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Agents are a useful abstraction frequently employed as a basic building block in modeling service, information and re-
source sharing in global environments. The connecting of requester with provider agents requires the use of specialized
agents known as middle-agents. In this paper, we propose a formal framework intended to precisely characterize types
of middle-agents with a special focus on matchmakers, brokers and front-agents by formally modeling their interactions
with requesters and providers. Our approach is based on capturing interaction protocols between requesters, providers and
middle-agents as finite state processes represented using FSP process algebra. The resulting specifications are formally
verifiable using FLTL temporal logic. The main results of this work include (i) precise specification of interaction protocols
depending on the type of middle-agent (this can also be a basis for characterizing types of middle-agents), (ii) improvement
of communication between designers and developers and facilitation of formal verification of agent systems, (iii) guided
design and implementation of agent-based software systems that incorporate middle-agents.
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1. Introduction

Sharing information, resources and services on a global
scale is a key function of the modern information society.
Advanced digital technologies including software agents,
grids and Web services have recently been proposed to
support this function. In this context, the ability of par-
ties involved (humans, businesses or software) to flexibly
discover each other and to dynamically engage in relation-
ships is very important.

Agents are a useful abstraction frequently employ-
ed as a basic building block in modeling service, infor-
mation and resource sharing in global environments. Ty-
pically such an environment contains requester and pro-
vider agents that are dynamically created and destroy-
ed and consequently do not know each other in advan-
ce. Connecting requester agents with provider agents is a
crucial issue known as the connection problem (Decker
et al., 1997). Its solution requires the use of additio-
nal specialized agents known as middle-agents (Decker
et al., 1997; Yarom et al., 2003; Klusch and Sycara, 2001).

The activity carried out by middle-agents is called inter-
mediation, and it assumes suitable interactions of middle-
agents with requesters and providers.

The main contribution of this paper is precise charac-
terization of types of middle-agents—matchmakers, bro-
kers and front-agents—by formally modeling their inte-
ractions with requesters and providers in global environ-
ments. The paper employs a formal framework for the mo-
deling and analysis of interaction protocols between requ-
esters, providers and middle-agents. In this framework we
focus on interactions, i.e., sequences of messages exchan-
ged between parties involved—requesters, providers and
middle-agents. In our opinion the results of this work ha-
ve the following benefits: (i) precise specification of the
interactions depending on the type of middle-agent (this
can also be a basis for characterizing types of middle-
agents); (ii) understanding the requirements of parties in-
volved in such interactions; (iii) improvement of commu-
nication between designers and developers and facilitation
of formal verification; (iv) guided design and implemen-
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tation of software systems that incorporate middle-agents.
Despite the early work of Decker et al. (1997), which

advocates systematic classification of middle-agents, we
noticed that “notions of middle-agents, matchmakers, bro-
kers [. . . ] are used freely in the literature [. . . ] witho-
ut necessarily being clearly defined” (Klusch and Syca-
ra, 2001). Moreover, most of the references to middle-
agents focus in more or less detail on various applications
and systems that use different types of middle-agents,
highlighting implementation and/or performance issues.
Therefore, in this paper, we focus on improving this state-
of-affair by presenting and discussing formal models of
middle-agents with the goal of highlighting their similari-
ties and differences.

Typical use of middle-agents is encountered in e-
commerce applications (Bădică et al., 2007; Fasli, 2007;
Yarom et al., 2003). For example, the model agent-based
e-commerce system discussed by Bădică et al. (2007) uses
middle-agents to connect user buyers on the purchasing
side with shops on the selling side in a distributed market-
place. Each user buyer is represented by a Client agent,
and each shop is represented by a Shop agent. The user
buyer submits an order to the system for purchasing a pro-
duct via his or her Client agent. The Client agent acts as a
Front-agent (see Section 5) with respect to connecting the
user buyer with an appropriate Shop agent that provides
the requested product. Moreover, the Client agent uses a
special agent called the Client Information Center (CIC)
that is responsible for providing information which shop
in the system sells which products. Thus, it can be easily
noticed that the CIC is in fact a Matchmaker (see Sec-
tion 5) with respect to connecting the Client agent with an
appropriate Shop agent.

Matchmakers are also available in general-purpose
agent platforms. For example, the Directory Facilitator
(DF) is an optional component of an FIPA-compliant
agent platform1 that is present in agent platforms like JA-
DE2. The DF provides a yellow pages service allowing
agents to publicize, unregister and update descriptions of
services that are made available for use to other agents in
the system.

