates. Generally, a base probability of death d is assumed
for all classes, but is incremented to d+α for the infected
class. For this case then, the death rates are ds, de, and
dr for the susceptible, exposed, and recovered classes, re-
spectively, and (d + α)i for the infected class. New births
are almost always assumed to add to the Susceptible class
(i.e., no individual is born as exposed, infected, or recov-
ered). A base probability of births b is generally assigned
to all classes, but may be decremented for the exposed
and/or infected classes. Assuming the same probability
of births for all classes, the total birth rate is bn, where
n = s + e + i + r is the total population of all classes.

Specific variations of the SEIRS framework are de-
veloped by deciding which classes are present, what fluxes
exist between the classes, how births and deaths are han-
dled, and whether the system is open or closed. Unsteady
population balances can then be performed on each class,
based on rate expressions of the type described above, for
movement between the classes and for births and deaths.
This leads directly to a set of ODEs that describes the rate
of change of each population. The specific models for
each of the examples considered here will be established
in Section 5.

Each continuous SEIRS model, or variation thereof,
is representable as a system of ODEs, for which an IVP
must be solved. As discussed above, the initial values,
as well as the parameters in the ODE model, are often
uncertain and thus these quantities will be represented by
intervals. In a general mathematical form, this problem
may be written as

y′(t) = f(y, θ), y(t0) = y0 ∈ [y0], θ ∈ [θ], (1)

where t ∈ [t0, tm] for some tm > t0. Here y is the n-
dimensional vector of state variables with the initial value
y0, and θ is a p-dimensional vector of time-invariant pa-
rameters. [y0] and [θ] are interval vectors (see Section 3.1)
that enclose uncertainties in the initial states and param-
eters, respectively. We assume that f is (k − 1) times
continuously differentiable with respect to y and (q + 1)
times continuously differentiable with respect to θ. Here,
k is the order of the truncation error in the interval Tay-
lor series (ITS) method used by VSPODE, and q is the
order of the Taylor model in VSPODE used to represent
dependence on parameters and initial values.

When its parameters do not depend on time, the
SEIRS model f is polynomial. However, in practical
cases, such as nonlinearly time-dependent parameters (see
Section 5.2), this model can become more complicated.
Therefore, we will treat f as a general nonlinear function,
which we assume can be represented by (i.e., is a com-
position of) a finite number of standard functions. If the
ODE model is nonautonomous (as in Section 5.2), it can
be easily converted to the autonomous form of Eqn. (1) by
adding a new state variable that is equal to t. Our specific
goal is to obtain a rigorously guaranteed enclosure of the
state variables y at all times of interest from t0 to tm.

3. Background

3.1. Interval analysis. The real interval vector [x] =
[x; x] is an enclosure of the real vector x = [x1, . . . , xn]T,
n ≥ 1. The real vectors x = [x1, . . . , xn]T and x =
[x1, . . . , xn]T provide the lower and upper bounds, re-
spectively, on the components of x. That is, xi ≤ xi ≤ xi

or xi ∈ [xi; xi]. An n-dimensional interval vector can be
interpreted geometrically as an n-dimensional rectangle
or box.

Basic arithmetic operations are defined on interval
scalars according to [x] ◦ [y] = {x ◦ y | x ∈ [x], y ∈
[y]}, ◦ ∈ {+,−,×,÷}, with division in the case of [y]
containing zero allowed only in extensions of interval
arithmetic (Hansen and Walster, 2004). Addition and mul-
tiplication are commutative and associative but only sub-
distributive. Interval versions of the elementary functions
can also be defined.

