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Mathematical modeling of cell signaling pathways has become a very important and challenging problem in recent years.
The importance comes from possible applications of obtained models. It may help us to understand phenomena appearing
in single cells and cell populations on a molecular level. Furthermore, it may help us with the discovery of new drug
therapies. Mathematical models of cell signaling pathways take different forms. The most popular way of mathematical
modeling is to use a set of nonlinear ordinary differential equations (ODEs). It is very difficult to obtain a proper model.
There are many hypotheses about the structure of the model (sets of variables and phenomena) that should be verified.
The next step, fitting the parameters of the model, is also very complicated because of the nature of measurements. The
blotting technique usually gives only semi-quantitative observations, which are very noisy and collected only at a limited
number of time moments. The accuracy of parameter estimation may be significantly improved by a proper experiment
design. Recently, we have proposed a gradient-based algorithm for the optimization of a sampling schedule. In this paper
we use the algorithm in order to optimize a sampling schedule for the identification of the mathematical model of the NFκB
regulatory module, known from the literature. We propose a two-stage optimization approach: a gradient-based procedure
to find all stationary points and then pair-wise replacement for finding optimal numbers of replicates of measurements.
Convergence properties of the presented algorithm are examined.
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1. Introduction

One of possible approaches to the modeling of cell signal-
ing pathways is to use a set of nonlinear ODEs (de Jong,
2002). In order to estimate unknown parameters of such a
model, several experiments are performed, during which
concentrations of part of variables are measured at rare
discrete time moments. Usually, different blotting tech-
niques or DNA microarrays are used. Proper experiment
design plays a fundamental role in model identification
and validation (Box and Lucas, 1959). In this work, we
focus on choosing optimal time moments for measure-
ments (sampling). This problem has been investigated
in the related literature. Usually, to solve the problem, a
matrix of correlation coefficients between sensitivities of
measurements with respect to identified parameters is cal-
culated (Jacquez and Greif, 1985; Jacquez, 1998). Then
one tries to choose such time moments for which the
sensitivities are “less correlated”. This is done by de-
termining the so-called Fisher information matrix (FIM)
(D’Argenio, 1981; DiStefano, 1981). A similar approach

is also used for identifiability checking (Jacquez and
Greif, 1985; Jacquez, 1998). Based on the Cramer-Rao
inequality, one can show that under some assumptions the
inverse of the FIM is a lower bound to the covariance ma-
trix of parameter estimates. There are several possible ap-
proaches to the minimization of such a covariance matrix.
The most widely used technique is to maximize the de-
terminant of the FIM. This is the so-called D-optimal ex-
periment design (Fedorov, 1972; D’Argenio, 1981; DiSte-
fano, 1981; Goodwin and Payne, 1977).

To speed up the procedure, the gradient of the FIM
determinant can be calculated. This was done, for exam-
ple, by Tod and Rocchisani (1997) under the assumption
that the model is given as a function of time. Unfortu-
nately, in the case of cell signaling/metabolic pathways,
mathematical models take the form of sets of nonlinear
ODEs and there is no analytical form of time-domain so-
lutions. Recently (Fujarewicz, 2007; 2008), we derived
formulas for the calculation of the gradient of the FIM in
the space of sampling times for the model given by ODEs
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in state space.
D-optimization requires prior assumptions about

nominal parameter values. This is an unrealistic assump-
tion (simply because we perform the experiment in order
to estimate these parameters). Of course it is possible to
conduct a set of experiments which, one by one, improve
the parameter estimates. Such an approach is called se-
quential design (Chernoff, 1972; D’Argenio, 1981; DiS-
tefano, 1981). Another (more realistic) approach is to
assume some distributions for nominal parameters, not
constant values. In this case, when the gradient is ob-
tainable, the stochastic gradient approach can be applied.
This is the so-called ED-optimization (Pronzato and Wal-
ter, 1985).

