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APPROXIMATION OF JACOBIAN INVERSE KINEMATICS ALGORITHMS

KRZYSZTOF TCHOŃ, JOANNA KARPIŃSKA, MARIUSZ JANIAK

Institute of Computer Engineering, Control and Robotics
Wrocław University of Technology, Janiszewskiego 11/17, 50–372 Wrocław, Poland

e-mail: {krzysztof.tchon,joanna.karpinska,mariusz.janiak}@pwr.wroc.pl

This paper addresses the synthesis problem of Jacobian inverse kinematics algorithms for stationary manipulators and
mobile robots. Special attention is paid to the design of extended Jacobian algorithms that approximate the Jacobian
pseudoinverse algorithm. Two approaches to the approximation problem are developed: one relies on variational calculus,
the other is differential geometric. Example designs of the extended Jacobian inverse kinematics algorithm for 3DOF
manipulators as well as for the unicycle mobile robot illustrate the theoretical concepts.
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1. Introduction

This paper is devoted to the synthesis problem of inverse
kinematics algorithms for redundant robotic manipulators
and mobile robots. Our main objective is the design of
an extended Jacobian algorithm approximating in a pre-
scribed sense the Jacobian pseudoinverse algorithm. The
origin of this problem comes from the now classical works
(Roberts and Maciejewski, 1992; 1993). It is well known
that the Jacobian pseudoinverse algorithm distinguishes
by its performance and convergence; however, it lacks the
property of repeatability (Klein and Huang, 1983). Let us
recall that an inverse kinematics algorithm is referred to
as repeatable if it transforms closed paths in the taskspace
into closed paths in the configuration space: this implies
that, if the robot works cyclically, then, at every repetition
of an inverse kinematics problem in the cycle, the solution
provided by the repeatable algorithm will be the same. A
geometric repeatability condition of inverse kinematics al-
gorithms for manipulators was provided in (Shamir and
Yomdin, 1988) in terms of the integrability property of the
distribution associated with the algorithm. A continuation
of the geometric study on repeatability appears in (Roberts
and Maciejewski, 1994). An extension of the repeatability
condition to mobile robots is found in (Tchoń, 2002). In
both cases of manipulators as well as mobile robots, the
extended Jacobian inverse kinematics algorithm is repeat-
able by design. The idea of the extended Jacobian inverse
as a method of redundancy resolution in redundant manip-
ulators comes from (Baillieul, 1985). A novel formulation

of this idea incorporating the optimization of a secondary
performance criterion, appeared in (Klein et al., 1995).
Extended Jacobian algorithms for mobile robots were de-
veloped in (Tchoń and Jakubiak, 2006).

As we have already mentioned, this paper addresses
the approximation problem of the Jacobian pseudoinverse
by the extended Jacobian inverse. As a point of departure
we have taken a finite dimensional map of a configura-
tion space into a taskspace representing the kinematics of
a manipulator or of a nonholonomic mobile robot. In or-
der to clarify the latter point, let us consider a mobile robot
whose motion is subject to velocity constraints in the Pfaf-
fian form. The kinematics of such a robot are described by
a driftless control system with outputs

q̇ = G(q)u =
m∑

i=1

g(q)ui, y = k(q), (1)

where q ∈ R
n, y ∈ R

r refer, respectively, to generalized
coordinates and taskspace coordinates of the robot, while
u ∈ R

m denotes the control. Suppose that admissible
control functions are defined over a time interval [0, T ]
and belong to a function space X . Then, the kinematics of
the mobile robot can be identified with the end point map
of the control system (1) (Chitour and Sussmann, 1998;
Tchoń and Jakubiak, 2006),

Kq0,T : X → R
r, Kq0,T (u(·)) = k(ϕq0,T (u(·))), (2)

where q(t) = ϕq0,t(u(·))) denotes the state trajectory of
the system (1) initialized at q0 and driven by u(·). The
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kinematics (2) are defined on an infinite dimensional func-
tion space. However, for computational purposes, we use
a finite dimensional representation R

p of the control func-
tions, e.g., by taking coefficients appearing in their p-
dimensional truncated Fourier expansions. In this way,
a finite dimensional representation

kq0,T : R
p → R

r (3)

of the mobile robot kinematics is obtained, which can be
further processed in exactly the same way as the manipu-
lator kinematics.

Having introduced the kinematics map, we define the
inverse kinematics problem and derive Jacobian inverse
kinematics algorithms relying on the continuation method
(Chitour and Sussmann, 1998; Tchoń, 2007). As a par-
ticular case, we get the Jacobian pseudoinverse and ex-
tended Jacobian algorithms. The approximation problem
will be dealt with in two formulations. The first formula-
tion includes the classical Roberts and Maciejewski state-
ment of the problem, and its alternative statement obtained
by embedding the inverses into a larger space. The ap-
proximation problem is stated as an optimization problem
in a function space and solved using the method of calcu-
lus of variations, resulting in a system of partial differen-
tial equations for the augmenting kinematics map. These
partial differential equations are nonlinear in the case of
the classical formulation, and linear elliptic for the alter-
native one.