Formalizing software architectures, components,
agents and services has generated a lot of interest du-
ring the last years (Zhang et al., 2010). Many appro-
aches utilize process algebras as the foundational forma-
lism (Bergstra et al., 2001). We follow the trend by groun-
ding our framework for the modeling and analysis of inte-
ractions between requesters, providers and middle-agent
on finite state process (FSP) algebra (Magee and Kra-
mer, 2006). The approach is applied to middle-agent ty-
pes proposed by Decker et al. (1997). Then we show
how qualitative properties of their models can be formal-

1http://www.fipa.org.
2http://jade.cselt.it.

ly defined and verified using fluent linear temporal lo-
gic (FLTL) (Magee and Kramer, 2006). Our work can be
described as an FSP and FLTL-based framework for for-
mal specification and verification of systems with middle-
agents. Note that, concerning the specification of softwa-
re systems, to the best of our knowledge FSP has on-
ly been used for the specification of software architectu-
res, processes, components, services, and aspects (Bădică
et al., 2003; Foster et al., 2006; Hennicker and Lu-
dwig, 2005; Xu et al., 2009), and it is only recently that
FSP has been applied to model software agent interactions
(Bădică and Bădică, 2008c).

Our proposal for using FSP and FLTL for this task
is motivated by the following: (i) FSP and FLTL are for-
mal specification and verification languages that have a ri-
gorous mathematical foundation; (ii) FSP has a clear and
concise syntax and compositional semantics, thus being
very appropriate to concisely describe the behavior and
interactions in systems with middle-agents; (iii) the defi-
nition of properties in FLTL can benefit from earlier work
in verification patterns (Dwyer et al., 1999); (iv) FSP and
FLTL are also well supported by the Labeled Transition
System Analyzer (LTSA) software tool (Magee and Kra-
mer, 2006); (v) FSP has operational semantics, so it fol-
lows that the resulting specifications are executable (can
be traced with the help of LTSA); moreover, FSP speci-
fications can be used as a basis for design and software
implementation of agent behaviors, for example using fi-
nite state machines (Goh et al., 2007); (vi) recently, FSP
has been extended to Modal Transition Systems forma-
lism (MSP) for modeling and analysis in the presence of
partial information about system behavior; MSP is cur-
rently supported by the Modal Transition System Analy-
zer tool (MTSA); MSP and MTSA provide better support
in the context of current software development practices
(D’Ippolito et al., 2008).

We start in Section 2 with a literature overview of
related works on middle-agents and process-algebraic ap-
proaches to the formalization of agent systems. In Sec-
tion 3 we state the basic assumptions underlying our mo-
deling. In Section 4 we introduce FSP and the guidelines
of modeling agent interactions with FSP. Then, in Sec-
tion 5, we present detailed FSP models of Matchmaker,
Front-agent, and Broker middle-agents. In Section 6 we
show how FLTL can be used to formally check the deve-
loped models against qualitative properties. We follow in
Section 7 with experimental evaluation and verification of
the models. The final part of the paper contains our conc-
lusions.

2. Related works

Research literature referring to middle-agents is quite rich:
a search on Google for the words “middle-agents” returns
about 20000 references. Despite this relatively large num-
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ber of references, which indicates that there is a growing
interest in the subject of middle-agents, our literature ove-
rview indicates that only very few papers address the pro-
blem of a concise definition of middle-agents in terms of
their interaction capabilities with provider and requester
agents, to precisely characterize their typology. Rather,
many references to middle-agents focus in more or less
detail on various applications and systems that use dif-
ferent types of middle-agents, most often brokers and/or
matchmakers (see Klusch and Sycara, 2001), and highli-
ghting implementation and/or performance issues.

The starting point of our work is the classification of
middle-agents introduced in the seminal work of Decker
et al. (1997). Based on privacy assumptions about what
is initially known in an interaction by requesters, middle-
agents, and providers about requester preferences and pro-
vider capabilities, Decker et al. (1997) proposed nine ty-
pes of middle-agents: Broadcaster, Matchmaker, Front-
agent, Anonymizer, Broker, Recommender, Blackboard,
Introducer, and Arbitrator (see Table 1). Note that in this
context the term “initially” means “before the interaction
between the requester and the provider”.