In this work we use formulas for the gradient de-
rived by Fujarewicz (2007; 2008), in order to perform
D-optimization of an experiment plan for a mathemati-
cal model of the NFκB regulatory module proposed by
Lipniacki et al. (2004). We show that gradient-based D-
optimization does not guarantee obtaining a globally op-
timal design. Nevertheless, using this procedure it is pos-
sible to find properly all of the so-called stationary points.
This property is then used in formulating a two-stage op-
timization procedure. The next stage, after finding all sta-
tionary points, is to find their multiplicities which are the
numbers of replicates of measurements performed at the
same time (stationary point). The convergence properties
of the two stages are examined and finally the best found
D-optimized design for the NFκB signaling pathway is
presented.

2. Mathematical model of the NFκB
regulatory module

In this section we briefly present a mathematical model
of NFκB regulatory module proposed by Lipniacki et al.
(2004). The NFκB transcription factor regulates numer-
ous genes that play important roles in inter- and extra-
cellular signaling. It governs many cell processes such as
cellular stress responses, cell growth, survival and apop-
tosis.

The model takes the form of 15 first order nonlinear
differential equations:

ẋ1 = kprod − kdegx1 − k1ux1,

ẋ2 = k1ux1 − k3x2 − k2ux2x8 − kdegx2 − a2x2x10

+ t1x4 − a3x2x13 + t2x5,

ẋ3 = k3x3 + k2ux2x8,

ẋ4 = a2x2x10 − t1x4,

ẋ5 = a3x2x13 − t2x5,

ẋ6 = c6ax13 − a1x6x10 + t2x5 − i1x6,

ẋ7 = i1kvx6 − a1x7x11,

ẋ8 = c4x9 − c5x8,

ẋ9 = c2 + c1x7 − c3x9,

ẋ10 = −a2x2x10 − a1x6x10 + c4ax12 − c5ax10

− i1ax10 + e1ax11,

ẋ11 = −a1x7x11 + i1akvx10 − e1akvx11,

ẋ12 = c2a + c1ax7 − c3ax12,

ẋ13 = a1x6x10 − c6ax13 − a3x2x13 + e2ax14,

ẋ14 = a1x7x11 − e2akvx14,

ẋ15 = c2c + c1cx7 − c3cx15.

(1)

In the model (1), state variables are concentrations of pro-
teins, complexes of proteins or their transcripts as follows:

x1: IKK kinase in the neutral state (IKKn),

x2: IKK in the active state (IKKa),

x3: IKK in the inactive state (IKKi),

x4: (IKKa–IκBa) complexes,

x5 : (IKKa–IκBa–NFκB) complexes,

x6: free cytoplasmic NFκB,

x7: free nuclear NFκB,

x8: A20 protein,

x9: A20 transcript,

x10: free cytoplasmic IκBa protein,

x11: free nuclear IκBa protein,

x12: IκBa transcript,

x13: cytoplasmic (IκBa—NFκB) complexes,

x14: nuclear (IκBa—NFκB) complexes,

x15: control gene transcript,

u: TNF stimulation (0 or 1).

Parameters of the model (1) were fitted roughly
(manually) in the work of Lipniacki et al. (2004), based
on measurements taken from previous articles (Hoffman
et al., 2002; Lee et al., 2000) showing blot experiments
images. In the work of Fujarewicz et al. (2007), pa-
rameters of the same model were fitted once more using
the so-called generalized back propagation through time
(GBPTT) algorithm (Fujarewicz and Galuszka, 2004),
giving more accurate parameter estimates. Results of
simulation for parameters obtained by Fujarewicz et al.
(2007) are presented in Fig. 1. However, the accuracy
of parameter estimates depends on the chosen estimation
procedure. But the main source of variation in the ob-
tained estimates depends on the conducted wet-lab exper-
iment. In the research by Hoffman et al. (2002) and Lee
et al. (2000), only part of 15 variables was measured: x2,
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Fig. 1. Results of simulation of the NFκB mathematical model.

x7, x9, x12 and total cytoplasmic IκBa: x10 + x13. This
gives a linear output equation

y = Cx, (2)

where C is the matrix with almost all terms equal to zero
except (i, j) = (1, 2), (2, 7), (3, 9), (4, 12), (5, 10) and
(5, 13).