The second formulation of the approximation prob-
lem consists in transforming the problem into that of the
approximation of a codistribution annihilating the Jaco-
bian transpose by an integrable codistribution. The proce-
dure of determining the augmenting kinematics map ex-
ploits differential geometric tools (Sluis et al., 1996; Ja-
niak and Tchoń, 2008) and reduces the synthesis of the
augmenting kinematics map to solving a system of par-
tial differential equations by the method of characteris-
tics. The extended Jacobian inverses obtained within the
calculus of variations formulation have been applied to
two robotic manipulators with three degrees of freedom,
labeled as Manipulator 1 and Manipulator 2, and com-
pared with the Jacobian pseudoinverse being their proto-
type. The extended Jacobian inverse devised within the
differential geometric framework has been used to drive
the unicycle-type mobile platform. The degree of redun-
dancy of all these kinematics equals 1. Using the differ-
ential geometric approach, in (Janiak and Tchoń, 2008),
an extended Jacobian inverse was provided for Manipula-
tor 1 and for the chained form system in dimension 3. In
both these examples the augmenting kinematics function
was found analytically. The case of unicycle is much more
difficult and can be treated only numerically.

The composition of this paper is the following: Sec-
tion 2 introduces inverse kinematics algorithms. Section 3

develops the calculus of variations approach. The dif-
ferential geometric approach is exposed in Section 4. A
derivation of optimal extended Jacobian inverses for ma-
nipulators and the unicycle mobile robot is accomplished
in Sections 5 and 6. Section 7 concludes the paper.

2. Basic concepts

We shall study either the kinematics of a stationary redun-
dant manipulator or a finite dimensional representation of
the mobile robot kinematics (3),

k : R
p → R

r, (4)

with p degrees of freedom and r-dimensional taskspace
(p > r). Let J(x) = ∂k(x)/∂x denote the manip-
ulator’s Jacobian. Given the kinematics (4) and a de-
sirable point yd in the taskspace, the inverse kinemat-
ics problem amounts to determining a joint position xd

such that k(xd) = yd. A numerical solution of the in-
verse kinematics problem is often delivered by a Jaco-
bian inverse kinematics algorithm. The following con-
tinuation method argument presents a convenient way of
deriving Jacobian algorithms. Given an initial configura-
tion x0 ∈ R

p, we define in the joint space a curve x(θ),
θ ∈ R, passing through x0, such that the taskspace error
e(θ) = k(x(θ)) − yd along this curve decreases exponen-
tially with a prescribed decay rate γ > 0, so that

de(θ)
dθ

= −γe(θ). (5)

The differentiation of the error in the above formula
yields the differential equation

J(x(θ))
dx(θ)

dθ
= −γ(k(x(θ)) − yd), (6)

sometimes referred to as the Ważewski–Davidenko equa-
tion. This equation can be made explicit in the derivative
dx(θ)/dθ by using a right inverse J#(x) of the Jacobian,
i.e., J(x)J#(x) = Ip−r. Given such an inverse, we get a
dynamic system

dx(θ)
dθ

= −γJ#(x(θ))(k(x(θ)) − yd) (7)

whose trajectory approaches a solution of the inverse kine-
matics problem, xd = limθ→+∞ x(θ). In practice, Jaco-
bian inverse kinematics algorithms employ two right in-
verses of the Jacobian: either the Jacobian pseudoinverse
or the extended Jacobian inverse. It is well known that
at regular joint positions of the manipulator the Jacobian
pseudoinverse is defined as

JP#(x) = JT (x)
(
J(x)JT (x)

)−1
. (8)

An alternative to the Jacobian pseudoinverse is the
extended Jacobian inverse, introduced in the following
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way. Given the kinematics (4), we choose an augment-
ing kinematics map

h : R
p −→ R

p−r, ỹ = h(x). (9)

The map (9) allows us to define the extended kinematics

l = (k, h) : R
p −→ R

p, ȳ = l(x), (10)

and the extended Jacobian J̄(x) = ∂l(x)/∂x. Wherever
invertible, the extended Jacobian gives rise to the extended
Jacobian inverse

JE#(x) = J̄−1(x)|r first columns. (11)

By design, the extended Jacobian inverse is a right
inverse of the Jacobian that is annihilated by the Jacobian
of the augmenting kinematics map, i.e.,

J(x)JE#(x) = Ir and
∂h(x)

∂x
JE#(x) = 0. (12)

It is well known that the Jacobian pseudoinverse inverse
kinematics algorithm distinguishes by its convergence,
whereas the extended Jacobian inverse kinematics algo-
rithm has the property of repeatability. A classical de-
sign problem of inverse kinematics algorithms consists in
designing an extended Jacobian inverse approximating in
a prescribed sense the Jacobian pseudoinverse. The next
two section will be devoted to diverse formulations and
solution methods of this problem.

