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In order to classify digital spaces in terms of digital-homotopic theoretical tools, a recent paper by Han (2006b) (see also
the works of Boxer and Karaca (2008) as well as Han (2007b)) established the notion of regular covering space from
the viewpoint of digital covering theory and studied an automorphism group (or Deck’s discrete transformation group) of a
digital covering. By using these tools, we can calculate digital fundamental groups of some digital spaces and classify digital
covering spaces satisfying a radius 2 local isomorphism (Boxer and Karaca, 2008; Han, 2006b; 2008b; 2008d; 2009b).
However, for a digital covering which does not satisfy a radius 2 local isomorphism, the study of a digital fundamental
group of a digital space and its automorphism group remains open. In order to examine this problem, the present paper
establishes the notion of an ultra regular covering space, studies its various properties and calculates an automorphism
group of the ultra regular covering space. In particular, the paper develops the notion of compatible adjacency of a digital
wedge. By comparing an ultra regular covering space with a regular covering space, we can propose strong merits of the
former.
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1. Introduction

Let N, Z and R denote the sets of natural numbers, in-
tegers and real numbers, respectively. Let Z

n denote the
set of points in the n-dimensional Euclidean space with
integer coordinates. Useful tools from algebraic topol-
ogy and geometric topology for studying digital topolog-
ical properties of a (binary) digital space include a digital
covering space, a (digital) k-fundamental group, a digi-
tal k-surface and so forth. These have been studied in
numerous papers (Boxer, 1999; Boxer and Karaca, 2008;
Han, 2005b; 2005c; 2005d; 2006a; 2006b; 2006c; 2006d;
2007a; 2007b; 2008a; 2008b; 2008c; 2008d; 2009a;
2009b; 2009c; 2010a; 2010b; 2010c; Malgouyres and
Lenoir, 2000; Khalimsky, 1987; Rosenfeld and Klette,
2003).

Motivated by a regular covering space in algebraic
topology (Spanier, 1966), its digital version was estab-
lished in digital covering theory (Han, 2006b) (see also
Han, 2007b), which plays an important role in classi-
fying digital covering spaces (Boxer and Karaca, 2008;
Han, 2010a). In algebraic topology, for a circle S1 the
existence problem of its regular covering space has sub-
stantially contributed to the study of a covering space

in topology (Massey, 1977; Spanier, 1966). It is well
known that for a covering (X̃, p, X), if the classical fun-
damental group π1(X) is an abelian group, then the total
space X̃ is regular (Massey, 1977; Spanier, 1966). Unlike
these properties, their digital versions have some intrin-
sic features (Han, 2006b; 2007b; 2009a; 2009b; 2009c;
2010a; 2010b; 2010c; In-Soo Kim and Han, 2008). Boxer
and Karaca (2008) as well as Han (2006b; 2007b; 2008a;
2008b; 2009b) studied an automorphism group of a ra-
dius 2 (digital) covering (E, p, B). In addition, Boxer and
Karaca (2008) studied a classification of digital spaces by
using the conjugacy class corresponding to a digital cover-
ing. Furthermore, Han (2009c) developed the generalized
universal (briefly, GU-)covering property which improves
the universal (2, k)-covering property of Boxer (2006).

Main applications of digital covering theory include
the calculations of both a digital fundamental group of
a digital space and an automorphism group of a digital
covering. For many digital coverings (E, p, B) except
that satisfying a radius 2 local isomorphism the study of
both their automorphism groups and digital fundamental
groups of E and B remains open. In order to answer this
query, the paper establishes the notion of an ultra regular
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digital covering space and studies an automorphism group
of a digital covering (E, p, B) which does not satisfy a ra-
dius 2 local isomorphism. This can play an important role
in classifying digital covering spaces.

The paper is organized as follows. Section 2 pro-
vides some basic notions. Section 3 reviews some results
related to the study of a radius 2 (digital) covering and
investigates some properties of a regular covering space
from the viewpoint of digital covering theory. Section 4
develops the notion of compatible k-adjacency of a digital
wedge which can be used for studying an automorphism
group of an ultra regular covering space in Section 5. In
addition, we discuss a limitation of the digital version of
a regular covering in algebraic topology. Section 5 de-
velops the notion of an ultra regular covering space and
studies automorphism groups of several kinds of digital
coverings. Section 6 compares an ultra regular covering
space and a regular covering space, and refers to strong
merits of the former. Finally, Section 7 concludes the pa-
per with a summary.

2. Preliminaries

To study a multidimensional digital space X ⊂ Z
n, let

us now recall the k-adjacency relations of Z
n as well as

some essential terminology such as a digital isomorphism,
a digital homotopy, a strong k-deformation retract and so
forth. Motivated by the k-adjacency relations of 2D and
3D digital spaces (Kong and Rosenfeld, 1996; Rosenfeld,
1979), the k-adjacency relations of Z

n were established
(Han, 2003) (see also Han, 2005c; 2008d; 2010c). For a
natural number m with 1 ≤ m ≤ n, two distinct points

p = (p1, p2, · · · , pn), q = (q1, q2, · · · , qn) ∈ Z
n

are called k(m, n)- (briefly, k-) adjacent if

• there are at most m indices i such that |pi − qi| = 1
and

• for all other indices i such that |pi − qi| �= 1, pi = qi.

Concretely, we can observe that the k(m, n) (or k)-
adjacency relations of Z

n are determined according to the
two numbers m, n ∈ N (Han, 2003) (also Han, 2005c;
2008d; 2010c), as follows.

Proposition 1. (Han, 2008d) By using the above operator,
we can obtain the k-adjacency of Z

n as follows:

k := k(m, n) =
n−1∑

i=n−m

2n−iCn
i ,

where

Cn
i =

n!
(n − i)! i!

.

In general, a pair (X, k) is assumed to be a (bi-
nary) digital space (or digital image) with k-adjacency in
a quadruple (Zn, k, k̄, X), where (k, k̄) ∈ {(k, 2n), (2n,
3n − 1)} with k �= k̄, k represents an adjacency relation
for X , and k̄ represents an adjacency relation for Z

n −X
(Kong and Rosenfeld, 1996). More precisely, owing to
the digital k-connectivity paradox found in the work of
Kong and Rosenfeld (1996), we remind k �= k̄ except the
case (Z, 2, 2, X). For {a, b} ⊂ Z with a � b, [a, b]Z =
{a ≤ n ≤ b|n ∈ Z} is considered in (Z, 2, 2, [a, b]Z)
(Boxer, 1999). But in this paper we are not concerned
with k̄-adjacency between two points in Z

n − X .
We say that two subsets (A, k) and (B, k) of (X, k)

are k-adjacent to each other if A ∩ B = ∅ and there are
points a ∈ A and b ∈ B such that a and b are k-adjacent
to each other (Kong and Rosenfeld, 1996). We say that a
set X ⊂ Z

n is k-connected if it is not a union of two dis-
joint non-empty sets that are not k-adjacent to each other
(Kong and Rosenfeld, 1996). For an adjacency relation k
of Z

n, a simple k-path with l + 1 elements in Z
n is as-

sumed to be an injective sequence (xi)i∈[0,l]Z ⊂ Z
n such

that xi and xj are k-adjacent if and only if either j = i+1
or i = j + 1 (Kong and Rosenfeld, 1996). If x0 = x
and xl = y, then we say that the length of the simple
k-path, denoted by lk(x, y), is the number l. A simple
closed k-curve with l elements in Z

n, denoted by SCn,l
k

(Han, 2006b), is the simple k-path (xi)i∈[0,l−1]Z , where
xi and xj are k-adjacent if and only if j = i + 1(mod l)
or i = j + 1(mod l) (Kong and Rosenfeld, 1996).