3. Problem formulation

Let us consider a model of a cell signaling pathway de-
scribed by a set of non-linear ODEs:

ẋ = f(x, u, θ), x(0) = x0, (3)

where x is a vector of state variables, u is an input sig-
nal and θ ∈ R

p is a vector of identified parameters. The
output equation is as follows:

y = g(x). (4)

For simplicity of notation, let us assume there is only one
output variable which is measured at times t1, t2, . . . , tn
giving instantaneous values:

y(ti) = g(x(ti)) = gi, i = 1, 2, . . . , n. (5)

After performing experiments, one obtains

z(ti) = y(ti) + εi, i = 1, 2, . . . , n, (6)

where εi is an error of zero mean and variance σ2
i . We

assume that we have initial (rough) estimation of param-
eters θ0

1 , θ
0
2, . . . , θ

0
n for which the measured variable (5)

takes values g0
1 , g

0
2 , . . . , g

0
n. We build the sensitivity ma-

trix as follows:

G =

⎡
⎢⎢⎢⎢⎢⎣

∂g0
1

∂θ1
· · · ∂g0

1

∂θp
...

. . .
...

∂g0
n

∂θ1
· · · ∂g0

n

∂θp

⎤
⎥⎥⎥⎥⎥⎦

, (7)

and the Fisher information matrix

I = GT Σ−1G, (8)

where Σ−1 = diag[1/σ1, 1/σ2, . . . , 1/σn]. If the deter-
minant of I is non-zero, then I−1 is a lower bound to
the covariance matrix of any unbiased estimates of θ. We
want the covariance matrix to be small. In this paper we
use D-optimization, which depends on the maximization
of det(I). To formulate a gradient-based algorithm, we
formulate the following problem:

Problem 1. Find derivatives

∂ det(I)
∂ti

, i = 1, 2, . . . , n. (9)

Note that det(I) is a function of the sensitivity matrix (7),
so the problem stated above is to find the “sensitivity func-
tion of the function of other sensitivity functions”. In the
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next section, the solution to Problem 1 derived by (Fu-
jarewicz, 2007; 2008) will be briefly presented.

4. Problem solution

For a particular time moment ti, one may write

∂ det(I)
∂ti

=
p∑

j=1

∂ det(I)
∂

(
∂g0

i

/
∂θj

) · ∂
(
∂g0

i

/
∂θj

)
∂ti

. (10)

Let us denote the first factor under the sum (10) by qji

and the second factor by rji. Then, let us build matrices
Q = [qij ], R = [rij ], Q, R ∈ R

n×p.
It can be shown that the whole matrix Q may be cal-

culated as follows:

Q = 2Σ−1G adj(I). (11)

The element rij is the derivative with respect to time of
the output of the following sensitivity model (model for
variations in all variables around the nominal trajectories)
for the original model (3), (4):

˙̄x = fx(t)x̄ + fθ(t)θ̄, x̄(0) = 0,
ȳ = gx(t)x̄ (12)

taken at time ti, where the sensitivity is calculated for θj ,
which means the variation θ̄ is a vector of zeros except one
element number j which equals 1. Unfortunately, practi-
cal usage of (12) requires numerical derivation with re-
spect to time. Instead of this, it is possible to differentiate
the second equation in (12) with respect to time, which
gives the following formula:

rij = ẋT (ti)gxx(ti)x̄(ti) + gx(ti) ˙̄x(ti), (13)

which does not require any numerical derivation because
ẋ, x̄ and ˙̄x appear in the original model (3), (4) and in the
sensitivity model (12) for θj .