3. Optimal functional approximation

In this section we formulate the approximation prob-
lem of the Jacobian pseudoinverse by an extended Jaco-
bian inverse in terms of the minimization of an approx-
imation error functional depending on the augmenting
kinematics map. Two different error functionals will be
defined following, respectively, (Roberts and Maciejew-
ski, 1992; 1993) and (Tchoń, 2008).

3.1. Error functional 1. Given the inverses JP#(x)
and JE#(x), the approximation problem consists in pro-
viding an augmenting map (9) that minimizes the approx-
imation error

E1(h) =
∫

M1

||JP#(x) − JE#(x)||2F dx (13)

over a singularity-free regionM1 ⊂ R
p of the joint space.

The norm ||M ||F =
√

tr(MMT ) denotes the Frobenius
matrix norm. In order to show an explicit dependence of
the error on h(x), we observe that there exists a matrix
W (x) such that

JP#(x) − JE#(x) = K(x)W (x).

The matrix K(x) is an p × (p − r) matrix with orthonor-
mal columns (KT (x)K(x) = Ip−r) spanning the Jaco-
bian kernel, (J(x)K(x) = 0).

Next, thanks to the fact that both JP#(x) and
JE#(x) are right inverses of the Jacobian, we compute
the matrix W (x)

W (x) =
(

∂h(x)
∂x

K(x)
)−1

∂h(x)
∂x

JP#(x),

and, finally, obtain the following explicit error functional:

E1(h)

=
∫

M1

tr

((
∂h(x)

∂x
K(x)

)−1
∂h(x)

∂x
JP#(x)

× JP# T (x)
(

∂h(x)
∂x

)T (
∂h(x)

∂x
K(x)

)−T
)

dx.

(14)

The functional (14) is an integral of a Lagrangian
L(x, ∂h(x)/∂x), so the corresponding Euler equations
(Gelfand and Fomin, 1963)

tr
∂

∂x

(
∂L

∂ ∂hi

∂x

)
= 0, (15)

for i = 1, . . . , p− r, yield a collection of nonlinear partial
differential equations for components of the augmenting
kinematics map. Due to the form of the Lagrangian, a
general derivation of these equations seems intractable.

3.2. Error functional 2. An alternative definition of
the approximation error is based on natural embedding of
the Jacobian inverses JE#(x) and JP#(x) into a pair of
n× n matrices, and then solving the approximation prob-
lem for the embeddings. Specifically, outside singulari-
ties, JE#(x) is embedded in the inverse extended Jaco-
bian

E1(x) =
[
J(x)
∂h(x)

∂x

]−1

=
[
JE#(x) Q(x)

]
, (16)

Q(x) denoting an p× (p− r) complementary matrix. The
embedding of JP#(x) relies on the isomorphism theorem

E2(x) =
[

J(x)
KT (x)

]−1

=
[
JP#(x) K(x)

]
. (17)

The approximation error involves the Frobenius
norm of a multiplicative measure of the difference be-
tween these embeddings,

E2(h) =
∫

M2

||E−1
1 (x)E2(x) − Ip||2F m(x) dx, (18)
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where m(x) =
√

detM(x) denotes the manipulability
function, and the integration should be done over a regular
region M2 ⊂ R

p with m(x) dx playing the role of the
volume form. After suitable mathematical manipulations,
we obtain the approximation error functional

E2(h) =
∫

M2

tr

(
∂h(x)

∂x
P (x)

(
∂h(x)

∂x

)T

− 2
∂h(x)

∂x
K(x) + Ip−r

)
m(x) dx,

(19)

where we set

P (x) = JP#(x)JP# T (x) + K(x)KT (x)

=
(
JT (x)J(x) + K(x)KT (x)

)−1
.

As in the previous subsection, the Lagrangian ap-
pearing in (19) has the form L(x, ∂h(x)/∂x). However,
this time the Euler equations (15) can easily be derived in
the explicit form

tr
∂

∂x

(
m(x)P (x)

∂hi

∂x

)
− tr

∂

∂x
(m(x)Ki(x))

=
p∑

r=1

(
p∑

k=1

m(x)Pkr(x)
∂2hi(x)
∂xk∂xr

+
p∑

k=1

∂(m(x)Pkr(x))
∂xr

∂hi(x)
∂xk

− ∂(m(x)Kri(x))
∂xr

)
= 0, (20)

for i = 1, . . . , p− r. We conclude that the optimality con-
ditions (20) are tantamount to a collection of linear, ellip-
tic partial differential equations that should be satisfied by
the components of the map h(x).