In the study of digital continuity and various proper-
ties of a digital space (Han, 2006a; 2006d), we have of-
ten used the following digital k-neighborhood of a point
x ∈ X with radius ε ∈ N (Han, 2003) (see also
Han, 2005c): For a digital space (X, k) in Z

n, the digi-
tal k-neighborhood of x0 ∈ X with radius ε is defined in
X to be the following subset of X : Nk(x0, ε) = {x ∈
X | lk(x0, x) ≤ ε} ∪ {x0}, where lk(x0, x) is the length
of a shortest simple k-path from x0 to x and ε ∈ N.

Motivated by both the digital continuity of Rosenfeld
(1979) and the (k0, k1)-continuity of Boxer (1999), we
can present digital continuity which can be substantially
used for studying digital spaces in Z

n, n ∈ N, as follows.

Proposition 2. (Han, 2008d) Let (X, k0) and (Y, k1) be
digital spaces in Z

n0 and Z
n1 , respectively. A function

f : X → Y is (k0, k1)-continuous if and only if for every
x ∈ X , f(Nk0(x, 1)) ⊂ Nk1(f(x), 1).

Since a digital space (X, k) can be considered to
be a digital k-graph, we may use the term a (k0, k1)-
isomorphism as in the work of Han (2005d) (see also
Boxer, 2006) rather than a (k0, k1)-homeomorphism as
used by Boxer (1999), as follows.

Definition 1. (Han, 2005d, see also Boxer, 2006) For
two digital spaces (X, k0) in Z

n0 and (Y, k1) in Z
n1 , a
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map h : X → Y is called a (k0, k1)-isomorphism if
h is a (k0, k1)-continuous bijection and, further, h−1 :
Y → X is (k1, k0)-continuous. Then we use the notation
X ≈(k0,k1) Y . If n0 = n1 and k0 = k1, then we speak
about a k0-isomorphism and use the notation X ≈k0 Y .

For a digital space (X, k) and A ⊂ X , (X, A) is
called a digital space pair with k-adjacency (Han, 2006a).
Furthermore, if A is a singleton set {x0}, then (X, x0)
is called a pointed digital space (Kong and Rosenfeld,
1996). Based on the pointed digital homotopy of Boxer
(1999), the following notion of k-homotopy relative to
a subset A ⊂ X has been often used in studying a k-
homotopic thinning and a strong k-deformation retract of
a digital space (X, k) in Z

n (Han, 2008d).

Definition 2. (Han, 2006a, see also Han, 2006b; 2007a)
Let ((X, A), k0) and (Y, k1) be a digital space pair and a
digital space, respectively. Let f, g : X → Y be (k0, k1)-
continuous functions. Suppose there exist m ∈ N and a
function F : X × [0, m]Z → Y such that

• For all x ∈ X, F (x, 0) = f(x) and F (x, m) = g(x).

• For all x ∈ X , the induced function Fx : [0, m]Z →
Y given by Fx(t) = F (x, t) for all t ∈ [0, m]Z is
(2, k1)-continuous.

• For all t ∈ [0, m]Z, the induced function Ft :
X → Y given by Ft(x) = F (x, t) for all x ∈ X
is (k0, k1)-continuous. Then we say that F is a
(k0, k1)-homotopy between f and g (Boxer, 1999).

• Furthermore, for all t ∈ [0, m]Z then suppose the
induced map Ft on A is a constant which is a pre-
scribed function from A to Y . In other words,
Ft(x) = f(x) = g(x) for all x ∈ A and for all
t ∈ [0, m]Z. Then we call F a (k0, k1)-homotopy
relative to A between f and g, and we say f and g are
(k0, k1)-homotopic relative to A in Y , f 
(k0,k1)relA

g in symbols.

In Definition 2, if A = {x0} ⊂ X , then we say that
F is a pointed (k0, k1)-homotopy at {x0} (Boxer, 1999).
When f and g are pointed (k0, k1)-homotopic in Y , we
denote by f 
(k0,k1) g. In addition, if k0 = k1 and
n0 = n1, then we say that f and g are pointed k0-
homotopic in Y and use the notation f 
k0 g and f ∈ [g]
which means the k0-homotopy class of g. If, for some
x0 ∈ X , 1X is k-homotopic to the constant map with
the space x0 relative to {x0}, then we say that (X, x0)
is pointed k-contractible (Boxer, 1999). Indeed, the no-
tion of k-contractibility is slightly different from the con-
tractibility in Euclidean topology (Boxer, 1999) (see also
Han, 2005c).

Definition 3. (Han, 2006b, see also Han, 2007a) For a
digital space pair ((X, A), k), we say that A is a strong k-
deformation retract of X if there is a digital k-continuous

map r from X onto A such that F : i ◦ r 
k·rel.A 1X

and r ◦ i = 1A. Then a point x ∈ X − A is called strong
k-deformation retractable.

By using the trivial extension presented by Boxer
(1999) and the Khalimsky operation presented by Khalim-
sky (1987), Boxer (1999) establishes the k-fundamental
group: For a digital space (X, k), consider a k-loop f
with a base point x0; we denote by [f ]X (briefly, [f ])
the k-homotopy class of f in X . Then for a k-loop f1

with the same base point x0 ∈ X , f0 ∈ [f ] means that
the two k-loops f and f0 have trivial extensions that can
be joined by a k-homotopy keeping the end point fixed
(Han, 2005c) (see also Boxer, 2006). Furthermore, if
f1, f2, g1, g2 ∈ F k(X, x0), f1 ∈ [f2], and g1 ∈ [g2],
then f1 ∗ g1 ∈ [f2 ∗ g2], i.e., [f1 ∗ g1] = [f2 ∗ g2]
(Boxer, 1999; Khalimsky, 1987). Then we use the nota-
tion πk(X, x0) = {[f ]|f ∈ F k(X, x0)} which is a group
(Boxer, 1999) with the operation [f ]·[g] = [f∗g] called the
(digital) k-fundamental group of (X, x0) (Boxer, 1999),
where the base point is assumed to be a point which cannot
be deleted by a strong k-deformation retract (Han, 2008a).
If X is pointed k-contractible, then πk(X, x0) is trivial
(Boxer, 1999).

Let ((X, A), k) be a digital space pair with k-
adjacency. A map f : ((X, A), k0) → ((Y, B), k1)
is called (k0, k1)-continuous if f is (k0, k1)-continuous
and f(A) ⊂ B (Han, 2006a). If A = {a}, B =
{b}, we write (X, A) = (X, a), (Y, B) = (Y, b),
and we say that f is a pointed (k0, k1)-continuous map
(Kong and Rosenfeld, 1996). A (k0, k1)-continuous
map f : ((X, x0), k0) → ((Y, y0), k1) induces a
group homomorphism f∗ : πk0(X, x0) → πk1(Y, y0)
given by f∗([α]) = [f ◦ α], where [α] ∈ πk0(X, x0)
(Boxer, 1999). In addition, a (k0, k1)-isomorphism φ :
((X, x0), k0) → ((Y, y0), k1) induces a group isomor-
phism φ∗ : πk0(X, x0) → πk1(Y, y0) (Boxer, 1999).