In order to maximize det(I), one can combine the
results (13) with (11), compute all derivatives (9) and use
any gradient-based optimization algorithm.

5. Sampling optimization for the model of
the NFκB pathway

We assumed that only ten parameters of the model (1)
were estimated—the same parameters which were fitted in
the papers by Lipniacki et al. (2004) and Fujarewicz et al.
(2007). The values of parameters estimated by Fujarewicz
et al. (2007) were used as nominal ones. The gradient of
det(I) was determined using formulas presented in the
previous section. It was used as an input of the conjugated
gradient optimization procedure in Matlab.

5.1. Equally distributed starting plan. The initial
sampling schedule is presented in Fig. 2. We started with
11 equally distributed times for all five measured vari-
ables. For such a schedule, det(I) was equal to

det(Iinit) = 5.35 · 1032. (14)

The optimization procedure found an optimal design that
is shown in Fig. 3. For this solution, det(I) increased:

det(Iopt) = 1.49 · 1038. (15)

One can see that the number of time points de-
creased. For all five measured variables these num-
bers are less than the initial value of 11. This means
that some measurements, according to the optimal plan,
should be taken at the same time. Digits shown in Fig.
3 denote numbers of replicates of measurements at the
same time moment. This phenomenon is known from
the literature for deterministic (Box, 1968) and stochas-
tic (Pronzato and Walter, 1985) cases. In our previous
paper (Fujarewicz, 2008), where a simple metabolic path-
way (Kutalik et al., 2004) was analyzed, such replicates
were also demonstrated. The obtained distinct points are
called supporting points. If the so-called continuous de-
sign (Kiefer, 1961) is sought, there are known limits on
the number L of supporting points:

p ≤ L ≤ p(p + 1)
2

. (16)

In continuous design we look for frequencies of mea-
surements at supporting points, rather than their multiplic-
ities. In practice, this requires a very large number of
measurements (ideally, an infinite number). Of course,
in the case of cell signalling pathways we are looking for
a discrete design, because the number of measurements is
strongly limited. Nevertheless, we may use the relation
(16), which in our case gives

10 ≤ L ≤ 55, (17)

to verify the obtained number of supporting points. In the
results presented in Fig. 3, the total number of supporting
points is 34.

Another question should also be posed: Is the ob-
tained design globally optimal or only locally optimal?
To answer this question, let us perform several optimiza-
tion runs with randomly chosen starting points and check
whether all these optimizations give the same result. Fig-
ure 4 presents results of ten optimization runs (20 points
in each run) for the first measured variable: IKKa. There
are six distinct time points. The first three points ale very
close (cf. Fig. 3).

From Fig. 4, one can see that

• supporting points are repetitive,
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Fig. 2. Initial sampling schedule: 11 equally distributed times for all five measured outputs.
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Fig. 4. Optimized plans for ten independent optimization runs
starting from random designs.

• multiplicities of supporting points are not repetitive.

In all cases, designs are different and so are the values
of det(I). The gradient-based algorithm used does not
produce a unique optimal solution, but it may be used to
find all supporting points if the starting design is “dense”
enough. All of the above deliberations let us formulate a
two-stage optimization algorithm:

1. Use gradient based algorithm with dense starting
plan in order to find all distinct supporting points.

2. Use any search algorithm to find multiplicities of
supporting points.

5.2. Supporting points detection. In order to find all
supporting points, we performed gradient based optimiza-
tion starting with equally distributed 51 points per one
variable (255 in total). The obtained results are collected
in Table 1.

Table 1. Supporting points (times given in hours) and corre-
sponding multiplicities of the optimal plan for all five
measured variables. Note that for some supporting
points their multiplicities are equal to zero.