For a real function f(x), an interval extension f I([x])
encloses the range of f(x) for x ∈ [x]. That is, f I([x]) ⊇
{f(x) | x ∈ [x]}. When f(x) can be written as a se-
ries of arithmetic operations and elementary functions, an
interval extension can be obtained by substituting [x] into
f(x) and evaluating using interval arithmetic. In this case,
f I([x]) = f([x]), which is referred to as the natural in-
terval extension. Computing the interval extension in this
way may result in the overestimation of the function range
due to the “dependency” problem. While a variable may
take on any value within its interval, it must take on the
same value each time it occurs in an expression. However,
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this type of dependency is not recognized when the natural
interval extension is computed. In effect, when the natu-
ral interval extension is used, the range computed for the
function is the range that would occur if each instance of a
particular variable was allowed to take on a different value
in its interval range. If f(x) is a single-use expression, in
which no variable appears more than once, then the nat-
ural interval extension corresponds to the exact function
range.

Another source of overestimation that may arise in
the use of interval methods is the “wrapping” effect. This
occurs when an interval is used to enclose (wrap) a set
of results that is not an interval. If this overestimation is
propagated from step to step in an integration procedure
for ODEs, it can quickly lead to the loss of a meaningful
enclosure.

Several good introductions to interval analysis, as
well as interval arithmetic and other aspects of computing
with intervals, are available (Hansen and Walster, 2004;
Jaulin et al., 2001; Kearfott, 1996; Neumaier, 1990). Im-
plementations of interval arithmetic and elementary func-
tions are also readily available, and recent compilers from
Sun Microsystems directly support interval arithmetic and
an interval data type.

3.2. Taylor models. Makino and Berz (1996; 1999)
have described a Remainder Differential Algebra (RDA)
approach for bounding function ranges and the control of
the dependency problem of interval arithmetic. In this
method, a function is represented using a model consisting
of a Taylor polynomial and an interval remainder bound.
Such a model is called a Taylor model.

One way of forming a Taylor model of a function is
to use the Taylor theorem. Consider a real function f(x)
that is (q + 1) times partially differentiable on [x] and let
x0 ∈ [x]. The Taylor theorem states that, for each x ∈ [x],
there exists a real ζ with 0 < ζ < 1 such that

f(x) = pf (x − x0) + rf (x − x0, ζ), (2)

where pf is a q-th order polynomial (truncated Taylor se-
ries) in (x − x0) and rf is a remainder, which can be
quantitatively bounded over 0 < ζ < 1 and x ∈ [x] us-
ing interval arithmetic or other methods to obtain an in-
terval remainder bound [rf ]. A q-th order Taylor model
Tf = pf +[rf ] for f(x) over [x] then consists of the poly-
nomial pf and the interval remainder bound [rf ] and is
denoted by Tf = (pf , [rf ]). Note that f ∈ Tf for x ∈ [x]
and so Tf encloses the range of f over [x]. The function
f can thus be bounded by seeking bounds on the Taylor
model Tf , as described below.

In practice, it is more useful to compute Taylor mod-
els of functions by performing Taylor model operations.
Arithmetic operations with Taylor models can be done
using the RDA operations given by Makino and Berz

(1996; 1999; 2003), which include addition, multiplica-
tion, reciprocal, and intrinsic functions. Using these, it is
possible to start with simple functions such as the con-
stant function f(x) = k, for which Tf = (k, [0; 0]),
and the identity function f(xi) = xi, for which Tf =
(xi0 +(xi−xi0), [0; 0]), and then to compute Taylor mod-
els for very complicated functions. Therefore, it is pos-
sible to compute a Taylor model for any function repre-
sentable in a computer environment by simple operator
overloading through RDA operations. It has been shown
that, compared to other rigorous bounding methods, the
Taylor model often yields sharper bounds for modest to
complicated functionals (Makino and Berz, 1996; 1999;
Neumaier, 2003). The uses and limitations of Taylor mod-
els are discussed in greater detail by Neumaier (2003).