The following notion of “simply k-connected” found
in the work of Han (2005c) has been often used in dig-
ital k-homotopy theory and digital covering theory: A
pointed k-connected digital space (X, x0) is called sim-
ply k-connected if πk(X, x0) is a trivial group.

Han (2006b) (see also Han, 2007a) proved that if
(A, x0) is a strong k-deformation retract of (X, x0),
then πk(X, x0) is isomorphic to πk(A, x0). Since k-
contractibility requires a digital space (X, k) to shrink
(k, k)-continuously to a point over a finite time inter-
val, we cannot say that Z

n is 2n-contractible, n ∈
N. However, motivated by simple 2-connectedness of Z

(Han, 2005c), we can obtain that (Zn, 0n) is simply k-
connected, where k-adjacency is assumed to be anyone of
k-adjacency relations of Z

n.
Motivated by both 8-contractibility of SC2,4

8 (Boxer,
1999) and non-8-contractibility of SC2,6

8 (Han, 2005c),
the paper by Han (2005c) (see also Han, 2006b; 2007a)
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proved that πk(SCn,l
k ) is an infinite cyclic group, where

SCn,l
k is not k-contractible. Precisely, πk(SCn,l

k ) 

(lZ, +), where SCn,l

k is not k-contractible and “
” means
a group isomorphism. In addition, πk(SCn,4

k ) is trivial if
k = 3n − 1, n ∈ N − {1}.

3. Some properties of a regular covering
space

Let (X, k) be a digital space in Z
n. In relation to the

calculation of πk(X, x0) and the classification of digital
spaces in terms of a digital k-homotopy, we have often
used some properties of a digital covering (Boxer, 2006;
Boxer and Karaca, 2008; Han, 2005b; 2005c; 2008d;
2009a). In digital covering theory, since each digital space
(X, k) is assumed to be k-connected, hereafter, every
(X, k) is considered to be k-connected unless stated other-
wise. In this section we study some properties of a regular
covering space. Let us now recall the typical axiom of a
digital covering space, as follows.

Definition 4. (Han, 2005c, see also Han, 2008b) Let
(E, k0) and (B, k1) be digital spaces in Z

n0 and Z
n1 , re-

spectively. Let p : E → B be a (k0, k1)-continuous sur-
jection. Suppose that for any b ∈ B there exists ε ∈ N

such that
(1) for some index set M , p−1(Nk1(b, ε)) =
∪i∈MNk0(ei, ε) with ei ∈ p−1(b);
(2) if i, j ∈ M and i �= j, then Nk0(ei, ε) ∩ Nk0(ej , ε) is
an empty set; and
(3) the restriction map p on Nk0(ei, ε) is a (k0, k1)-
isomorphism for all i ∈ M .
Then the map p is called a (k0, k1)-covering map and
(E, p, B) is said to be a (k0, k1)-covering.

The k1-neighborhood Nk1(b, ε) in Definition 4 is
called an elementary k1-neighborhood of b with some ra-
dius ε and E is called a (k0, k1)-covering space of p.

Definition 5. (Han, 2006b, see also Han, 2008b) We say
that a (k0, k1)-covering map p : (E, e0) → (B, b0) is
an m-fold (k0, k1)-covering map if the cardinality of the
index set M is m.

Definition 5 can be restated as follows: For a
(k0, k1)-covering map p : (E, e0) → (B, b0), if the set
p−1(b0) has n elements (or the number n can also be
called the sheets of the digital covering (Massey, 1977),
then the map p is called an m-fold (k0, k1)-covering
map because any points b1, b2 ∈ B satisfy the follow-
ing identity in terms of the digital version of the cor-
responding properties of a covering found in the work
of Massey (1977): �{p−1(b1)} = �{p−1(b2)} = m,
where “�” means the cardinality of the given set. For in-
stance, for any SCn,l

k := (ct)t∈[0,l−1]Z we observe that

(SCn,m l
k := (at)t∈[0,ml−1]Z , p, SCn,l

k ), given by p(ai) =
ci(mod l), m ∈ N, is an m-fold (k, k)-covering.

For pointed digital spaces ((E, e0), k0) and
((B, b0), k1), if p : (E, e0) → (B, b0) is a (k0, k1)-
covering map such that p(e0) = b0, then the map p is a
pointed (k0, k1)-covering map (Han, 2005c). Hereafter,
we assume that each digital covering map is a pointed one
unless stated otherwise.

Definition 6. (Han, 2005a, see also Han, 2005b; 2008c)
For two digital spaces (X, k0) in Z

n0 and (Y, k1) in Z
n1 ,

a (k0, k1)-continuous map h : X → Y is called a local
(k0, k1)-isomorphism if for any x ∈ X , h maps Nk0(x, 1)
(k0, k1)-isomorphically onto Nk1(h(x), 1) ⊂ Y . If n0 =
n1 and k0 = k1, then the map h is called a local k0-
isomorphism.

This local (k0, k1)-isomorphism has often been used
in studying the preservation of local k0-properties of a dig-
ital space (X, k0) into its corresponding k1-ones in digital
geometry (Han, 2008c).

Since a (k0, k1)-isomorphism is equivalent to a lo-
cally (k0, k1)-isomorphic bijection (Han, 2005a) (see
also Han, 2006b) and a restriction map of a (k0, k1)-
isomorphism is also a (k0, k1)-isomorphism (Han,
2006d), we obtain the following property: If h :
(X, k0) → (Y, k1) is a (k0, k1)-isomorphism, then the
restriction map on Nk0(x, 1), h|Nk0(x,1) : Nk0(x, 1) →
Nk1(h(x), 1) is a (k0, k1)-isomorphism (Han, 2005a) (see
also Han, 2006d). Thus we obtain the following.

Remark 1.
(1) As discussed by Han (2006b), we may take ε = 1 for
the (k0, k1)-covering of Definition 4.
(2) As discussed by Han (2009c) (for more details, see an-
other work of Han (2010d)), for the (k0, k1)-covering of
Definition 4 we can replace “(k0, k1)-continuous surjec-
tion” with “surjection”.

Definition 7. (Han, 2005b) For n ∈ N, a (k0, k1)-
covering (E, p, B) is a radius n local isomorphism if the
restriction map p|Nk0(ei,n) : Nk0(ei, n) → Nk1(b, n) is a
(k0, k1)-isomorphism for all i ∈ M , where ei ∈ p−1(b).

By Definition 7, we can say that a (k0, k1)-covering
(E, p, B) is a radius n-(k0, k1)-covering if ε ≥ n, where
the number ε is the same as ε in Definition 4 (Han, 2005b)
(see also Han, 2008b).

In view of Definitions 4 and 7, we observe that a
(k0, k1)-covering satisfying a radius n local isomorphism
is equivalent to a radius n-(k0, k1)-covering (Han, 2006b).

Since both the unique digital lifting theorem and the
digital homotopy lifting theorem will often be used for
studying a digital covering space, let us now review them
along with related results, as follows. For three digi-
tal spaces (E, k0) in Z

n0 , (B, k1) in Z
n1 , and (X, k2)

in Z
n2 , let p : E → B be a (k0, k1)-continuous map.

For a (k2, k1)-continuous map f : (X, k2) → (B, k1),
as the digital analogue of the lifting found in the work
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of Massey (1977), we say that a digital lifting of f is a
(k2, k0)-continuous map f̃ : X → E such that p ◦ f̃ = f
(Han, 2005c). We now recall the unique digital lifting the-
orem of Han (2005c), as follows.