IKKa NFκB A20t IκBat total IκBa

1.25 (5) 1.76 (1) 1.38 (5) 1.38 (2) 1.70 (4)
1.31 (3) 2.01 (4) 2.11 (0) 2.11 (1) 1.86 (0)
1.36 (3) 2.75 (2) 2.93 (0) 2.93 (0) 2.01 (3)
3.16 (0) 3.13 (2) 3.48 (0) 3.48 (4) 2.59 (3)
4.64 (0) 3.78 (0) 3.97 (4) 3.97 (1) 3.58 (1)
6.18 (0) 4.36 (2) 4.48 (2) 4.48 (3) 3.87 (0)

5.80 (0) 6.17 (0) 6.17 (0) 4.79 (0)
6.47 (0)

It can be seen that there are six, seven, seven, seven
and eight distinct supporting points for five measured vari-
ables, respectively. The numbers in brackets denote opti-
mal multiplicities for all time points whose optimization
is discussed in the next section in what follows.

5.3. Optimization of the supporting point multiplic-
ities. The problem of finding optimal multiplicities for

given supporting points is a positive integer program-
ming one. There are many heuristic algorithms to solve
such a problem. We used probably the simplest one
(Fedorov, 1972), which depends on repetitive exchange of
two points and checking whether det(I) increased. The
exchange depends on incrementing (by 1) the multiplicity
of one supporting point and decrementing the multiplic-
ity of another one for the same variable. We started with
random multiplicities and then inspected all possible pairs
sequentially until none exchange gave an improvement in
the value of det(I).

Once more the question of the convergence should be
addressed. And once more the answer is negative: there is
no guarantee that a single-pair exchange leads to a global
optimum. To check it out, 300 point multiplicity opti-
mization runs were performed. Figure 5 presents values
of maximized det(I). All of the obtained values belong
to the interval [1.8133 · 1040, 1.8671 · 1040]. This interval
is relatively narrow. Moreover, in more than 1/3 cases,
det(I) is very close to the upper limit. These sub-optimal
values of det(I) correspond to different designs. The best
one is described in Table 1 where multiplicities are given
in brackets and presented in Fig. 6. Note that there are a
set of designs that are “very close” to the best one in the
sense of the value of det(I).
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Fig. 5. Sorted values of det(I) obtained in 300 multiplicity op-
timization with a random start.

6. Conclusions

The obtained result—the best D-optimized design for the
NFκB signaling pathway—may be non-intuitive, espe-
cially for biologists performing experiments. The result
is strict from a mathematical point of view. Moreover, for
cell populations it is possible to obtain replicates of mea-
surements at the same time moments (one measurement—
one dish/population).

Nevertheless, intuition tells us that with a decreased
number of distinct times of measurements we lose some
information about population behavior between the times
of measurements. It should be stressed that D-optimum
designs (like most other plan optimizations) focuse only
on proper parameter estimation. All others information
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Fig. 6. Final best plan obtained with multiplicity optimization.

is assumed to be known, especially the structure of the
model. If one is not sure about the model structure (form
of ODEs), then the so-called discriminating experiments
should be performed first to select from among all possible
hypothetic models.

Another aspect of strong assumptions for D-
optimality is also important. There is the assumption
about nominal parameters values for which the optimal
design is optimized. The aim of experiment design is to
discover true parameter values, which means that they are
more or less unknown. The nominal values may be pa-
rameter estimates obtained from data collected according
to the preceding optimized design. Such an iterative ap-
proach is a sequential design (Chernoff, 1972).

Most known approaches to experiment design as-
sume some model of uncertainty only for the measured
dependent variable. The independent variable (time in the
case of dynamical models) is assumed to be known. In the
case of cell signaling pathways, taking into account a way
in which the experiments are performed, there is some evi-
dent (human factor, temperature-dependent speed of reac-
tions, etc.) uncertainty about the time of particular mea-
surements. Modeling uncertainties for both dependent and
independent variables may improve the quality of opti-
mized identification designs.
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