An interval bound on a Taylor model T = (p, [r])
over [x] is denoted by [T ] and given by [T ] = [p] + [r],
where [p] is an interval bound on the polynomial part
p. The range bounding of the interval polynomial [p] =
p([x]−x0) is an important issue, which directly affects the
performance of Taylor model methods. The exact range
bounding of an interval polynomial is NP-hard, even for
a quadratic function, and direct evaluation using interval
arithmetic is very inefficient, often providing only loose
bounds, which may negate any benefit of choosing Taylor
model methods over traditional interval methods. Alter-
native bounding schemes are mostly focused on the ex-
act bounding of the first- and second-order terms of p
(Neumaier, 2003), but exact bounding of a general inter-
val quadratic is still NP-hard, and so it can still be com-
putationally expensive. Lin and Stadtherr (2007) use a
simple compromise approach in which only the first-order
and the diagonal second-order terms are considered for
exact bounding, and other terms are evaluated directly us-
ing interval arithmetic. This is the approach used with the
problems considered here.

4. Solution procedure

In this section, we outline the method used for solv-
ing the problem described in Section 2. Specifically, it
is desired to determine a rigorously verified enclosure
of all possible solutions to the IVP expressed in Eqn.
(1). We denote by y(t; tj, [yj ], [θ]) the set of solutions
{y(t; tj , yj, θ) | yj ∈ [yj ], θ ∈ [θ]}, where yj = y(tj) and
y(t; tj , yj , θ) denotes a solution of y′(t) = f(y, θ) for
the initial condition y = yj at t = tj . We will sum-
marize a method for determining enclosures [yj ] of the
state variables at each time step j = 1, . . . , m, such that
y(tj ; t0, [y0], [θ]) ⊆ [yj].

Assume that at tj we have an enclosure [yj ] of
y(tj ; t0, [y0], [θ]), and that we want to carry out an inte-
gration step to compute the next enclosure [yj+1]. Then,
in the first phase of the method, the goal is to find a step
size hj = tj+1 − tj > 0 and a rough enclosure [ỹj ] of the
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solution such that a unique solution y(t; tj , yj , θ) ∈ [ỹj] is
guaranteed to exist for all t ∈ [tj ; tj+1], all yj ∈ [yj ], and
all θ ∈ [θ]. We apply a traditional interval method, with
high order enclosure, to the parametric ODEs by using an
Interval Taylor Series (ITS) with respect to time. That is,
we determine hj and [ỹj ] such that for [yj] ⊆ [ỹj ]0,

[ỹj ] =
k−1
∑

i=0

[0; hj ]if (i)([yj ], [θ])

+ [0; hj ]kf (k)([ỹj ]0, [θ]) ⊆ [ỹj ]0. (3)

Here k denotes the order of the Taylor series, [ỹj ]0 is an
initial estimate of [ỹj], and the f (i) are the Taylor coeffi-
cients of y(t) with respect to time, which can be obtained
recursively in terms of y′(t) = f(y, θ). When Eqn. (3)
is satisfied, it demonstrates (Corliss and Rihm, 1996) that
there exists a unique solution y(t; tj , yj, θ) ∈ [ỹj] for all
t ∈ [tj ; tj+1], all yj ∈ [yj], and all θ ∈ [θ].

In the second phase of the method, we com-
pute a tighter enclosure [yj+1] ⊆ [ỹj ], such that
y(tj+1; t0, [y0], [θ]) ⊆ [yj+1]. This is done by using an
ITS approach to compute Tyj+1(y0, θ), a Taylor model of
yj+1 in terms of the initial values y0 and parameters θ,
and then obtaining the enclosure [yj+1] = [Tyj+1 ]. For
the Taylor model computations, we begin by represent-
ing the interval initial states and parameters by the Tay-
lor models (identity functions) Ty0 and Tθ, respectively.
Then, we can determine Taylor models Tf(i) of the Taylor
series coefficients f (i)(yj , θ) by using RDA operations to
compute Tf(i) = f (i)(Tyj , Tθ). Using an interval Taylor
series for yj+1 with coefficients given by Tf(i) , and using
the mean value theorem, one can obtain Tyj+1(y0, θ), the
desired Taylor model of yj+1 in terms of the parameters
θ and initial states y0. To control the wrapping effect, the
state enclosures are propagated using a new type of Tay-
lor model consisting of a polynomial and a parallelepiped
(as opposed to an interval) remainder bound. Complete
details of the computation of Tyj+1 are given by Lin and
Stadtherr (2007). An implementation of this approach,
called VSPODE (Verifying Solver for Parametric ODEs),
was developed and tested by Lin and Stadtherr (2007),
who compared its performance with results obtained us-
ing the popular VNODE package (Nedialkov et al., 1999;
2001). For the test problems used, VSPODE provided
tighter enclosures on the state variables than VNODE and
required significantly less computation time. Information
about the availability of VSPODE can be obtained by con-
tacting the authors.