Lemma 1. (Han, 2005c) For pointed digital spaces
((E, e0), k0) in Z

n0 and ((B, b0), k1) in Z
n1 , let p :

(E, e0) → (B, b0) be a pointed (k0, k1)-covering map.
Any k1-path f : [0, m]Z → B beginning at b0 has a
unique digital lifting to a k0-path f̃ in E beginning at e0.

Moreover, the following digital homotopy lifting the-
orem was introduced by Han (2005b), which plays an im-
portant role in studying digital covering theory.

Lemma 2. (Han, 2006b, see also Han, 2007b) Let
((E, e0), k0) and ((B, b0), k1) be pointed digital spaces.
Let p : (E, e0) → (B, b0) be a radius 2-(k0, k1)-covering
map. For k0-paths g0, g1 in (E, e0) that start at e0, if there
is a k1-homotopy in B from p ◦ g0 to p ◦ g1 that holds the
endpoints fixed, then g0 and g1 have the same terminal
point, and there is a k0-homotopy in E from g0 to g1 that
holds the endpoints fixed.

The following notion has often been used for cal-
culating the k-fundamental group of a digital space
(X, k) and classifying digital spaces (Han, 2007a; 2007b;
2008d).

Definition 8. A (k0, k1)-covering ((E, e0), p, (B, b0))
is called regular if p∗πk0 (E, e0) is a normal subgroup of
πk1(B, b0).

As discussed by Han (2007b) (see also Han, 2008a),
by using Massey’s program (Massey, 1977), we obtain the
following: Let ((E, e0), p, (B, b0)) be a radius 2-(k0, k1)-
covering such that E is k0-connected. For any ẽ ∈
p−1(b0) and any α ∈ πk1(B, b0), defining ẽ·α ∈ p−1(b0),
we observe that the set p−1(b0) is a homogeneous right
πk1(B, b0)-space (Han, 2007b) (see also Han, 2009b) be-
cause the group πk1(B, b0) operates transitively on the set
p−1(b0) (Han, 2007b) (see also Han, 2008a; 2010c). Pre-
cisely, consider e ∈ p−1(b0) and α ∈ πk1 (B, b0). Take
a k1-path f : [0, mf ]Z → (B, b0) such that [f ] = α,
f(0) = b0 = f(mf ) Then, by Lemma 2, the map f is
well-defined. By Lemma 1, there is the unique k0-path
f̃ : [0, mf ]Z → (E, e0) such that p∗([f̃ ]) = [f ] and
f̃(0) = e with the following.

Define

p−1(b0) × πk1(B, b0) → p−1(b0) (1)

by
(e, α) → e · α = f̃(mf ),

and by Lemma 2 this action is well defined because this
process does not depend on the choice of the map f , where
[f ] = α. Then for any e ∈ p−1(b0), we clearly observe
the following (Han, 2007b):

(e, 1) = e and ((e, α), β) = (e, α · β), (2)

where α, β ∈ πk1(B, b0) and 1 is the identity element.
This implies p−1(b0) admits πk1(B, b0) as a group of op-
erator (or permutation).

For a (k0, k1)-covering map p : ((E, e0), k0) →
((B, b0), k1) in order to study a relation between p−1(b0)
and a coset πk1(B, b0)/p∗πk0(E, e0), we often use the
following property.

Lemma 3. (Massey, 1977) Let E be a set and G a group.
If E × G → E is a transitive action, then E is isomor-
phic to the factor group G/Gx0 , where Gx0 := {g ∈
G|g(x0) = x0} called the isotropy subgroup of G.

By using Massey’s program (Massey, 1977), and
Lemmas 1 and 2, we obtain the following.

Theorem 1. (Han, 2009b) Let ((E, e0), p, (B, b0)) be
a pointed radius 2-(k0, k1)-covering and (E, k0) k0-
connected. Then we obtain that

(1) πk1(B, b0) operates transitively on p−1(b0) on the
right (Han, 2007b).

(2) The right πk1(B, b0)-space p−1(b0) is bijective to
πk1(B, b0)/p∗πk0(E, e0).

Remark 2. (Han, 2009b) Let us recall that, by The-
orem 5(2), the group p−1(b0) found in the works of
Han (2007b; 2008a; 2008d), related to the assertion of
Theorem 1(2), is clearly isomorphic to the factor group
πk1(B, b0)/p∗πk0(E, e0) as a right πk1(B, b0)-space, and
the papers by Han (2007b; 2008a; 2008d) tell more
about the case when p−1(b0) has the group structure
(p−1(b0), +) derived from the given digital coverings
such as (Z, p, SCn,l

k ) and (Z × Z, p1 × p2, SCn1,l1
k1

×
SCn2,l2

k2
), where (SCn1,l1

k1
× SCn2,l2

k2
, k) has the LS-or

LC-property found in the research by Han (2009a; 2010b;
2006b; 2007a; 2008d). Of course, by Theorem 1, in this
case we clearly observe that the given digital covering
map p should be regular so that πk1(B, b0)/p∗πk0(E, e0)
is clearly isomorphic to N(p∗πk0(E, e0))/p∗πk0(E, e0).

In algebraic topology, both Deck’s transformation
group of a covering map and a universal covering space
have strongly contributed to the study of the classifica-
tion of topological spaces. Motivated by the covering ho-
momorphism of Spanier (1966), the notion of (k1, k2)-
homomorphism from a (k1, k)-covering (E1, p1, B) into
a (k2, k)-covering (E2, p2, B) was introduced by Han
(2007a) (see also Boxer and Karaca, 2008) and has con-
tributed to the establishment of an automorphism group of
a digital covering map in the work of Han (2008b) as well
as In-Soo Kim and Han (2008), which is so different from
that of a covering space in algebraic topology.

An automorphism group of a digital (k0, k1)-
covering has also substantial advantages which make it
convenient and efficient for calculating the digital funda-
mental groups of a digital spaces and classifying digital
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spaces (Han, 2006b; 2008a; 2008b, 2010b). For three dig-
ital spaces (B, k), (E1, k1) and (E2, k2), let (E1, p1, B)
and (E2, p2, B) be (k1, k)- and (k2, k)-coverings, respec-
tively. Then we say that a (k1, k2)-continuous map φ :
E1 → E2 such that p2 ◦ φ = p1 is a (k1, k2)-covering
homomorphism from (E1, p1, B) into (E2, p2, B) (Han,
2007a) (see also Boxer and Karaca, 2008). As a spe-
cial case of this (k1, k2)-covering homomorphism, we ob-
tain the digital version of Deck’s transformation group
of a covering map in algebraic topology (Spanier, 1966).
Furthermore, by using the generalized universal covering
property of Han (2009c), we can classify digital covering
spaces.

Definition 9. (Han, 2008b, see also Boxer and Karaca,
2008; Kim and Han, 2008) Consider a (k0, k1)-covering
map p : ((E, e0) → ((B, b0). A self k0-isomorphism of
the (k0, k1)-covering map p, denoted by h : (E, k0) →
(E, k0), is called a k0-covering transformation or an au-
tomorphism of a digital covering map p if p = p ◦ h,
where ◦ means the composition. The set of the automor-
phisms of a digital covering map with composition opera-
tion is obviously a group which is denoted by Aut(E|B)
(or Aut(E, p, B)).

