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A discrete-time stochastic spatial model of plankton dynamics is given. We focus on aggregative behaviour of plankton
cells. Our aim is to show the convergence of a microscopic, stochastic model to a macroscopic one, given by an evolution
equation. Some numerical simulations are also presented.
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1. Introduction

Phytoplankton, as the first level of food accessible to ani-
mals, is the main source of nutrient in the ocean. That is
why the understanding of its behaviour becomes so impor-
tant. Properties of phytoplankton have been widely inves-
tigated by researchers from various branches of science.
Phytoplankton cells have the ability to form aggregates—
groups of cells bonded together. Plankton cells in such an
aggregate, are joined with a kind of organic glue, called
TEP (Passow and Alldredge, 1995). The aggregates un-
dergo diffusion, currents and turbulence, which lead to a
dispersion and patchy distribution of phytoplankton in the
water.

Since numerical and mathematical modelling plays
a crucial role in the understanding of plankton dynam-
ics, there have recently appeared different approaches to
the description of plankton with the use of various math-
ematical methods. One of the approaches uses advection-
diffusion-reaction equations, which describe the spatial
densities of cells concentrations (Franks, 2002; Levin and
Segel, 1976). In some models the process of the coagu-
lation of plankton cells is included (Laurençot and Mis-
chler, 2002), and these are of great interest for us. An
extensive survey of mathematical models of coagulation
is given by Aldous (1999). Another approach is based on
individual behaviour of cells. It assumes that single cells
undergo some random movement and they somehow in-
teract with others. This may lead to the so-called super-
processes (Adler, 1997; Young et al., 2001)), but in our
case such a model is related to a description by means of
fragmentation-coagulation equations.

We consider here an individual-based model, where
a plankton aggregate plays the role of an individual unit. It
is a discrete-time, simulation-oriented version of a model
presented by Rudnicki and Wieczorek (2006b). It de-
scribes a population of aggregates of plankton cells struc-
tured by mass and location in the water. The movement of
the aggregates is described by a random walk. The pro-
liferation of cells in the aggregates results in the growth
of the latter. The fragmentation of the aggregates, as well
as their coagulation (i.e., joining together), is included.
The model is introduced in Section 2 (and Appendix A).
The idea of structuring the plankton population accord-
ing to the size of aggregates comes here from Arino and
Rudnicki (2004), but it was used before, e.g., by Jackson
(1990). We present also a macroscopic model in which
the mass-spatial distribution of plankton aggregates is de-
scribed by an evolution equation of the fragmentation-
coagulation type. The connection between the micro- and
macroscopic models is stressed, namely, we show (in Sec-
tion 3 with Appendices B and C) the limit passage from
the first model to the second one as the number of ag-
gregates tends to infinity. An extensive survey of phyto-
plankton models may be found in the work of Rudnicki
and Wieczorek (2008).

Rudnicki and Wieczorek (2006b) presented some re-
sults of simulations of a simplified version of their model
without coagulation. A numerical individual-based model
of phytoplankton with simulations was also presented by
El Saadi and Bah (2007). However, no possibility of the
aggregation of plankton cells was built into this model: the
cells drift in the water totally independently. In this paper
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we conduct some simulations of the discrete-time model,
precisely defined in Section 2, in two scenarios, namely,
with and without coagulation. Our aim is to observe the
behaviour of discrete-time models and to investigate the
influence of the coagulation. The results of the simula-
tions are given in Section 5.

2. Individual model of plankton dynamics

Rudnicki and Wieczorek (2006a) constructed a stochas-
tic individual-based model of phytoplankton dynamics,
which is the base for the present model. In that model
an individual is an aggregate consisting of some number
of cells. Each aggregate is located at some point of the
three dimensional space R

3 and its mass is described by
the positive number m ∈ R+. The proliferation of cells
in an aggregate and their mortality result in the growth
or decrease of the aggregate. Moreover, the movement
of aggregates is modelled by a diffusion process. An ag-
gregate may shatter into two smaller aggregates or may
vanish, because of death, sinking or grazing. The aggre-
gates undergo also coagulation, namely, each two of them
may join up creating a bigger one. The whole process is
described as follows:

(a) The growth rate is λ(m). This means that an aggre-
gate grows according to the equation

m′ = λ(m). (1)

(b) An aggregate with mass m moves according to the
Brownian motion 2D(m)W (t), where W (t) is a
standard Wiener process in R

3 and D(m) is the dif-
fusion rate depending on the aggregate size.