5. Examples

In this section, we explore variations on the general popu-
lation model outlined in Section 2. These examples have
been explored for real-valued initial conditions and pa-
rameters elsewhere in the literature. When possible, we

use similar values. Interval values are used where some
initial values or parameters are not reported.

As in Section 2, we adopt the notation and terminol-
ogy of Edelstein-Keshet (2005) where applicable, so that
all models are comparable. VSPODE was used with its
default ITS order k = 17 and a default Taylor model or-
der q = 5. When Monte Carlo simulations are run for
purposes of comparison, they are done so in Matlab, us-
ing the ode45 routine with default tolerances, unless oth-
erwise noted.

5.1. Basic SIRS model. The basic SIRS model is
most similar to the constant-population model first stud-
ied by Kermack and McKendrick (1927). In this model,
infection is guaranteed and instantaneous after success-
ful exposure, so there is no exposed class as in the gen-
eral model. The steady-states of this model can be easily
found algebraically (Edelstein-Keshet, 2005) and the tran-
sient trajectories are relatively simple, so this serves as a
good initial test problem for evaluating the performance
of VSPODE.

This SIRS model assumes a constant total population
n = s+ i+ r. Since we can determine the recovered pop-
ulation from r = n−s−i, we only need unsteady popula-
tion balances on the susceptible and infected classes. For
the susceptible class, this balance is

ds

dt
= −βsi + γr = −βsi + γ(n − s − i). (4)

Here the first term on the right-hand side is the loss of sus-
ceptibles due to infection (flux from the susceptible to the
infected class), and the second term is the gain of suscep-
tibles due to loss of immunity (flux from the recovered to
the susceptible class). Similarly, for the infected class, the
balance is

di

dt
= βsi − νi, (5)

where the second term on the right-hand side represents
the flux from the infected to the recovered class.

For this simple example, we have chosen a total pop-
ulation of n = 500, 000 individuals (indv), with an ini-
tial infected population of i0 = 2000 indv and initial sus-
ceptible population of s0 = 498, 000 indv. We also set
the susceptibility rate to be γ = 50 yr−1. Uncertain val-
ues are assumed for the recovery rate, ν ∈ [0.125; 0.250]
yr−1, and for the infection probability, β ∈ [2; 2.5]×10−5

yr−1indv−1.
VSPODE was applied to determine a verified enclo-

sure of all possible solutions to this model for t = 0 to
t = 10 yr. The results, out to t = 2 yr, are shown for s(t)
in Fig. 1 and for i(t) in Fig. 2. The curves shown in these
figures are upper and lower bounds, which are mathemati-
cally and computationally guaranteed, on the possible tra-
jectories of the susceptible and infected populations.
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Fig. 1. VSPODE enclosure of the susceptible population trajec-
tory for a simple SIRS model.

Fig. 2. VSPODE enclosure of the infected population trajectory
for a simple SIRS model.