In the study of an automorphism group of a digi-
tal (k0, k1)-covering, by using (1) and (2), motivated by
various properties of covering space found in the work of
Massey (1977), we can obtain the following.

Theorem 2. (Han, 2009b)
(1) Let ((E, e0), p, (B, b0)) be a pointed radius 2-
(k0, k1)-covering and (E, k0) k0-connected. Then
Aut(E|B) is isomorphic to Aut(p−1(b0)) induced from
the map φ ∈ Aut(E|B), where Aut(p−1(b0)) is consid-
ered as a right πk1(B, b0)-space.
(2) Let ((E, e0), p, (B, b0)) be a pointed radius 2-
(k0, k1)-covering and (E, k0) k0-connected. Then we
obtain Aut(E|B) 
 N(p∗πk0(E, e0))/p∗πk0(E, e0),
where N(p∗πk0(E, e0)) is the normalizer of p∗πk0(E, e0)
in πk1 (B, b0).
(3) Let ((E, e0), p, (B, b0)) be a pointed radius 2-
(k0, k1)-covering which is regular and (E, k0) k0-
connected. Then we obtain

Aut(E|B) 
 Aut(p−1(b0))


 πk1 (B, b0)/p∗πk0(E, e0).

(4) Let ((E, e0), p, (B, b0)) be a pointed radius 2-
(k0, k1)-covering and (E, k0) k0-connected. Then we ob-
tain the following: ((E, e0), p, (B, b0)) is regular if and
only if p∗πk0(E, e0) = p∗πk0 (E, e1), where p(e0) =
p(e1) = b0.

By using Theorem 2, we can study automorphism
groups of many digital coverings including a (k0, k1)-
covering which does not satisfy a radius 2 local isomor-
phism in Section 5.

4. Compatible adjacency of a digital wedge

Since a digital wedge can play an important role in study-
ing an automorphism group of a digital covering, let us
now recall a digital wedge discussed by Han (2005c) (see
also Boxer, 2006; Han, 2009c). For digital spaces (Xi, ki)
in Z

ni , i ∈ {0, 1}, the notion of digital wedge of (Xi, ki)
was introduced by Han (2005c). In relation to the study of
automorphism groups of both an ultra regular and a reg-
ular covering space in Sections 5 and 6, motivated by the
former version of Han (2009c), we need to develop a no-
tion of compatible k-adjacency of a digital wedge as fol-
lows.

Definition 10. For pointed digital spaces ((X, x0), k0)
in Z

n0 and ((Y, y0), k1) in Z
n1 , the wedge of (X, k0) and

(Y, k1), written (X ∨ Y, (x0, y0)), is the digital space in
Z

n,
{(x, y) ∈ X × Y |x = x0 or y = y0}, (3)

with compatible k(m, n)(or k)-adjacency relative to both
(X, k0) and (Y, k1), and the only one point (x0, y0) in
common with the following property:
(W1) The k(m, n) (or k)-adjacency is determined by
the numbers m and n with n = max{n0, n1}, m =
max{m0, m1} satisfying (W1−1) below, where the num-
bers mi are taken from the ki(or k(mi, ni))-adjacency
relations of the given digital spaces ((X, x0), k0) and
((Y, y0), k1), i ∈ {0, 1}.

(W 1-1) In view of (3), induced from the projection maps,
we can consider the natural projection maps,

WX : (X ∨ Y, (x0, y0)) → (X, x0)

and
WY : (X ∨ Y, (x0, y0)) → (Y, y0).

In relation to the establishment of a compatible k-
adjacency of the digital wedge (X ∨ Y, (x0, y0)), the re-
striction maps of WX and WY on (X ×{y0}, (x0, y0)) ⊂
(X ∨ Y, (x0, y0)) and ({x0} × Y, (x0, y0)) ⊂ (X ∨
Y, (x0, y0)) satisfy the following properties, respectively,

(1) WX |X×{y0} : (X × {y0}, k) → (X, k0) is a
(k, k0)-isomorphism, and

(2) WY |{x0}×Y : ({x0} × Y, k) → (Y, k1) is a (k, k1)-
isomorphism.

(W2) Any two distinct elements x(�= x0) ∈ X ⊂ X ∨ Y
and y(�= y0) ∈ Y ⊂ X ∨ Y are not k(m, n) (or k)-
adjacent to each other.

Example 1. For several types of simple closed k-curves
in Z

n, n ∈ {2, 3}, (see Fig. 1), we can observe the follow-
ing compatible k-adjacencies of digital wedges:
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(1) (MSC18 ∨ SC2,4
8 , 18).

(2) (SC2,6
8 ∨ SC2,4

26 , 26).

(3) There is no compatible k-adjacency of (MSC18 ∨
SC2,4

26 , k).

(4) There is no compatible k-adjacency of (SC2,8
4 ∨

SC2,6
8 , k).

Proof. (1) and (2) are clearly proved.
(3) In terms of (W1) of Definition 10, MSC18 ∨ SC2,4

26

should be considered in Z
3. Now we only examine if

the digital wedge MSC18 ∨ SC2,4
26 has a compatible 26-

adjacency because 18- and 6-adjacencies cannot be valid
contrary to (W1) of Definition 10. Suppose that it has
a compatible 26-adjacency. Then it clearly violates the
property (W1-1) of Definition 10.
(4) With a method similar to the proof of (3), we can prove
that SC2,8

4 ∨ SC2,6
8 ⊂ Z2 cannot have any compatible k-

adjacency, k ∈ {4, 8}. Precisely, owing to the properties
(W1) (resp. (W1-1)), SC2,8

4 ∨SC2,6
8 cannot have the com-

patible 4-(resp., 8-)adjacency. �

Remark 3. The notion of compatible adjacency of a
digital wedge can be considered to be the most reasonable
one of a digital wedge. In addition, there is no need for a
uniqueness of a compatible adjacency of a digital wedge.

SCSC SC4 8 8

0c

1

c

c

3

MSC

c

c

c
2

5

4

18

2, 8 2, 62, 4

(0, 0, 0)

3

c

c

0

c
1

2c

SC 26
3, 4

(0, 2, 2)

MSC 26:=

SC 4
2, 4

Fig. 1. Several kinds of simple closed k-curves (Han, 2005b;
2006d; 2010b).

In view of Example 1 and Remark 3, we obtain the
following:

Remark 4. A compatible k-adjacency of a digital wedge
has the following properties:
(1) By comparing with the k-adjacency of a wedge prod-
uct Han (2009c), we can observe that the current compat-
ible adjacency requires further (W1-1).
(2) Consider SCni,li

ki
with ki = 3ni − 1, i ∈ {0, 1}. As-

sume n0 ≤ n1. Then we always have a compatible k1-
adjacency of the digital wedge SCn0,l0

k0
∨SCn1,l1

k1
⊂ Z

n1 .
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Fig. 2. (8, 8)-covering (D2, p, SC2,4
8 ∨SC2,4

8 ), which does not
satisfy a radius 2 local isomorphism (Han, 2009b).

(3) Consider SCni,li
ki

with ki(mi, ni)-adjacency, i ∈
{0, 1}. Assume n0 ≤ n1. If m0 = m1, then we al-
ways have a compatible k(m1, n1)-adjacency of the digi-
tal wedge SCn0,l0

k0
∨ SCn1,l1

k1
⊂ Z

n1 (Han, 2009c).