(c) An aggregate may die at some time and the death rate
is λd(m).

(d) A fraction λf (m) of aggregates of mass m undertake
a breakup in a unit of time.

(e) Two aggregates may join together and the probability
rate κ of coagulation depends on the mass and the
locations of both aggregates, and on the state of the
whole population.

In this paper we consider a discrete-time version of
the above model, which may be directly implemented as
a numerical scheme. To this end, we replace the continu-
ous space of positions R

3 and masses R+ by the lattices,
respectively, Δx · Z

3 and Δm · N. This means that Δx
is the size of the step of movement, whereas Δm may
be regarded as the mass of a single cell in an aggregate.
To formalise mathematically the model, we construct a
Markov chain ξ(n) such that in each time step one of
the events mentioned above may happen, namely, growth,

movement, death, fragmentation or coagulation of some
aggregate.

The phase space of the process is defined in a sim-
ilar manner as in the works of Rudnicki and Wieczorek
(2006b) as well as Wieczorek (2007), namely, it is the
space N of counting measures on R

3 × R+ of the form

N =
{

ν =
kν∑
i=1

δxi,mi : kν ∈ N, (xi, mi) ∈ R
3 × R+

}
.

(2)
Consequently, the process state of is described by a

finite number of Dirac deltas δxi,mi , each of which repre-
sents a plankton aggregate of mass mi located at xi. The
whole measure ν is the so-called empirical distribution
of the population of aggregates. Remember that in our
model, mi = nΔm and xi = yΔx for some n ∈ N and
y ∈ Z

3. The process starts from a given state ν0 ∈ N
consisting of kν0 aggregates and works as follows: after
each time step (which lasts Δt),

(a) an aggregate may grow by Δm with probability
λp(n · Δm)n, where n is the number of cells in the
aggregate (proliferation of cells) or it may decrease
with probability λm(n · Δm)n (mortality of cells).
Note that the probability coefficients depend on the
mass of the aggregate;

(b) an aggregate may jump to one of the neighbour-
ing sites of the lattice with probability 1

Δx2 D(nΔm)
(random walk, which models the diffusive move-
ment);

(c) an aggregate may die with probability λd(nΔm);

(d) an aggregate may split up into two smaller ones with
probability λf (nΔm). The distribution of masses
of the descendent aggregates is given by a function
Δm q

(Δm)
f (n̄Δm, nΔm), which describes the con-

ditional probability that the splitting aggregate of
mass nΔm produces offspring of mass n̄Δm and
(n− n̄)Δm. The convention that q

(Δm)
f is multiplied

by Δm is important in the rescaling forthcoming in
the next section;

(e) two aggregates may join together (coagulate) with
probability λc depending on the positions and masses
of both of them and on the state of the whole pop-
ulation. We claim (cf. Arino and Rudnicki, 2004;
Rudnicki and Wieczorek, 2006a; Wieczorek, 2007)
that the coagulation rate of an aggregate is c(nΔm),
and then the aggregate “chooses” another aggregate
to coagulate with, according to the coagulation rate
of the second one and the distance between them.
Therefore, we set

λc = c(m1)v(x1 − x2)
c(m2)∑
i c(mi)

, (3)
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where the sum extends over all living aggregates. We
assume that the new aggregate appears in the middle
between the two previous ones. One can consider a
more general model of the coagulation (cf. Rudnicki
and Wieczorek, 2006b);

(f) if none of the above happens, the state of the system
remains unchanged.

Obviously, the total probability of the events (a)–(f)
for all existing aggregates has to be equal to one. That is
why the probability that nothing happens is

1−
kν∑
i=1

[(
λp(niΔm)+λm(niΔm)

)
ni+

1
Δx2

D(niΔm)

+ λd(niΔm) + λf (niΔm)
]
−

kν∑
i,j=1
i�=j

λc, (4)

which should not be negative. Therefore, the subtracted
term has to be bounded by one. If we think about a model
that can be fed into a computer, it is natural to assume that
we have some maximal number of aggregates, say K , and
a maximal number of cells in an aggregate, say M . In
such a setting, we assume that

κ = K
[
(‖λp‖ + ‖λm‖)M + ‖λd‖

+ ‖D‖ + ‖λf‖ + K‖λc‖
] ≤ 1. (5)

Clearly, κ is greater than (4). A mathematically precise
definition of this Markov chain is given in Appendix A.