Since interval methods have a reputation of often
producing only very loose bounds, we checked the tight-
ness of the VSPODE bounds by comparison to the re-
sults of a Monte Carlo simulation with 100,000 trials. For
each trial, real values of ν and β were selected at ran-
dom from within their specified interval bounds. Bounds
obtained from the Monte Carlo analysis are not guaran-
teed and in general will yield an inner estimate of the
true bounds (the guaranteed VSPODE bounds represent
an outer estimate). The Monte Carlo simulation results are
shown by the shaded areas in Figs. 3 and 4, onto which the
VSPODE bounds from Figs. 1 and 2 have been superim-
posed. On the scale of these figures, there is no apparent
gap between the VSPODE bounds and the Monte Carlo
simulation results, indicating that VSPODE provides very
tight bounds on the possible population trajectories for
this system. This can be seen more quantitatively in
Tables 1 and 2, which provide a direct numerical com-
parison of the bounds obtained from VSPODE and from
the Monte Carlo analysis. The true bounds on the trajec-
tories will be between the VSPODE bounds (outer esti-
mate) and the Monte Carlo bounds (inner estimate). The
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Fig. 3. Monte Carlo simulation (shaded area) and the VSPODE
enclosure (solid curve) of susceptible population trajec-
tory for a simple SIRS model.
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Fig. 4. Monte Carlo simulation (shaded area) and the VSPODE
enclosure (solid curve) of the infected population trajec-
tory for a simple SIRS model.

closeness of these two sets of bounds demonstrates that
the method used in VSPODE is capable of determining
verified bounds that are in fact quite tight. For the final
time of t = 10 yr, the VSPODE bounds converge to a
solution of s ∈ [4373; 12501] and i ∈ [485073; 494389].
This numerical result can be compared to exact interval
bounds obtained from the analytical steady-state solution,
ss = ν/β = [5000; 12500], and is = (γn−ss)/(ν+γ) =
[485074; 493766]. The method employed by VSPODE
accurately and tightly bounds the true solution. The
Monte Carlo simulation results for t = 10 yr give bounds
of s ∈ [5010; 12486] and i ∈ [485094; 493757], which
are clearly not rigorous bounds on the true solution. For
VSPODE, the computation time required was 17.9 s, and
for 100,000 Monte Carlo trials with ode45 in Matlab the
computation time was 1820 s (both times on an Intel Pen-
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Table 1. Numerical comparison of the VSPODE enclosure and
the Monte Carlo simulation (MC) for the susceptible
population s in a simple SIRS model.

t s (VSPODE) s (MC) s (MC) s (VSPODE)
0.2 477193 477197 485712 486323
0.4 318703 319584 417148 419180
0.6 63839 68319 212357 216113
0.8 7769 11062 56262 57489
1.0 3988 5528 19204 19673
1.2 4194 5053 13459 13590
1.4 4324 5013 12631 12670
1.6 4361 5010 12515 12528
1.8 4370 5010 12494 12505
2.0 4372 5009 12496 12502

Table 2. Numerical comparison of the VSPODE enclosure and
the Monte Carlo simulation (MC) for the infected pop-
ulation i in a simple SIRS model.

t i (VSPODE) i (MC) i (MC) i (VSPODE)
0.2 13612 13728 22751 22761
0.4 80385 82448 180048 180898
0.6 282559 286360 430625 434961
0.8 440344 441604 487722 490957
1.0 477942 478411 493240 494764
1.2 483989 484123 493713 494565
1.4 484904 484945 493753 494436
1.6 485045 485062 493756 494400
1.8 485068 485079 493757 494391
2.0 485072 485080 493757 494389

tium 4 3.2GHz workstation running Red Hat Linux).
Physically interpreting the results of this model, it is

clear that an epidemic is sustained in this population. The
large value of i at long times is due to the small probabil-
ity of recovery compared to the fast rate of susceptibility.
At large i, the term βsi dominates the dynamics of this
system, maintaining a large value of i while suppressing
the populations of the s and r classes.

5.2. SIRS model with time-dependent parameter.
Another use of the SIRS model assumes that the proba-
bility of infection β is time-variant, according to an ex-
pression such as

β(t) = β0(1 +
β1

n
cos(2πt)). (6)

This model has been used to simulate an illness like in-
fluenza, which is known to exhibit such “seasonal forcing”
(Dushoff et al., 2004).