4.1. Limitation of a regular covering space in digital
covering theory. In spite of the study of various prop-
erties of a regular covering space in Section 3, in relation
to the study of an automorphism group of a digital cov-
ering space, a digital regular covering space has a limita-
tion. More precisely, as discussed in (1), (2), Theorems
1 and 2, the study of an automorphism group of a dig-
ital covering requires to satisfy a radius 2 local isomor-
phism of a given digital covering. Thus, if a (k0, k1)-
covering does not satisfy a radius 2 local isomorphism,
then we have an obstacle to the study of digital homo-
topic properties of a digital covering as well as its au-
tomorphism group (see Boxer, 2006; Boxer and Karaca,
2008; Han, 2005b; 2006b). To be specific, let us now
consider the two (8, 8)-coverings (SC2,12

8 , p, SC2,4
8 ) and

(D2, p, SC2,4
8 ∨ SC2,4

8 ) in Fig. 2, in which none of them
can satisfy a radius 2 local isomorphism. In other words,
the digital covering (SC2,12

8 , p, SC2,4
8 ) cannot be a ra-

dius 2-(8, 8)-covering. Namely, in Fig. 2, assume that
p : D2 → SC2,4

8 ∨ SC2,4
8 maps each of solid squares,

small solid circles and big solid circles of D2 into the cor-
responding ones in SC2,4

8 ∨ SC2,4
8 . Then we can observe

that (D2, p, SC2,4
8 ∨SC2,4

8 ) cannot satisfy a radius 2 local
isomorphism, either. Consequently, we have to establish
another notion instead of a regular (k0, k1)-covering (see
Section 5).

5. Ultra regular (k0, k1)-covering space
and its automorphism group

In this section we develop the notion of an ultra regular
covering space and investigate its properties related to the
study of its automorphism group. As discussed in Sec-
tion 3, for a radius 2 covering (E, p, B), its automorphism
group was studied by Han (2008a) (see also Boxer and
Karaca, 2008; Han, 2009b). Meanwhile, if a digital cov-
ering (E, p, B) does not satisfy a radius 2 local isomor-
phism (see Fig. 2), then its automorphism group has in-
trinsic features, which remains to be studied. In addition,
for a digital covering space which satisfies a radius 2 local
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isomorphism, its automorphism group can also be studied
(see Example 2(2)). Thus, in order to study this problem,
this section establishes the notion of an ultra regular dig-
ital covering space and studies its automorphism group,
which can play an important role in classifying digital
covering spaces. Motivated by the transitivity of an au-
tomorphism of a covering space found work of in Massey
(1977), we can define the following.

Definition 11. For a (k0, k1)-covering
((E, e0),p,(B, b0)), we say that Aut(E|B) acts transi-
tively on p−1(b0) if for any two distinct points e0 and e1

in p−1(b0) there is φ ∈ Aut(E|B) such that φ(e0) = e1.

In general, for a (k0, k1)-covering ((E, e0), p,
(B, b0)) Aut(E|B) need not act transitively on p−1(b0)
(see Example 2(1)).

Example 2.
(1) Consider the map p1 : E1 → SC2,6

8 ∨ SC2,6
8

given by Fig. 3(a). To be specific, assume that p1

maps each of solid squares, small solid circles, and
big solid circles of E1 into the corresponding ones in
SC2,6

8 ∨ SC2,6
8 along with the arrows in E1. Then,

for the (8, 8)-covering (E1, p1, SC2,6
8 ∨ SC2,6

8 ), we can
observe that Aut(E1|SC2,6

8 ∨ SC2,6
8 ) cannot act transi-

tively on p−1(v0) for the point v0 ∈ SC2,6
8 ∨ SC2,6

8 (see
Fig. 3(a)). More precisely, for two distinct points ei and ej

in p−1(v0) (see the points (0, 0), (6, 1) in p−1(v0)), there
is no φ ∈ Aut(E1|SC2,6

8 ∨ SC2,6
8 ) such that φ(ei) = ej .

(2) Consider the map p2 : E2 → SC2,6
8 ∨ SC2,6

8 given
by Fig. 3(b). Then the (8, 8)-covering (E2, p2, SC2,6

8 ∨
SC2,6

8 ) is a radius 2-(8, 8)-covering. For any two distinct
points ei and ej (e.g., the points e0, e6 ∈ p−1(v0) ⊂ E2),
there is always φ ∈ Aut(E2|SC2,6

8 ∨ SC2,6
8 ) such that

φ(ei) = ej .
In view of Example 2, we can clearly observe that,

for a (k0, k1)-covering map p : (E, e0) → (B, b0) and
two distinct points e0 and e1 in p−1(b0), there may not be
an element φ ∈ Aut(E|B) such that φ(e0) = e1. Unlike
Example 2, motivated by Lemma 8.1 of Massey (1977),
by Theorem 2, we clearly obtain the following.

Lemma 4. If a radius 2-(k0, k1)-covering map p :
(E, e0) → (B, b0) is regular, then Aut(E|B) acts tran-
sitively on p−1(b0).

For a (k0, k1)-covering map p : (E, e0) → (B, b0)
which does not satisfy a radius 2 local isomorphism, the
study of Aut(E|B) remains to be approached. In order
to deal with this problem, we need to make the version of
Han (2006b) advanced into the following notion, which is
different from a regular (k0, k1)-covering of Han (2006b).

Definition 12. A (k0, k1)-covering ((E, e0), p, (B, b0))
is called an ultra regular (briefly, UR-) (k0, k1)-covering
if Aut(E|B) acts transitively on p−1(b0).

Let us now study an important property of a UR-
(k0, k1)-covering which proposes a method of determin-
ing if a (k0, k1)-covering is a UR-(k0, k1)-one. The fol-
lowing theorem can characterize a UR-(k0, k1)-covering.

Theorem 3. The following are equivalent:
(1) A (k′, k)-covering ((E, e0)), p, (B, b0)) is ultra regu-
lar.
(2) For a (k′, k)-covering ((E, e0)), p, (B, b0)) assume a
closed k-curve α : [0, m]Z → (B, k) with α(0) = b0 ∈
B. Either each of all liftings of α on (E, k′) is a k′-closed
curve or none of them is a k′-closed one.

Proof.
Case 1. Let us assume that a given covering
((E, e0)), p, (B, b0)) is a radius 2-(k′, k)-covering. Then
the assertion is clear. Precisely, in this case, since the
property (2) of the current theorem implies that for any
points e0 ∈ p−1(b0) the subgroups p∗πk′

(E, e0) ⊂
πk(B, b0) are normal, they are the same. Finally, by The-
orem 1(2), we can observe that the given (k′, k)-covering
(E, p, B) is regular. Consequently, by Lemma 4, the proof
is completed.
Case 2. Let us now prove the case that a given covering
((E, e0)), p, (B, b0)) is not a radius 2-(k′, k)-covering.
(1) ⇒ (2): For a closed k-curve α : [0, m]Z → (B, k)
with α(0) = b0 ∈ B, assume that there are digital liftings
of α on (E, k′) of which one of them is a k′-closed curve
and another of them is a k′-path that is not a k′-closed
curve. Then the given (k′, k)-covering (E, p, B) cannot
be a UR-(k′, k)-covering because Aut(E|B) cannot act
transitively on p−1(b0). For instance, owing to the point
(0, 0) ∈ p−1(v0), the digital covering (E1, p1, SC2,6

8 ∨
SC2,6

8 ) in Fig. 3(a) cannot be a UR-(8, 8)-covering.
(2) ⇒ (1): For a (k′, k)-covering (E, p, B) satisfying the
property (2) we can clearly observe that Aut(E|B) acts
transitively on p−1(b0), which completes the proof. For
instance, see the (8, 8)-covering (D2, p, SC2,4

8 ∨ SC2,4
8 )

in Fig. 2. �

Due to Theorem 3, hereafter, regardless of the re-
quirement of a radius 2 local isomorphism of a (k′, k)-
covering, we can have a very convenient method of
determining if a given digital covering is UR-(k′, k)-
regular. Thus, hereafter, by using Theorem 3, for a (k′, k)-
covering (E, p, B) we can study Aut(E|B) without using
digital homotopic tools.