4. Approximation of codistributions

A different approach to defining an extended Jacobian
inverse that approximates the Jacobian pseudoinverse
comes from differential geometry and relies on design-
ing an integrable codistribution that agrees with a given
codistribution in certain regions of the manipulator joint
space (Janiak and Tchoń, 2008). For this purpose, we have
adopted some results recently obtained in control theory,
in the context of approximate feedback linearization (Sluis
et al., 1996). In order to introduce this approach, we begin
with the Jacobian pseudoinverse (8) and associate to it a
codistribution

ΩP = spanC∞(Rp){ω1(x), . . . , ωp−r(x)}

spanned by differential one-forms that annihilate the Jaco-
bian transpose, i.e., ωi(x)JT (x) = 0 for i = 1, . . . , p− r.

Our objective will be to define an extended Jacobian
inverse, depending on the augmenting kinematics map
h(x) = (h1(x), . . . , hp−r(x)), such that the codistribu-
tion

ΩE = spanC∞(Rp){d h1(x), . . . , d hp−r(x)},

spanned by differentials of components of the augment-
ing map, coincide with the codistribution ΩP after restric-
tion to prespecified submanifolds and along prespecified
directions in R

n. For this purpose, we shall define in R
p a

foliation with p − r-dimensional leaves Eα, parametrized
by α ∈ R

r, with a reference zero-leaf E0. Associated
with this foliation is a homotopy Φt : R

p → R
p, where

t ∈ [0, 1], such that Φ1 = idRp , Φ0 : R
n → E0, and

a composition law holds Φs ◦ Φt = Φst. The homo-
topy Φt(x) respects the structure of the foliation in the
sense that, for any leaf Eα, its image lies in another leaf,
Φt(Eα) ⊂ Eα′ .

Given the homotopy, we introduce a vector field

X(x) =
dΦt(x)

dt

∣∣∣∣∣
t=1

(21)

that will establish a characteristic direction in R
p. Further-

more, it is easily shown that the vector field (21) fulfills the
identity

t
dΦt(x)

dt
= X(Φt(x)), (22)

making the homotopy Φt(x) a flow of the time-dependent
vector field X(x)/t. To proceed it will be convenient to
choose in R

p specific coordinates x = (y, z) such that z ∈
R

p−r varies along a leaf, y ∈ R
r is constant on every leaf,

and the reference leaf is characterized in coordinates by
(0, z). We shall assume that, on the leaf Eα, the one-forms
spanning ΩP are given in coordinates (y, z) as ωi|Eα =
dzi,, while the generators of the codistribution ΩE take
the form

ω̄i =
p−r∑

j=1

Bij(x) dhj(x),

for i = 1, . . . , p − r.
After all these preparations, we are ready to make

the following statement of the approximation problem of
the Jacobian pseudoinverse by an extended Jacobian in-
verse: Design an augmenting kinematics map h(x) =
(h1(x), . . . , hp−r(x)) such that h(0, z) = z, the distri-
butions ΩP and ΩE coincide after restriction to the leaves
of the foliation {Eα}

ω̄i|Eα = ωi|Eα , (23)

and agree along the direction of the vector field X(x),

ωi(x)X(x) = ω̄i(x)X(x), (24)
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for every i = 1, . . . , p − r. Now, let us observe that the
identity

ω̄i(x) =
p−r∑

j=1

Bij(x) dhj(x)

=
p−r∑

j=1

r∑

k=1

Bij(x)
∂hj(x)

∂yk
dyk

+
p−r∑

j=1

p−r∑

l=1

Bij(x)
∂hj(x)

∂zl
dzl

results in

ω̄i|Eα =
p−r∑

j=1

p−r∑

l=1

Bij(x)
∂hj(x)

∂zl
dzl.

Consequently, the requirement (23) is equivalent to

B(x)
∂h(x)

∂z
= Ip−r . (25)

Next, setting x = Φs(y, z) and Fi(x) = ωi(x)X(x),
and using (22), we derive from (24) the equality

Fi(Φs(y, z))

= s

p−r∑

j=1

Bij(Φs(y, z)) dhj(Φs(y, z))
dΦs(y, z)

ds

= s

p−r∑

j=1

Bij(Φs(y, z))
dhj(Φs(y, z))

ds

and conclude that

sB(Φs(y, z))
dh ◦ Φs(y, z)

ds
= F (Φs(y, z)), (26)

where F (x) = (F1(x), . . . , Fp−r(x)). Finally, we set
H(s, y, z) = h(Φs(y, z)) and, after suitable mathemat-
ical manipulations involving (25) and (26), we arrive at
a system of p − r identical partial differential equations
parameterized by the y-coordinates,