For this example, we adopt parameter values consis-
tent with the study of Dushoff et al. (2004). These val-
ues are ν = 50 yr−1, γ = 0.125 yr−1, n = 500, 000

Fig. 5. VSPODE enclosure of the infected population trajectory
for an SIRS model with seasonal forcing, showing initial
transients.

Fig. 6. VSPODE enclosure of the infected population trajectory
for an SIRS model with seasonal forcing, for t ≥ 2.2 yr.

indv, β0 = 400 yr−1, and β1 = 0.04 (Dushoff et al.
(2004) mistakenly report using β1 = 0.02). For initial
conditions, we assume an initial outbreak in the interval
i0 ∈ [1000; 4000] indv and [s0] = n − [i0]. The results of
Dushoff et al. (2004) suggest that any initial condition in
this range should converge to the same limit cycle. Thus,
we test here whether the VSPODE bounds contract from
the initial bounds to a tight bound on the limit cycle.

When the time-dependent expression for β, Eqn. (6),
is substituted into the basic SIRS model, Eqns. (4) and
(5), the result is a nonautonomous model. Prior to the use
of VSPODE, this is converted into the autonomous form
of Eqn. (1), by defining t as a new state variable with a
derivative of one. VSPODE was then used to compute ver-
ified bounds on the population trajectories for this model
from t = 0 to t = 20 yr.

The initial transient results for i(t) out to t = 2.2 yr
are shown in Fig. 5. On the scale of this figure, the up-
per and lower trajectory bounds cannot be distinguished.
There is a sharp peak in the number of infections almost
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instantly in this simulation, with a maximum value of
around i = 340, 000 indv at time t = 0.02 yr. At this
point, the diameter of the interval bounding i is about
20,000 indv, which is about a six-fold increase over the
interval uncertainty on the initial condition i0. However,
by a time of about t = 0.33 yr, the diameter of the inter-
val bounding i has shrunk to 1 or less, where it remains
for larger values of time. Since i is in units of individuals,
this means that we have essentially zero-width bounds for
t larger than about 0.33 yr. Thus, while the uncertainty
in the initial conditions affects the magnitude of the initial
peak in infections, the trajectories very quickly converge
to a solution that is independent of the initial states, and
this behavior has been captured by VSPODE. For t be-
tween 2.2 and 20 yr, the results are shown (with a differ-
ent scale for i) in Fig. 6. Since the bounds on i are essen-
tially zero-width, they are not distinguishable in the figure.
These results are consistent with the results of Dushoff
et al. (2004), who show only the limit cycle behavior on
the time interval t ∈ [10; 20] yr and fairly accurately track
the data associated with a strain of influenza.

5.3. SEI model with a variable total population. The
SEI model (Pugliese, 1990) in theoretical epidemiology
assumes that recovery from illness is impossible, so there
is no recovered class to consider. However, the model re-
mains dynamic because the total population n = s+ e+ i
is not assumed to be constant. In this model, the total
population may increase through births of new individu-
als, with different birth rates for each of the population
classes. The different birth rates are represented by using
a base birth rate constant b, and then decrementing this
by “penalty” parameters δ1 for the exposed class and δ2

for the infected class. It is also assumed that the infected
class has a death rate that is higher than the death rate of
the other classes, with this additional rate represented by
an increment α in the base death rate constant d.

In these terms, the SEI model is given by

ds

dt
= (b − d)s + b(1 − δ1)e + b(1 − δ2)i − βsi, (7)

de

dt
= βsi − (d + ε)e, (8)

di

dt
= εe − (d + α)i. (9)

Following Pugliese (1990), and taking days as the time
unit, we set the model parameters as b = 0.15 day−1,
d = 0.1 day−1, δ1 = 0, δ2 = 0.9 day−1, β = 0.025
day−1indv−1, ε = 1 day−1, and α = 0.1 day−1. Note
that, since δ1 = 0, there is a birth rate penalty only for
infected individuals. The initial states are taken to be e0 =
0, i0 = 10, 000, s0 ∈ [480000; 490000].