By Theorem 1, we obtain the following.

Corollary 1.
(1) For any SCn,l

k the (2, k)-covering map p : Z →
SCn,l

k := (ct)t∈[0,l−1]Z given by p(t) = ct(mod l), t ∈ Z

is ultra regular.
(2) The map p : SCn,ml

k := (at)t∈[0,ml−1]Z → SCn,l
k :=

(ct)t∈[0,l−1]Z given by given by p(ai) = ci(mod l), m ∈ N

is ultra regular, where m ∈ N and SCn,l
k need not be k-

contractible.
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Fig. 3. Infinite fold (8, 8)-covering (E1, p1, SC2,6
8 ∨ SC2,6

8 ) (Han, 2005c), which does not allow an automorphism with transitive
action (a); infinite fold (8, 8)-covering (E2, p2, SC2,6

8 ∨ SC2,6
8 ) from the work of Boxer (2006), which is both ultra regular

and regular (b).

(3) The map p : D2 → SC2,4
8 ∨ SC2,4

8 in Fig. 2 is a
UR-(8, 8)-covering.

Proof.
(1) Take a base point c0 ∈ SCn,l

k . Then we can obtain
p−1(c0) := lZ ⊂ Z. By Theorem 3, we can clearly ob-
serve that Aut(E|B) := lZ acts transitively on p−1(c0).
(2) By a similar method as the proof of (1), the proof can
be clearly completed by using the circulation on SCn,ml

k

depending on the points p−1(c0).
(3) The assertion follows from Theorem 3. �

6. Merits of an ultra regular covering space

For a digital space (X, k1), how can we describe a dif-
ference between a UR-(k0, k1)-covering and a regular
(k0, k1)-covering over (X, k1)? In the light of Theorem
3, this section discusses some merits of a UR-(k0, k1)-
covering. In Section 3, for a radius 2-(k0, k1)-covering, its
regularity has been studied. But a UR-(k0, k1)-covering
need not require a radius 2 local isomorphism. In view
of this difference, we can observe that a UR-(k0, k1)-
covering has strong merits of classifying digital covering
space. By comparing an ultra regular covering space with
a regular covering space, we obtain the following.

Theorem 4.
(1) A regular (k0, k1)-covering space does not imply a
UR-(k0, k1)-covering space.
(2) For a digital space (X, k1), let R2(X) denote the set
of all radius 2-(k0, k1)-coverings over (X, k1). Then we
obtain the following: In R2(X) a UR-(k0, k1)-covering is
equivalent to a regular (k0, k1)-covering.

Proof.
(1) As an example, consider the infinite fold (8, 8)-

covering map p : E5 → SC2,4
8 ∨ SC2,4

8 in Fig. 4(c). Pre-
cisely, assume that p5 maps each of solid squares, small
solid circles, and big solid circles of E5 into the corre-
sponding ones in SC2,4

8 ∨ SC2,4
8 . Since both π8(E5) and

π8(SC2,4
8 ∨ SC2,4

8 ) are trivial, (E5, p5, SC2,4
8 ∨ SC2,4

8 )
is a regular (8, 8)-covering. But it cannot be a UR-(8, 8)-
covering because Aut(E5, SC2,4

8 ∨SC2,4
8 ) is trivial. Pre-

cisely, the (8, 8)-covering (E5, p, SC2,4
8 ∨ SC2,4

8 ) has the
only digital isomorphism such as the identity. To be spe-
cific, if there is a digital automorphism h : E5 → E5,
then any 8-loop in SC2,4

8 ∨ SC2,4
8 that lifts to an 8-loop

in E5 at (0, 0) also lifts to an 8-loop when the lift begins
at h(0, 0). In this case we clearly observe that h is exactly
the identity.
(2) In R2(X), by Theorem 2 and Lemma 4, it is clear
that a UR-(k0, k1)-covering (E, p, X) is equivalent to a
regular (k0, k1)-covering. �

In the light of Theorem 4, if a (k0, k1)-covering is
not a radius 2-(k0, k1)-covering, then a comparison be-
tween an ultra regular covering space and a regular cov-
ering space depends on the situation. To study a UR-
(k0, k)-covering ((E, k0), p, SCn1,l1

k1
∨ SCn2,l2

k2
) up to a

digital covering isomorphism, let us recall that the k-
fundamental group of (SCn,l0

k ∨SCn,l1
k , k) is a free group

with two generators (Han, 2005c) (see also Han, 2007a),
where SCn,li

k is not k-contractible, i ∈ {0, 1} and the
k-adjacency of SCn1,l1

k1
∨SCn2,l2

k2
) is assumed to be com-

patible according to Definition 10. By using this property
and Theorem 3, let us demonstrate Theorem 4 with the
following examples.

Example 3. For illustration, consider the (8, 8)-covering
(E3, p3, SC2,4

8 ∨SC2,4
8 ) in Fig. 4(a), which is not a radius

2-(8, 8)-covering. Then we can observe that it is not a
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21
0

U1

(-1, -4)

(6, -1)

(0, 0)
(-6, 1)

(1, 4)

of Fig. 6 by Han (2010a)

(0, 0)

(1, 4)

U1 (-4, 1)

(4, -1)

(-1, -4)

E1 of Fig. 1 by Han (2009c)

of Fig. 7 by Han (2010a)

(d)

Fig. 4. 4-fold (8, 8)-covering (E3, p3, SC2,4
8 ∨ SC2,4

8 ), which is not UR-regular (a); 4-fold (8, 8)-covering (E4, p4, SC2,4
8 ∨ SC2,4

8 )
found in the work of Han (2009c), which is UR-regular (b); infinite fold (8, 8)-covering (E5, p5, SC2,4

8 ∨SC2,4
8 ), which is not

UR-regular but regular (c); correction of Fig. E1 and U1 presented by Han (2009c; 2010a) (d).

UR-(8, 8)-covering.
By Theorem 4(2), we can observe the following.

Example 4.
(1) Consider the (8, 8)-covering (E4, p4, SC2,4

8 ∨ SC2,4
8 )

in Fig. 4(b), which is not a radius 2-(8, 8)-covering. Then
we can observe that it is a UR-(8, 8)-covering.
(2) Consider the (8, 8)-covering (E5, p5, SC2,4

8 ∨ SC2,4
8 )

in Fig. 4(c), which is not a radius 2-(8, 8)-covering. Then
we can observe that it is not a UR-(8, 8)-covering but a
regular (8, 8)-covering.

Remark 5. In relation to the study of an automorphism
group of a (k0, k1)-covering, since Theorem 3 does not
require a radius 2 local (k0, k1)-isomorphism of the given
digital covering as well as digital homotopic properties

such as Theorem 2, the notion of a UR-(k0, k1)-covering
is so useful (see Theorem 3).