∂Hi(s, y, z)
∂s

−
p−r∑

j=1

Fj(Φs(y, z))
s

∂Hi(s, y, z)
∂zj

= 0, (27)

where i = 1, . . . , p − r.
This system can be solved by the method of charac-

teristics. Indeed, it is easily seen that along the solution
z(s) of the characteristic equation

dz(s)
ds

= −F (Φs(y, z))
s

, z(0) = z0, (28)

the map H(s, y, z(s)) = const . Based on this fact, us-
ing the properties of the homotopy map Φt(x) and the as-
sumption that on the reference leaf h(0, z) = z, we get

H(1, y, z(1)) = h(Φ1(y, z)) = h(y, z)
= H(0, y, z(0)) = h(Φ0(y, z(0)))
= h(0, z0) = z0,

and therefore h(y, z) = z0.
The last identity means that in order to determine the

augmenting kinematics map h(x) we need to solve the
implicit equation

z(1) = z = ϕ(1, y, h(y, z)), (29)

where ϕ(s, y, z0) denotes the flow of (28). This can be
done by integrating backward in time the characteristic
equation (28) and finally restoring the original variable x.

5. Manipulators

In this section, we shall compute the optimal augmen-
ting kinematics functions for two example kinematics of
robotic manipulators with the degree of redundancy 1.
The performance of the obtained extended Jacobian in-
verse kinematics algorithms will be examined by com-
puter simulations, and compared with the Jacobian pseu-
doinverse algorithm. Manipulator 1 illustrates the case
when the optimal augmenting function can be found ana-
lytically. Manipulator 2 shows an application to the prob-
lem of standard tools for numerical computations. Both
these examples demonstrate that the alternative formula-
tion of the approximation problem is much more tractable
computationally than the classical one.

5.1. Manipulator 1. We shall begin with the kinemat-
ics of a 3DOF planar manipulator (Tchoń, 2008), shown
in Fig. 1. The manipulator has joint variables (x1, x2, x3).
Its tasks variables (y1, y2) describe the Cartesian position
of the car W2 with respect to a coordinate frame fixed to
the manipulator’s base. The joint variables x1 and x3 are
driven by the motors M1 and M3. The position of W2
along the runner P2 depends both on x3 and on the rev-
olution angle of the toothed wheel z2, coupled with the
revolution angle of the toothed wheel z1 through a trans-
mission gear whose gear ratio is adjusted by x2 driven

Fig. 1. Manipulator 1.
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by the motor M2. In appropriate coordinates in the joint
space of the manipulator, its kinematics are represented in
the normal form

k(x) = (x1, x2 + x1x3). (30)

A straightforward computation yields the Jacobian

J(x) =
[

1 0 0
x3 1 x1

]
,

the manipulability matrix

M(x) = J(x)JT (x) =
[

1 x3

x3 1 + x2
1 + x2

3

]
,

the Jacobian kernel

K(x) =
1√

1 + x2
1

(0,−x1, 1)T ,

and, finally, the manipulability m(x) =
√

1 + x2
1.

5.1.1. Error functional 1. Our objective consists in
defining an augmenting kinematics function h(x) that
minimizes the error functional (14). To simplify the com-
putations, we shall look for this function in a specific form
h(x) = x3f(x1), f1(x1) �= 0. Then, the Euler equation
corresponding to (14) reduces to the following second or-
der ordinary differential equation involving f(x1):

2x3

(
f2(x1) + 4(1 + x2

1)
(

d f(x1)
d x1

)2

−f(x1)
(

5x1
d f(x1)

d x1
+ (1 + x2

1)
d2f(x1)

d x2
1

))
= 0.

By means of the MATHEMATICA package, we have
found an analytic solution

f(x1) =
C1

√
1 + x2

1(
x1

√
1 + x2

1 + sinh−1(x1) + C2

) 1
3
, (31)

C1 and C2 denoting some integration constants. Eventu-
ally, the optimal augmenting function is

h(x) = x3
C1

√
1 + x2

1(
x1

√
1 + x2

1 + sinh−1(x1) + C2

) 1
3
. (32)

For a further comparison, we shall use the Taylor ex-
pansion of the denominator of (31) around x1 = 0, retain-
ing linear terms. After substituting C1 = C2 = 1, the
result is

f(x1) ∼=
(

1 − 2
3
x1

)√
1 + x2

1,

yielding an approximate augmenting function

h(x1, x3) ∼= x3

(
1 − 2

3
x1

)√
1 + x2

1. (33)

5.1.2. Error functional 2. Now we shall determine an
augmenting kinematics function h(x) that minimizes the
error (19). We begin by computing the matrix

P (x) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 −x3
1+x2

1

−x1x3
1+x2

1

−x3
1+x2

1

1+x2
1+x2

3+x4
1

(1+x2
1)

2
x1x2

3−x3
1

(1+x2
1)

2

−x1x3
1+x2

1

x1x2
3−x3

1

(1+x2
1)