3. Passage from micro to macro

In an individual-based model, a stochastic process de-
scribes each individual, even though we have millions of
them (in fact, we can observe about 10 million of plank-
ton cells per liter during a plankton bloom). It is hardly
possible to study such a model with such a huge number
of particles either analytically or numerically by means of
computer simulation. Nevertheless, it seems natural to in-
vestigate its behaviour in the limit of infinitely many cells.

Therefore, we consider a sequence
{
ξN (n)

}
N∈N

of
processes as specified in the previous section, such that
the number of aggregates at the beginning tends to infin-
ity. At the same time we go to the “continuity limit”, i.e.,
we assume that the time step Δt tends to zero and that the
mass-space lattice spacing, namely, Δm and Δx, tend to
zero. The transition functions κN of the processes ξN are
given in Appendix B. We assume that the rescaled ini-
tial distributions 1/NξN(0) of plankton aggregates tend
to some finite measure ξ∞(0) on the space R

3 × R+. We
have the following result.

Theorem 1. The sequence of processes t �→ 1
N ξN (�Nt�)

converges in distribution to a (non-random) measure-
valued function ξ∞, i.e., ξ∞ : [0,∞) → M(R3 × R+),
determined by the condition (26), the same as obtained in
Theorem 1 of Rudnicki and Wieczorek (2006a).

M(R3 × R+) denotes the space of all finite Borel
measures on R

3 × R+. The proof of the theorem is given
in Appendix C. The measures ξ∞(t) describe, in a sense,
the average dynamics of the population of plankton aggre-
gates. If the initial distribution ξ∞(0) is absolutely contin-
uous with respect to the Lebesgue measure on R

3 × R+,
then the measures ξ∞(t) are also absolutely continuous
for all t > 0. In such a case one can derive the equation
on the densities of ξ∞, which is given in the next section.
The process ξ∞ which is the limit in Theorem 1 is identi-
cal to that obtained by Rudnicki and Wieczorek (2006a),
and the derivation of the equation on densities is given
there. Hence we do not rewrite the reasoning here.

4. Evolution equation for distributions

In the macroscopic approach, densities of distribution of
plankton aggregates in the space of positions and mass are
described by means of the following integro-differential
equation:

∂u(t, x, m)
∂t

=Lu(t, x, m) + Bu(t, x, m)

+ Fu(t, x, m) + Cu(t, x, m),
(6)

which the operators L, B, F , and C given by

Lf(x, m) =D(m)Δxf(x, m), (7)

Bf(x, m) = − ∂

∂m
[λ(m)f(x, m)], (8)

Ff(x, m) =
∫ ∞

m

λf ( m̃)f(x, m̃) qf ( m̃, m) d m̃ (9)

− λf (m)f(x, m) − λd(m)f(x, m),
Cf(x, m) (10)

=
1

V (f)

[ ∫

Rd

∫

Rd

∫ m

0

2dc(m − m)c(m)v(2(x − x))

× f(x, m)f(2x − x, m − m) dxdm

−
∫

Rd

∫ ∞

0

2c(m)c(m)v(x − x)f(x, m)f(x, m) dm dx

]
,

where V (f) =
∫

Rd

∫ ∞
0

c(m)f(x, m) dxdm and Δx is
the Laplace operator with respect to the spatial variable
x. Equation (6) is obtained as the limit description of the
individual-based processes.

We write u(t)(x, m) instead of u(t, x, m), and we
consider solutions u(t) of (6) as functions on R

+ with
values in the set X+, where X+ is the subset of all
non-negative and non-zero functions from the space
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X = L1(Rd × R
+). Equation (6) can be treated as an

evolution one,

u′(t) = (L + B + F + C)u(t). (11)

Theorem 2. (Rudnicki and Wieczorek, 2006a, Theo-
rem 2) Let all coefficients in the definitions (7)-(10) be
sufficiently smooth and let D(m) > 0 and c(m) > 0 for
m ≥ 0. For any u0 ∈ X+, there exists a unique solution
u(t) of (11) such that u(0) = u0.