The trajectory bounds of the infected class for the
first 30 days, as determined by VSPODE, are shown in

Fig. 7. VSPODE enclosure of the susceptible population trajec-
tory of an SEI model.

Fig. 8. VSPODE enclosure of the total population trajectory of
an SEI model.

Fig. 7. This shows that the uncertainty in the initial pop-
ulation of susceptibles is propagated into uncertainty in
the infected population, and that this uncertainty has been
bounded by VSPODE. The longer term behavior of this
system is cyclic, as shown in Fig. 8, out to t = 800 days,
which is consistent with the results of Pugliese (1990).
For this problem, the phase shift of the cycles depends
on the initial state, so zero-width bounds, as observed in
the previous example, cannot be expected here. On the
scale of Fig. 8, the VSPODE bounds are not distinguish-
able and appear to be quite tight. However, comparison
with a Monte Carlo analysis shows that, for larger values
of time, the VSPODE bounds get increasingly worse at the
extremes in the trajectories. This behavior is shown quan-
titatively in Table 3. Eventually, beyond about t = 950
days, VSPODE fails to obtain meaningful bounds. To ob-
tain bounds for larger values of t, the initial interval on
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Table 3. Numerical comparison of the VSPODE enclosure and
the Monte Carlo simulation (MC) of the total popula-
tion for an SEI model near peaks of each oscillation.

t n (VSPODE) n (MC) n (MC) n (VSPODE)
104.88 386332 392070 394594 400326
196.00 332511 339078 341463 348021
283.10 304527 310961 313300 319723
367.74 286613 292756 295064 301193
450.66 274015 279870 282127 287968
532.33 264497 270088 272308 277884
613.03 257015 262387 264575 269931
692.96 250895 256136 258294 263521
772.29 245420 250804 252971 258339
851.22 238813 245638 247947 254756
932.13 196818 221081 225851 250080

s0 could be subdivided, with VSPODE, then run on each
subinterval, and the results combined. Of course, this
“subinterval reconstitution” procedure will significantly
increase the computational expense.

5.4. SEIR model with variable population size. This
theoretical model (Li et al., 1999) is similar to the previ-
ous example, except that recovery is possible, with recov-
ery providing permanent immunity. Thus, there is now a
recovered population class, and there is no flux from the
recovered class to the susceptible class. The only growth
in the susceptible class is from new births, with the birth
rate assumed to be the same for all classes. In this par-
ticular SEIR model, another important feature is that the
transmission probability β is taken to be inversely pro-
portional to the total population. Thus, β = σ/n with
n = s + e + i + r and σ a proportionality constant.

For this situation, the model equations (Li et al.,
1999) are

ds

dt
= bn − ds − σsi/n, (10)

de

dt
= σsi/n − (ε + d)e, (11)

di

dt
= εe − (ν + α + d)i, (12)

dn

dt
= (b − d)n − αi. (13)

Note that the final equation is a balance on the total pop-
ulation. Alternatively, a balance on the recovered popula-
tion could be used. We use the parameter values given by
Li et al. (1999) and assume years as the time unit. These
values are b = 0.5 yr−1, d = 0.18 yr−1, σ = 20 yr−1,
ε = 4 yr−1, ν = 1.5 yr−1, and α = 6 yr−1. For the ini-
tial state, we choose a total population of n0 = 500, 000
indv with 10% already infected, so i0 = 50, 000 indv.

Fig. 9. VSPODE enclosure of the infected population trajectory
for an SEIR model.

Fig. 10. VSPODE enclosure of the total population trajectory
for an SEIR model.

The initial populations of the other classes are uncer-
tain and assumed to be s0 ∈ [400000; 405000] indv and
e0 ∈ [10000; 15000] indv.