2
1+2x2

1+x2
1x2

3

(1+x2
1)

2

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

The corresponding Euler equation (20) can be written as

√
1 + x2

1

∂2h(x)
∂x2

1

+
1 + x2

1 + x2
3 + x4

1

(1 + x2
1)3/2

∂2h(x)
∂x2

2

+
1 + 2x2

1 + x2
1x

2
3

(1 + x2
1)3/2

∂2h(x)
∂x2

3

− 2x3

(1 + x2
1)1/2

∂2h(x)
∂x1∂x2

− 2x1x3

(1 + x2
1)1/2

∂2h(x)
∂x1∂x3

+
2x1(x2

3 − x2
1)

(1 + x2
1)3/2

∂2h(x)
∂x2∂x3

+
3x1x3

(1 + x2
1)3/2

∂h(x)
∂x2

+
2x2

1x3 − x3

(1 + x2
1)3/2

∂h(x)
∂x3

= 0.

(34)

We assume a boundary condition h(x1, x2, 0) = 0
and, as before, set h(x) = x3f(x1). Then the partial dif-
ferential equation (34) reduces to a second order linear
ordinary differential equation

∂2h(x)
∂x2

1

− 2x3

1 + x2
1

∂h(x)
∂x1

+
2x2

1 − 1
(1 + x2

1)2
f(x1) = 0. (35)

Again, with the help of the MATHEMATICA
package, we obtain an analytic solution f(x1) =
(ax1 + b)

√
1 + x2

1 of (35), where a, b are integration
constants. As a result, the optimal augmenting kinematics
function takes the following form:

ha,b(x) = x3 (ax1 + b)
√

1 + x2
1. (36)

By a comparison of (33) and (36), we notice that in
the case of Manipulator 1, despite minimizing different
approximation errors, the resulting optimal augmenting
kinematics function (36) can be regarded as an approxi-
mate of the function (32).

5.2. Manipulator 2. Our second example involves a
3DOF planar manipulator presented in Fig. 2, with kine-
matics

k(x) =
(
x2 + l cosx3 x1 + l sin x3

)
. (37)

The manipulator’s Jacobian, the manipulability matrix,
the manipulability function and the Jacobian kernel are
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Fig. 2. Manipulator 2.

computed as follows:

J(x) =
[
0 1 −l sin x3

1 0 l cosx3

]
,

M(x) =
[

l + l2 sin2 x3 −l2 sin x3 cosx3

−l2 sinx3 cosx3 l + l2 cos2 x3

]
,

m(x) =
√

1 + l2,

K(x) =
1

m(x)
(−l cosx3, l sin x3, 1

)T
.

Our task is to find an augmenting kinematics func-
tion h(x) minimizing solely the error (18). After suitable
substitutions, we arrive at the Euler equation (20),

tr
∂

∂x

(
R(x)

∂h(x)
∂x

)
= 0,

where R(x) = m(x)P (x). The coefficients of this matrix,
computed for the unit arm length l = 1 of the manipulator,
are listed below:

R(x) =
√

2
2

⎡

⎢⎢⎢⎢⎣

7−cos(2x3)
4

cos x3 sin x3
2 − cos x3

2

cos x3 sin x3
2

7+cos(2x3)
4

sin x3
2

− cos x3
2

sin x3
2

3
2

⎤

⎥⎥⎥⎥⎦
.

Due to computation difficulties, let us assume that
h(x) = h(x2, x3). Then R(x) reduces to

R(x) =
√

2
2

⎡

⎣
7+cos(2x3)

4
sin x3

2

sin x3
2

3
2

⎤

⎦ .

The numerical solution of (38) provided by the MATLAB
PDE toolbox is shown in Fig. 3. The numerical solution
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Fig. 3. Optimal augmenting function.

can be approximated by a third degree polynomial

h(x2, x3)

= 0.0006x3 − 0.2205y3 + 0.3469x2y

+ 0.0009xy2 + 0.0005x2 + 0.0006y2 − 0.7501xy

− 0.0007x + 0.1381y − 0.0005,

(38)

presented in Fig. 4. Having obtained an analytic form of

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

x
2

x
3

h(
x 2
,x
3)

Fig. 4. Approximate augmenting function.

the augmenting function, we compute the extended Jaco-
bian

J̄(x) =

⎡

⎣
0 1 − sin x3

1 0 cosx3

0 j32(x) j33(x)