5. Results of numerical simulations

Now we present some numerical results concerning the
discrete model. The first attempts at simulation had shown
that results depend heavily on the choice of the shape of
coefficient functions. We propose here some arbitrary,
very simple coefficients, which, however, look pretty nat-
ural. We conduct the numerical simulations in two differ-
ent scenarios, namely, with and without coagulation. The
simulations are two-dimensional in space: the space of
positions for our simulations is the square lattice of size
10000 × 10000 with periodic boundary conditions. The
simulations start with 3000 aggregates at random (uni-
formly distributed) locations on the lattice and of random
mass. We set constant growth, fragmentation and death
rates, namely, λp(m) = 1, λf (m) = 7 and λd(m) = 5,
and the diffusion rate decreasing with the square root
of mass (commonly used in physics), namely, D(m) =
5000/

√
m. In the first scenario we assume no coagulation

and thereby we set c = 0, whilst in the second one we
set c(m) = 3m and v(y) = max{0, 1 − (

y/250
)5}. The

form of function v assures that only aggregates located in
the distance less than 250 may coagulate.

A picture of the initial state (the same for both sce-
narios) is presented in Fig. 1. The states of the system
after 2 · 106 steps of simulation are shown in Figs. 2 and
3). The darker a point, the heavier the aggregate denoted
by it, cf. the scale at the left edge of the figure. By look-
ing at those pictures only, one cannot say much about the
behaviour of aggregates. It seems at first that after some
time, there is a lower number of aggregates than at the be-
ginning, but it is not so (see Fig. 4). Instead, we claim that
the aggregates form a clustered pattern, and that is why a
smaller area is covered by them in Figs. 2 and 3 than in
the initial state (Fig. 1).

To measure this clustering behaviour we use the so-
called Clark-Evans index (or the nearest neighbour in-
dex), which was introduced by Clark and Evans (1954)
and is now commonly used in the analysis of spatial pat-
terns in many areas (Henderson, 2003; Illian et al., 2008).
This index compares the observed mean nearest neighbour
distance to the expected one for a random distribution of
individuals. The Clark–Evans index is given by

CEI =
demp

dexp
, (12)
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Fig. 1. Initial state of simulation.
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Fig. 2. First scenario: without coagulation, after 2 · 106 steps.
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Fig. 3. Second scenario: with coagulation, after 2 · 106 steps.

where demp and dexp are, respectively, the empirical and
the expected mean distance to the nearest neighbour. If
the individuals are located at points x1, x2, . . . , xN , then

demp =
1
N

N∑
i=1

min
j �=i

(
dist(xi, xj)

)
. (13)
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Fig. 4. Total number of aggregates.

The expected mean distance dexp is the expected value of
(13) if the points x1, x2, . . . , xN are independently and
uniformly distributed in some domain D ⊂ R

d. It is as-
sumed that

dexp ≈ 1
2

√
S

N
, (14)

where S is the area of the domain D. It is claimed that the
Clark–Evans index indicates a regular, random and clus-
tered pattern of distribution. Namely, if CEI is approxi-
mately 1, then points are randomly distributed. CEI > 1
means that they have a regular structure and CEI < 1
suggests that they form a clustered pattern.

Our simulations show that the Clark–Evans index
significantly decreases in both scenarios (see Fig. 5),
which suggests that, indeed, we eventually obtain a clus-
tered structure.

To compare the cases without and with coagulation,
first note that the coagulation clearly leads to a reduction
in the number of aggregates, which can be seen in Fig. 4.
It is also obvious that larger masses may result from the
coagulation, which concerns both the maximal mass of an
aggregate (Fig. 7) and the mean mass (Fig. 6). Although
really natural, it is quite important, because aggregates
rather quickly get very small without coagulation and very
fast proliferation of cells is required to avoid this. It is ap-
parent that the coagulation helps to prevent degradation of
bigger aggregates. We can see in Fig. 5 that the Clark–
Evans index is lower in the case without coagulation. One
can ask whether the differnce is statistically signifficant.
Although we have not performed any strict statistical test,
we have conducted our simulation many times and the re-
sults were pretty much the same. Usually, the standard
deviation of demp is used as a measure of signifficance for
the Clark–Evans test (Clark and Evans, 1954). Its value
is marked in Fig. 5 by a horizontal bar near the points,
and one can see it is very small in proportion to the value
of CEI . The difference in the value of the Clark–Evans
index seems less self-explanatory. Nevertheless, this dif-
ference may be explained by the fact that those aggregates
which stay close in the scenario without coagulation (and
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Fig. 5. Clark–Evans index.
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Fig. 6. Mean mass of aggregates.
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Fig. 7. Mass of the largest aggregate.