Remark 6. (Correcting) Since the two objects U1 of
Fig. 6 and U1 of Fig. 7 found in the work of Han (2010a)
are misprinted at the point (0, 0) ∈ Z

2, we can now cor-
rect them (see Fig. 4(d)). With the same criterion, the
objects E1 of Fig. 1 found in the paper by Han (2009c)
should be corrected at the point (0, 0) ∈ Z

2 (motivated by
Fig. 4 of Han (2005c)).

7. Concluding remarks and further work

In relation to the study of an automorphism group of a
digital covering and the classification of digital spaces, the



Ultra regular covering space and its automorphism group 709

paper has studied the following. First, we have established
the notion of compatible adjacency of a digital wedge
which can be used for studying an automorphism group
of a digital covering. Second, we have established the no-
tion of a UR-(k′, k)-covering space and investigated some
properties of an ultra regular covering space over SCn,l

k

or SCn1,l1
k1

∨ SCn2,l2
k2

. Then, by comparing an ultra reg-
ular covering with a regular covering, we have proposed
some merits of an ultra regular covering. Also, by using
the GU-(k′, k)-covering property of (E, p, SCn,l

k ), where
(E, k′) is (k′, 2)-isomorphic to (Z, 2), we have demon-
strated that an automorphism group of a (k′, k)-covering
map can be strongly used in the classification of digital
covering spaces over SCn,l

k or a digital wedge without
any limitation of a radius 2 local isomorphism of a dig-
ital covering.

Acknowledgment

This research was supported by the Basic Science Re-
search Program through the National Research Founda-
tion of Korea (NRF) funded by the Ministry of Education,
Science and Technology (2008C00119). This paper was
supported by the selection of a research-oriented professor
of Chonbuk National University in 2010.

The author wishes to thank the anonymous referees
who made careful corrections and suggested many mean-
ingful ideas.

References
Boxer, L. (1999). A classical construction for the digital funda-

mental group, Journal of Mathematical Imaging and Vision
10(1): 51–62.

Boxer, L. (2006). Digital products, wedge, and covering spaces,
Journal of Mathematical Imaging and Vision 25(2): 159–
171.

Boxer, L. and Karaca, I. (2008). The classification of digital cov-
ering spaces, Journal of Mathematical Imaging and Vision
32(1): 23–29.

Han, S.E. (2003). Computer topology and its applications,
Honam Mathematical Journal 25(1): 153–162.

Han, S.E. (2005a). Algorithm for discriminating digital images
w.r.t. a digital (k0, k1)-homeomorphism, Journal of Ap-
plied Mathematics and Computing 18(1–2): 505–512.

Han, S.E. (2005b). Digital coverings and their applications,
Journal of Applied Mathematics and Computing 18(1–2):
487–495.

Han, S.E. (2005c). Non-product property of the digital funda-
mental group, Information Sciences 171 (1–3): 73–91.

Han, S.E. (2005d). On the simplicial complex stemmed from a
digital graph, Honam Mathematical Journal 27(1): 115–
129.

Han, S.E. (2006a). Connected sum of digital closed surfaces, In-
formation Sciences 176(3): 332–348.

Han, S.E. (2006b). Discrete Homotopy of a Closed k-Surface,
Lecture Notes in Computer Science, Vol. 4040, Springer-
Verlag, Berlin, pp. 214–225.

Han, S.E. (2006c). Erratum to “Non-product property of the
digital fundamental group”, Information Sciences 176(1):
215–216.

Han, S.E. (2006d). Minimal simple closed 18-surfaces and a
topological preservation of 3D surfaces, Information Sci-
ences 176(2): 120–134.

Han, S.E. (2007a). Strong k-deformation retract and its applica-
tions, Journal of the Korean Mathematical Society 44(6):
1479–1503.

Han, S.E. (2007b). The k-fundamental group of a closed k-
surface, Information Sciences 177(18): 3731–3748.

Han, S.E. (2008a). Comparison among digital fundamental
groups and its applications, Information Sciences 178(8):
2091-2104.

Han, S.E. (2008b). Equivalent (k0, k1)-covering and generalized
digital lifting, Information Sciences 178(2): 550–561.

Han, S.E. (2008c). Map preserving local properties of a digital
image, Acta Applicandae Mathematicae 104(2): 177–190.

Han, S.E. (2008d). The k-homotopic thinning and a torus-like
digital image in Zn, Journal of Mathematical Imaging and
Vision 31(1): 1–16.

Han, S.E. (2009a). Cartesian product of the universal covering
property, Acta Applicandae Mathematicae 108(2): 363–
383.

Han, S.E. (2009b). Regural covering space in digital covering
theory and its applications, Honam Mathematical Journal
31(3): 279–292.

Han, S.E. (2009c). Remark on a generalized universal covering
space, Honam Mathematical Journal 31(3): 267–278.

Han, S.E. (2010a). Existence problem of a generalized universal
covering space, Acta Applicandae Mathematicae 109(3):
805–827.

Han, S.E. (2010b). Multiplicative property of the digital fun-
damental group, Acta Applicandae Mathematicae 110(2):
921–944.

Han, S.E. (2010c). KD-(k0, k1)-homotopy equivalence and its
applications, Journal of the Korean Mathematical Society
47(5): 1031–1054.

Han, S.E. (2010d). Properties of a digital covering space and
discrete Deck’s transformation group, The IMA Journal of
Applied Mathematics, (submitted).

Khalimsky, E. (1987). Motion, deformation, and homotopy in
finite spaces, Proceedings of IEEE International Confer-
ences on Systems, Man, and Cybernetics, pp. 227–234.

Kim I.-S., and Han, S.E. (2008). Digital covering theory and
its applications, Honam Mathematical Journal 30(4): 589–
602.

Kong, T.Y. and Rosenfeld, A. (1996). Topological Algorithms
for the Digital Image Processing, Elsevier Science, Ams-
terdam.



710 S.E. Han

Malgouyres, R. and Lenoir, A. (2000). Topology preservation
within digital surfaces, Graphical Models 62(2): 71–84.

Massey, W.S. (1977). Algebraic Topology, Springer-Verlag, New
York, NY.

Rosenfeld, A. (1979). Digital topology, American Mathematical
Monthly 86: 76–87.

Rosenfeld, A. and Klette, R. (2003). Digital geometry, Informa-
tion Sciences 148: 123–127.

Spanier, E.H. (1966). Algebraic Topology, McGraw-Hill Inc.,
New York, NY.

Sang-Eon Han is a professor (Ph.D.) working
at Chonbuk National University. His research
is on digital topology, digital geometry and pure
topology. He holds a Bachelor’s and a Master’s
degree in mathematics from Chonbuk National
University and Ph.D. in mathematics from Chon-
nam National University. He has been a visiting
scholar at the Department of Mathematics, Stan-
ford University. He has developed digital cov-
ering theory. Indeed, the theory can be substan-

tially used in the fields of both digital topology and digital geometry. He
has received an academic award from the Honam Mathematical Society
and his academic activities were introduced in the 2008 edition of Who’s
Who in the World.

Received: 10 January 2010
Revised: 10 May 2010


	Introduction
	Preliminaries
	Some properties of a regular covering space
	Compatible adjacency of a digital wedge
	Limitation of a regular covering space in digital covering theory

	Ultra regular (k0, k1)-covering spaceand its automorphism group
	Merits of an ultra regular covering space
	Concluding remarks and further work


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [597.600 842.400]
>> setpagedevice