VSPODE was applied to determine a verified enclo-
sure of all possible population trajectories for this model
for t = 0 to t = 10 yr. The results for i(t) and n(t) are
shown in Figs. 9 and 10, respectively. The curves shown
are mathematically and computationally guaranteed upper
and lower bounds on the infected and total populations as
a function of time.

Again, we checked the tightness of the VSPODE
bounds by comparison to the results of a Monte Carlo
analysis (100,000 trials). For this problem, we could ob-
tain accurate trajectories from the Matlab ode45 routine
only by using fairly strict tolerances (relative tolerance of
1× 10−5 and absolute tolerance of 1× 10−8). The Monte
Carlo simulation results are shown in Figs. 11 and 12,
onto which the VSPODE results from Figs. 9 and 10 have
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Fig. 11. Monte Carlo simulation (shaded area) and VSPODE
enclosure (solid curve) of the infected population tra-
jectory for an SEIR model.
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Fig. 12. Monte Carlo simulation (shaded area) and VSPODE
enclosure (solid curve) of the total population trajec-
tory for an SEIR model.

been superimposed. It is clear that VSPODE provides
very tight bounds on the possible population trajectories
for this system. A more quantitative comparison is pro-
vided by Tables 4 and 5, in which there is a direct numer-
ical comparison of the bounds obtained from VSPODE
and from the Monte Carlo analysis. It should be empha-
sized that the Monte Carlo analysis does not provide true
bounds, only an inner estimate of the bounds. VSPODE
provides rigorous bounds that tightly bound the true solu-
tion in this case.

The results shown in Figs. 9 and 10 are consis-
tent with those of Li et al. (1999), who discuss the
numerical conditions necessary to sustain an epidemic
in detail. In this simulation, the epidemic is sustained
within a small fraction of the total population. As the
simulation continues past t = 10 yr, the population
bounds approach their expected numerical steady-state

Table 4. Numerical comparison of the VSPODE enclosure and
the Monte Carlo simulation (MC) of the infected pop-
ulation of an SEIR model.

t i (VSPODE) i (MC) i (MC) i (VSPODE)
1.0 54447 54448 55188 55203
2.0 16743 16753 18112 18115
3.0 8306 8312 9026 9028
4.0 9374 9375 9950 9951
5.0 13949 13950 14541 14545
6.0 16573 16574 17281 17285
7.0 14789 14790 15571 15573
8.0 12967 12970 13707 13709
9.0 12846 12850 13545 13549

10.0 13599 13608 14300 14310

Table 5. Numerical comparison of the VSPODE enclosure and
the Monte Carlo simulation (MC) of the total popula-
tion of an SEIR model.

t n (VSPODE) n (MC) n (MC) n (VSPODE)
1.0 341797 341833 357282 357316
2.0 224886 224949 239007 239033
3.0 229684 229703 242026 242046
4.0 256999 257008 269565 269599
5.0 273219 273229 286461 286496
6.0 265838 265854 279566 279590
7.0 253450 253474 267028 267054
8.0 251486 251509 264779 264807
9.0 255898 255928 269158 269198

10.0 259120 259178 272517 272586

values for this theoretical model.

6. Concluding remarks

Nonlinear ODE models in population epidemiology of-
ten involve uncertainty in the parameters related to dis-
ease transmission or in the initial states of the popula-
tions. We have demonstrated here the use of a recently
developed interval method (Lin and Stadtherr, 2007) for
determining mathematically and computationally guaran-
teed bounds on the population trajectories that are possi-
ble for given bounds on the uncertain quantities. Using a
Monte Carlo analysis, it was also shown that it is possible
for these bounds to be quite tight.

It has been assumed here that the uncertainties in pa-
rameters and initial conditions are represented by inter-
vals. This means that there is no information provided
about the probability distribution of the uncertain values,
only their upper and lower bounds. In subsequent work,
we will consider the case of epidemiological models in
which there are probability distributions for the uncer-
tainty and show how this can be used to obtain probabilis-
tic bounds on the population trajectories.
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