result in the decreasing of the nearest-neighbour distance)
have a tendency to coagulate in the second scenario, and
they join together in one, thereby losing their influence on
the Clark–Evans index.

6. Conclusions

A discrete-time version of a model of phytoplankton
dynamics has been introduced. The model is simula-
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tion oriented, which means that it can be directly im-
plemented as a numerical algorithm. At the same time,
for large numbers of plankton cells the model is equiva-
lent to the previous one given by Rudnicki and Wieczorek
(2006a; 2006b), which is rigorously confirmed by Theo-
rem 1. It also means that there is a strict connection with
the macroscopic model from Section 4. As a result, the
macroscopic model is precisely derived from basic inter-
actions between cells and simple rules governing the be-
haviour of single aggregates. By the way, the model is de-
scribed by a very interesting mathematical object, study-
ing of which demands the use of involved tools.

In the work of Rudnicki and Wieczorek (2006b),
some simulations of a similar model were performed.
Nevertheless, they were rather heuristically introduced
and did not allow for the coagulation. Here we have
a model that enables a direct simulation. The numeri-
cal simulations confirmed aggregative behaviour of phy-
toplankton cells, which is indicated by the Clark–Evans
index. The impact of the coagulation on the size struc-
ture of the population was also shown: the coagulation
ensures the existance of bigger aggregates though the cell-
proliferation rate is the same.

Plankton aggregates are represented here by point
masses. It would be interesting to build a model in which
aggregates have finite size and occupy some area or vol-
ume. That would require a different coagulation model,
which should take into account the possibility of immedi-
ate coagulation at the moment the meeting of two aggre-
gates.
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Appendix A

Construction of the Markov chain. We assume that
the phase space of our process ξ is the space of mea-
sures N defined by the formula (2). The process starts
from some given state ξ(0) ∈ N , which consists of
k0 = ξ(0)(R3×R+) aggregates (remember that the states
of the process are measures and ξ(t)(A) denotes the num-
ber of aggregates with positions and masses in the set
A ⊂ R

3 × R+ at time t). To define a Markov chain we
need to specify a transition function, i.e., a family of mea-
sures that describe probabilities of transitions from one
state to another. Let us first define a measure that describes
the events: proliferation and mortality of cells, random
walk, death, fragmentation and coagulation of aggregates
(in that order).

κfull(ν, B) (15)

=
kν∑
i=1

[
λp(mi)

mi

Δm
1B

(
ν − δxi,mi + δxi,mi+Δm

)

+ λm(mi)
mi

Δm
1B

(
ν − δxi,mi + δxi,mi−Δm

)

+
1

Δx2
D(mi)

6∑
l=1

1B

(
ν − δxi,mi + δx+εiΔx,mi

)

+ λd(mi)1B

(
ν − δxi,mi)

+ λf (mi)

mi
Δm∑
l=0

1B

(
ν − δxi,mi + δxi,lΔm

+ δxi,mi−lΔm

) × Δm q
(Δm)
f (lΔm, mi)

]

+
kν∑

i,j=1
i�=j

λc1B

(
ν − δxi,mi − δxj ,mj + δx,mi+mj

)
,

where

ν =
kν∑
i=1

δxi,mi , (16)

and εi, i = 1, . . . , 6 denote the unit vectors parallel to each
of the three axes and positively or negatively directed.
Note that κfull depends on the parameters Δm and Δx. We
assume that all functional coefficients, namely, λp, λm, D,
λd, λf , and λc, are smooth and non-negative. Recalling
also the formula (3), we assume that v and c are smooth
and c is strictly positive. Since Δmq