⎤

⎦ , (39)

where

j32(x) = 0.0012x2
2 + 0.6938x2x3 + 0.0009x2

3

+ 0.001x2 − 0.7501x3 − 0.0007,

j33(x) = −0.4410x2
3 + 0.3469x2

2 + 0.0018x2x3

+ 0.0012x3 − 0.0007x2 + 0.1381,

and the corresponding extended Jacobian inverse.
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5.2.1. Computer simulations. In this subsection, we
shall make a comparison of some performance aspects of
the extended Jacobian inverse and the Jacobian pseudoin-
verse for Manipulator 2. The following simulation ex-
periment focuses on the property of repeatability. To dis-
cover the repeatability, we have chosen four points in the
taskspace: A(1, 1), B(1, 2), C(0, 2), D(0, 1). The task
of the inverse kinematics algorithm consists in driving the
manipulator along a closed path starting at A and return-
ing to A after passing through B, C, and D. At each step,
the algorithm takes as an initial point the solution obtained
at the previous step. The simulation results for JE#(x)
and JP#(x) are collected in Table 1. As can be seen, the
extended Jacobian inverse kinematics algorithm based on
the augmenting function (38) is repeatable, whereas the
Jacobian pseudoinverse is not.

Now, we shall focus on a comparison of solutions of
an inverse kinematics problem provided by the Jacobian
pseudoinverse and extended Jacobian algorithms. In the
testing problem, the desirable taskspace point of Manip-
ulator 2 is yd = (0, 2). As the initial condition we have
chosen x0 = (0, 0, π/2), which corresponds to the point
y = (0, 1) in the taskspace.

In Figs. 5 and 6 the end effector paths are visualized,
respectively, for the Jacobian pseudoinverse algorithm and
the extended Jacobian algorithm. A comparison of the
joint trajectories is presented in Figs. 7–9. The subscripts
P and E refer, respectively, to the Jacobian pseudoinverse
and to the extended Jacobian. As can be seen from these
figures, both algorithms solve the inverse kinematic prob-
lem efficiently and generate very similar taskspace trajec-
tories. However, it turns out that for larger distances be-
tween the initial and the desirable taskspace points the ob-
tained joint trajectories may differ substantially.

Table 1. Simulation repeatability test.

Algorithm Extended Jacobian
A x0 0 0 1.5708
B x1f 0.1208 0.5235 1.0741
C x2f 1.1208 0.5235 1.0741
D x3f 1 0 1.5708
A x4f 0 0 1.5708
Algorithm Jacobian pseudoinverse
A x0 0 0 1.5708
B x1f 0.1132 0.5379 1.0904
C x2f 1.0432 0.7093 1.2759
D x3f 1.0198 0.1980 1.7701
A x4f 0.0529 0.3210 1.8976

6. Mobile robots

We shall study the kinematics of the unicycle mobile
platform shown in Fig. 10. A differential geometric ex-
tended Jacobian approximation of the Jacobian pseudoin-
verse will be derived and examined.

6.1. Unicycle. We let q = (q1, q2, q3) denote the posi-
tion and orientation of the unicycle moving on a horizontal
plane. The kinematics of the unicycle are represented by
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Fig. 5. Task space path of the Jacobian pseudoinverse.
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Fig. 6. Task space path of the extended Jacobian.
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Fig. 7. x1(t) joint trajectories.
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the following control system with output:

q̇1 = u1 cos q3, q̇2 = u1 sin q3, q̇3 = u2, y = q,
(40)

where the controls u1 and u2 have the meaning of the
longitudinal and angular velocities. Assuming the control
horizon T = 2π, these controls will be chosen as

u1(t) = λ10 + λ11 sin t, u2(t) = λ20 + λ21 sin t, (41)
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Fig. 8. x2(t) joint trajectories.
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Fig. 9. x3(t) joint trajectories.

Fig. 10. Unicycle.

so the control vector λ = (λ10, λ11, λ20, λ21) ∈ R
4.

Suppose that initial coordinates of the unicycle q0 =
0. Then, the kinematics of the unicycle subject to the con-
trol (41) are the following:

Kq0,T (λ) = (q1 λ(T ), q2 λ(T ), q3 λ(T )), (42)

where

q1 λ(t) =
∫ t

0

(λ10 + λ11 sin s) cos q3 λ(s) ds,

q2 λ(t) =
∫ t

0

(λ10 + λ11 sin s) sin q3 λ(s) ds,

q3 λ(t) =
∫ t

0

(λ20 + λ21 sin s) ds

= λ20t + λ21(cos t − 1).

Given the kinematics (42), we compute the Jacobian

Jq0,T (λ) =
∂Kq0,T (λ)

∂λ
= [Jij(λ)] , (43)

whose entries are

J11(λ) =
∫ T

0

cos q3 λ(s) ds,

J12(λ) =
∫ T

0

sin s cos q3 λ(s) ds,

J13(λ) = −
∫ T

0

(λ10 + λ11 sin s) sin q3 λ(s)s ds,

J14(λ) = −
∫ T

0

(λ10 + λ11 sin s) sin q3 λ(s)(cos s − 1) ds,

J21(λ) =
∫ T

0

sin q3 λ(s) ds,

J22(λ) =
∫ T

0

sin s sin q3 λ(s) ds,

J23(λ) =
∫ T

0

(λ10 + λ11 sin s) cos q3 λ(s)s ds,

J24(λ) =
∫ T

0

(λ10 + λ11 sin s) cos q3 λ(s)(cos s − 1) ds,

J31(λ) = 0, J32(λ) = 0, J33(λ) = 1, J34(λ) = 0.