(Δm)
f (m, m) is a con-

ditional probability that the splitting aggregate produces
offspring of mass m (where both m and m are multiples
of Δm), we shall assume that

∑ m
Δm

i=0
Δm q

(Δm)
f (iΔm, m) = 1. (17)

Notice also that

κfull(ν,N ) ≤ κ ≤ 1, (18)

with κ defined by (5). Now we are ready to write the tran-
sition function of the Markov chain described in Section
2. Namely,

κ(ν, B) (19)

=

⎧
⎪⎨
⎪⎩

κfull(ν, B) +
[
1 − κfull(ν,N )

]
1B(ν)

if kν ≤ K and mi ≤ M for i = 1, . . . , kν ,

0, otherwise.

Appendix B

Sequence of Markov chains. Let us now construct a se-
quence of Markov chains ξN (n) based on the one defined
above. We assume that the N -th chain starts with the state
ξN (0) which consists exactly of N aggregates, so kN,0 =
ξN (0)(X) = N , and that these initial empirical distribu-
tions approximate some distribution of aggregates in the
mass-position space, precisely, 1

N ξN (0) −−−−→
N→∞

ξ∞(0),

where ξ∞(0) is some finite Borel measure on R
3 × R+.

Moreover, we assume that in the N -th process the lattice
spacing is Δm = 1/N and Δx = 1/N . We also let Δt be
1/N and thereby we rescale the whole transition function
by 1/N so that the probability rates in a unit of time are
preserved. Moreover, since now the probability of a sin-
gle event in one step is smaller, we can allow for greater
sizes of aggregates MN and a greater maximal number of
aggregates KN . We, thereby, assume that MN → ∞ and
KN → ∞ as N tends to ∞ in such a way that

κN =
1
N

KN

[
(‖λp‖ + ‖λm‖)MN + ‖λd‖ + ‖D‖

+ ‖λf‖ + KN‖λc‖
] (20)

is less than one. Thus the transition functions of the chains
in the sequence are given by

κN(ν, B) (21)

=

⎧
⎪⎨
⎪⎩

1
N κfull(ν, B) +

[
1 − 1

N κfull(ν,N )
]
1B(ν),

if kν ≤ KN and mi ≤ MN for i = 1, . . . , kν ,

0, otherwise,

with Δm an Δx replaced by 1
N in κfull, cf. the formula

(15). We assume also that q
(1/N)
f (·, m) converges uni-

formly to some smooth function qf (·, m) : [0, m] → R;

cf. the discussion on q
(Δm)
f and notice that the condition

(17) becomes in the limit
∫ m

0

qf (m, m)dm = 1.

Appendix C

Proof of Theorem 1. Let ‖·‖ denote the measure of the
whole space in the case of measure and the supremum
norm for functions, respectively: ‖ν‖ = ν(R3 × R+) and
‖f‖ = supx |f(x)|.
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Lemma 1. Consider a Markov chain
(
ξN (i)

)
i∈N

with
the transition function κN defined in the previous section.
We have

Prob
(

max
0≤i/N≤t

∥∥ 1
N ξN (i)

∥∥ ≥ a
)

≤ 1
a
e‖λf‖t E

∥∥ 1
N ξN (0)

∥∥. (22)

Proof. First, let us prove that a process

− ∥∥ξN (i)
∥∥(

1 + 1
N ‖λf‖

)−i
(23)

is a sub-martingale. Indeed, observe that ‖ξN (i)‖ may
increase at most by one, in every step. The conditional
probability that ‖ξN (i + 1)‖−‖ξN(i)‖ = 1 is not greater
than 1

N ‖ξN (i)‖‖λf‖ . Therefore,

E
(∥∥ξN (i + 1)

∥∥
∣∣∣Fi

)

=
∥∥ξN (i)

∥∥ + E
(∥∥ξN (i + 1)

∥∥ − ∥∥ξN (i)
∥∥∣∣∣Fi

)

≤ ∥∥ξN (i)
∥∥ + 1

N

∥∥ξN (i)
∥∥‖λf‖.

Hence,

E
(
−(1 + 1

N ‖λf‖)−(i+1)
∥∥ξN (i + 1)

∥∥
∣∣∣Fi

)

≥ −(
1 + 1

N ‖λf‖
)−i∥∥ξN (i)

∥∥,

so (23) is a negative sub-martingale.
Second, let us make use of the Doob-Kolmogorov

inequality in the version from Ethier and Kurtz (1986,
Lemma 2.3, Chapter 2).

Prob
(

max
0≤i≤n

∥∥ξN (i)
∥∥ ≥ a

)

= Prob
(

min
0≤i≤n

−
∥∥ξN (i)

∥∥
(1 + 1

N ‖λf‖)n
≤ − a

(1 + 1
N ‖λf‖)n

)

≤ Prob
(

min
0≤i≤n

−
∥∥ξN (i)

∥∥
(1 + 1

N ‖λf‖)i
≤ − a

(1 + 1
N ‖λf‖)n

)

≤
(
1 + 1

N ‖λf‖
)n

a
E

∥∥ξN (0)
∥∥.

Thus,

Prob
(

max
0≤i/N≤t

∥∥ 1
N ξN (i)

∥∥ ≥ a
)

≤ 1
a

(
1 + 1

N ‖λf‖
)Nt E

∥∥ 1
N ξN (0)

∥∥

≤ 1
a
e‖λf‖t E

∥∥ 1
N ξN (0)

∥∥.

�

Definition 1. We say that a sequence of processes
{XN}N∈N satisfies a compact containment condition if
for all ε > 0 and T > 0 there is a compact set Γε,T such
that

inf
N∈N

Prob{XN (t) ∈ Γε,T : 0 ≤ t ≤ T } ≥ 1− ε. (24)

Proposition 1. (Ethier and Kurtz, 1986, Corollary 8.17,
Chapter 4) Let (E, r) be a Polish space, L : Cb(E) ⊃
D(L) → Cb(E) be an operator, and P0 be a probability
measure on E. Suppose that the martingale problem for
(L, P0) has at most one solution. For N = 1, 2, . . . , sup-
pose that XN (t) = ηN (ξN (�αN t�)) where {ξN (k), k =
1, 2, . . . } is a Markov chain in a metric space EN with a
transition function κN (x, B) and ηN : EN → E is mea-
surable. Let also αN tend to infinity as N → ∞. Define
TN : B(EN ) → B(EN ) by

TNf(x) =
∫

EN

f(y)κN(x, dy), (25)

and let LN = αN (TN − I). Suppose, moreover, that the
distribution of XN (0) converges weakly to P0 as N →
∞, the sequence {XN} satisfies the compact containment
condition (24) and that the closure of the linear span of
D(L) contains an algebra that separates points.

If for all f ∈ D(L) and T > 0 there exists a se-
quence of functions fN ∈ B(EN ) and sets ΓN ⊂ EN

such that

(P1a)

lim
N→∞

Prob({ξN (�αN t�) ∈ ΓN , 0 ≤ t ≤ T }) = 1,

(P1b) sup
N

‖fN‖ < ∞,

(P1c) lim
N→∞

sup
y∈ΓN

|f ◦ ηN (y) − fN(y)| = 0 and

(P1d) lim
N→∞

sup
y∈ΓN

|(Lf) ◦ ηN (y) − LNfN(y)| = 0,

then there exists a solution X of the (L, P0) martingale
problem and XN converges in distribution to X .

Remark 1. The measure-valued function ξ∞, obtained
as a limit of discrete models in Theorem 1, is uniquely
determined by the equation

〈h, ξ(t)〉 − 〈h, ξ0〉 (26)

=
∫ t

0

[〈(L∗ + B∗ + F ∗)h, ξ(s)〉 + C∗(h, ξ(s))] ds

for all h ∈ C2
b , with

L∗h(x, m) =D(m)Δxh(x, m), (27)

B∗h(x, m) =m (λp(m) − λm(m))
∂

∂m
h(x, m), (28)

F ∗h(x, m) =2λf (m)
∫ m

0

h(x, m)q(m, m)dm (29)

− λf (m)h(x, m) − λd(m)h(x, m),

C∗(h, ξ) =
∫∫∫∫

c(m)c(m)v(x − x)∫∫
c(m)ξ(dxdm)

(30)

× (h((x + x)/2, m + m) − h(x, m)
+ h(x, m))ξ(dxdm) ξ(dx dm).
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Proof of Theorem 1. We use Proposition 1. Let us define
an operator L with the formula

L[exp[−〈h, ν〉]]
= exp[−〈h, ν〉] × [〈−L∗h − B∗h − F ∗h, ν〉

+ C∗(h, ν)],
(31)

with L∗, B∗, F ∗ and C∗ given by (27)–(30) with the do-
main

D(L) =
{
fh ∈ Cb(N ) : fh(ν) = exp[−〈h, ν〉]
with h ∈ D(L) ∩D(B) and h > 0

}
.