The Jacobian (43) allows us to define the Jacobian
pseudoinverse

JP#
q0,T (λ) = JT

q0,T (λ)
(
Jq0,T (λ)JT

q0,T (λ)
)−1

. (44)

Because p − r = 1, the codistribution annihilating (44)

ΩP = C∞(R4)ω

is spanned over smooth functions by the one-form ω(λ) =
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(ω1(λ), ω2(λ), ω3(λ), ω4(λ)), whose components are

ω1(λ) =
J14(λ)J22(λ) − J12(λ)J24(λ)
J11(λ)J24(λ) − J14(λ)J21(λ)

,

ω2(λ) = 1,

ω3(λ) = 0,

ω4(λ) =
J12(λ)J21(λ) − J11(λ)J22(λ)
J11(λ)J24(λ) − J14(λ)J21(λ)

.

It is easily checked that ω1(λ) and ω4(λ) are well
defined provided that λ10 �= 0. Now we define the fo-
liation of the control space R

4. Taking into account the
well-definiteness of the codistribution ΩP , we choose the
reference leaf Ea,0 = ae1 + Re2, where a �= 0 and ei

denotes the i-th unit vector in R
4, a general leaf having

the form

Ea,α = Ea,0 + α1e1 + α3e3 + α4e4

for α1 �= −a. Following the procedure described in
Section 4, we shall now introduce a homotopy map
Φt : R

4 → R
4, defined as

Φt(λ) = tλ + (1 − t)(ae1 + λ11e2)
= (tλ + (1 − t)a, λ11, tλ20, tλ21).

(45)

Next, we compute the characteristic vector field (21)

X(λ) =
Φt(λ)

dt
|t=1 = (λ10 − a, 0, λ20, λ21)

and the function

F (λ) = ω(λ)X(λ) = ω1(λ)(λ10−a)+ω4(λ)λ21. (46)

After re-labeling the variables λ in accordance with
y1 = λ10 − a, y2 = λ20, y3 = λ21, z = λ11, we obtain

Φs(y, z) = (sy1 + a, z, sy2, sy3)

and derive the characteristic equation (28)

dz

ds
= −F (Φs(y, z))

s
= ω1(Φs(y, z))y1 − ω4(Φs(y, z)y3.

By integrating this equation backward in time, we
get the augmenting kinematics function h(λ) = h(y, z).
In conclusion, we compute the extended Jacobian

J̄q0,T (λ) =

⎡

⎣
Jq0,T (λ)

∂h(λ)
∂λ

⎤

⎦ ,

and the extended Jacobian inverse

JE#
q0,1(λ) = J̄−1

q0,T (λ)|3 first columns. (47)

6.2. Computer simulations. Computer simulations of
the inverse kinematics algorithm (7) defined by (44) and
(47) for the unicycle mobile platform have been run from
two different starting positions and orientations A and B
of the platform, characterized by the initial conditions
qA
0 = (5, 0, π/2) and qB

0 = (−5, 5, π/2), with the time
horizon T = 2π. In both cases, the initial control vec-
tor has been set to λ0 = (0.5,−0.25, 0.3,−0.25), the
desirable taskspace point is yd = (1, 0,−π/2), and the
algorithm decay rate has been fixed to γ = 0.1. In the
extended Jacobian inverse, the value a = 1 of the pa-
rameter has been taken. Figures 11 and 13 demonstrate
a solution of the inverse kinematic problem with the use
of the Jacobian pseudoinverse algorithm (for the starting
point A and B, respectively), and Figs. 12 and 14, accord-
ingly, with the use of the extended Jacobian inverse. Paths
of the unicycle platform in the (q1, q2)-plane are shown
in the parts (a) of the figures, while convergence in the
control space against the number of iterations in parts (b)
and (c). Remarkably, the taskspace paths obtained from
the point A are very similar, which cannot be observed for
the point B.

7. Conclusion

This papers addressed the problem of optimal synthesis
of inverse kinematics algorithms for robotic manipula-
tors and mobile robots, focusing on devising an extended
Jacobian algorithm by approximating the Jacobian pseu-
doinverse. Two approaches to the approximation problem
were fostered: a calculus of variation based and a differ-
ential geometric. Within the former approach, we pre-
sented a traditional and an alternative formulation of the
problem. Concerning the latter approach, we developed
a synthesis procedure of the extended Jacobian algorithm,
relying on the approximation of a codistribution by an in-
tegrable codistribution. Both approaches were illustrated
with computer simulations.
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