(32)

We employ here the same trick as found in the works
of Rudnicki and Wieczorek (2006a) as well as Wieczorek
(2007), namely, we use temporarily the one-point com-
pactification of the space R

3 × R+ and denote Ê =
R

3 ×R+ ∪ {∞} with a appropriate metrics. Thus we ob-
tain a limit with values, actually, in M(R3 ×R+ ∪{∞}),
but all those measures are in fact supported on R

3 × R+

only, which is proved in those papers.

We assign our objects to the notation of Proposition 1
in the following way: Let E = M(Ê) and EN = N (Ê)
for all N ∈ N; moreover, ηN (ν) = 1

N ν and αN = N , so
XN (t) = 1

N ξN (�Nt�) as we expect.

All assumptions of Theorem 1 concerning the oper-
ator L, namely, the uniqueness of a solution to a martin-
gale problem with (L, ν) and the condition on the domain,
were checked by Rudnicki and Wieczorek (2006a) as well
as Wieczorek (2007). The compact containment condition
(24) of the sequence XN follows from Lemma 1, because
all sets of the form {ν ∈ N (Ê) : 〈1, ν〉 ≤ a} are com-
pact. Let us take all the sets ΓN in Proposition 1 equal to
the whole space EN = N (Ê). Thus the condition (P1a) is
satisfied in an obvious way. Now it suffices to check that
for all fh ∈ D(L) there exists a sequence fh,N of func-
tions satisfying the conditions (b)–(c) of Proposition 1. To
that end, let us define fh,N(ν) = exp[〈log(1 − 1

N h), ν〉].
Since h is positive, fh,N are bounded by one, which as-
sures (P1b). It remains to check (P1c) and (P1d). First,
notice that

∣∣fh

(
1
N ν

) − fh,N(ν)
∣∣

=
∣∣exp[− 1

N 〈h, ν〉] − exp[〈log(1 − 1
N h), ν〉]∣∣

≤ ∣∣ 1
N 〈h, ν〉 + 〈log(1 − 1

N h), ν〉∣∣

≤ 1
N

〈|h + log(1 − 1
N h)N |, ν〉 exp[− 1

N 〈h, ν〉]
−−−−→
N→∞

0

(33)

uniformly with respect to N . Secondly, one can check that
the value of the operator LN , defined as in Proposition 1,

acting on a function fh,N is

LNfh,N(ν)

= exp〈log(1 − h
N ), ν〉

×
[〈

LNh + BNh + NFN (1 − h
N )

1 − h
N

,
ν

N

〉

+ C(N−h, ν
N )

]
,

(34)

where

BNg(x, m)

= Nm[λp(m)g(x, m + 1
N ) + λm(m)g(x, m − 1

N )]
− Nm(λp(m) + λm(m))g(x, m),

LNg(x, m) = N2D(m)
[ 6∑

l=1

g(x + 1
N εl, m) − g(x, m)

]
,

FNg(x, m)

= λf (m)

mi
Δm∑
l=0

g(x, l
N )g(x, m − l

N )
)

1
N q

(1/N)
f (lΔm, mi)

− λf (m)g(x, m) + λd(m)[1 − g(x, m)],

and

C(g, ν)

=
∫∫∫∫

c(m)c(m)∫∫
c(m)ν(dx dm)

v(x − x)

×
[
g((x + x)/2, m + m)

g(x, m)g(x, m)
− 1

]
ν(dxdm)ν(dx dm).

One can observe that BN → B∗, LN → L∗, NFN (1 −
h
N ) → F ∗(h) and C(N − h, ν) → C∗(h, ν). A careful
calculation shows that (P1d) is indeed satisfied. �
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