Wong and Sycara (2000) attempt to propose a mo-
re systematic classification of middle-agents by refining
the classification introduced by Decker et al. (1997). The
authors suggested the use of six binary dimensions for
characterizing middle-agent types. However, while noting
that not all 26 = 64 combinations are meaningful, Wong
and Sycara (2000) do not clearly show how to appreciate
which are meaningful and which are not, leaving this de-
cision up to the designer’s intuition. After reviewing that
taxonomy, our conclusion is that, on the one side not all
proposed dimensions are relevant for our work, and, on
the other, that we do not totally agree with that taxonomy.
For example, according to Dimension 1, Wong and Syca-
ra (2000) claim that “providers and requesters should act
in a complementary way with respect to who sends infor-
mation to middle-agents, i.e., if providers push, requesters
pull and vice-versa”. In our opinion the main characteri-
stic of a Broker is that both providers and requesters push,
while the Broker has the option to choose the most effecti-
ve matching provider capability for a given request and the
most effective matching requester preference for a given
provider capability. Obviously, the taxonomy proposed by
Wong and Sycara (2000) fails to correctly describe such a
behavior.

Alagar and Holliday (2002) suggest the use of labe-
led transition systems (LTSs) for modeling agent types.
However, this paper does not address the formal modeling
of middle-agents. Klusch and Sycara (2001) discuss the
modeling of matchmakers and brokers using input/output
automata (following the initial proposal of Wong and Sy-
cara (2000)), while Hristozova and Sterling (2003) infor-
mally describe an application of middle-agents and onto-
logies in the area of value-added publishing.

Our “agents-as-processes” modeling approach is not
entirely new. Esterline et al. (2006) propose the use of π-
calculus (Milner, 1999) and show models of a prototype
agent system called LOGOS for an unattended grounds
operation-center using a fault resolution scenario. Howe-
ver, while the authors show how to use a software to-
ol for checking the proposed specifications, they do not
provide any experimental results—only general modeling
guidelines are given. Rouff et al. (2006) also focus on
the LOGOS agent system, but using CSP process algebra
(Hoare, 1985). While that paper discusses some benefits
of the method (detecting race conditions, message omis-
sions, and better understanding of the system), it still does
not provide any experimental results and does not discuss
the practical problems encountered.

Bădică et al. (2003) propose a formal model of bu-
siness processes captured as role activity diagrams, using
FSP. Another work by Bădică et al. (2007) introduces a
general framework for FSP modeling of middle-agents
and shows how this framework can be used to model a Re-
commender agent. Using the same idea, Bădică and Bădi-
că (2008c) present a model of an Arbitrator middle-agent
for coordination of participants in single-item English
auctions. Another work reported by Bădică and Bădică
(2008b) is an extension of the research by Bădică et al.
(2007) as well as Bădică and Bădică (2008c) for mode-
ling Matchmaker, Front-agent and Broker middle-agents,
including both theoretical and experimental results. The
papers by Bădică and Bădică (2008a; 2008e; 2009a) fo-
cus on introducing verification models of systems that
contain middle-agents, using FLTL temporal logic. Bădi-
că and Bădică (2008d) show how models of Matchma-
ker (Bădică and Bădică, 2008b) and Arbitrator for En-
glish auctions (Bădică and Bădică, 2008c) can be com-
bined into a more complex system for agent-based auc-
tions with matchmaking capabilities. Moreover, in another
work (Bădică and Bădică, 2009b), we extend the auction
model of Bădică and Bădică (2008c) to formally specify
and verify the agent-based auction service discussed by
Dobriceanu et al. (2009) using FSP and FLTL. Finally, in
a recent paper (Bădică et al., 2009), we show how our for-
mal framework can be applied to model protocol-based
service coordination in agent systems. Actually, this co-
ordination approach is a natural extension of the service
model introduced by Bădică and Bădică (2009b).

A limitation of our process-algebraic method that we
would like to address in the future is that it does not pro-
vide features for modeling intelligence aspects of middle-
agents, i.e., their decision making, strategic and reasoning
capabilities. In our opinion this would require the exten-
sion of the models with abilities for representing state va-
riables, utilities and knowledge. Some related works in
this area include those by Merayo et al. (2007) as well
as Miller and McBurney (2007). Merayo et al. (2007) in-
troduce an extension of finite state machines—extended



12 A. Bădică and C. Bădică

Table 1. Middle-agent types.

Preferences/Capabilities Provider only Provider & MA All

Requester only Broadcaster Front-agent Matchmaker
Requester & MA Anonymizer Broker Recommender

All Blackboard Introducer Arbitrator

utility state machines (EUSMs) for modeling strategic
aspects of intelligent agents. The EUSM supports a ri-
cher representation of agents behavior as compared to the
FSP approach by enhancing their state representation with
state variables and utility functions. Miller and McBur-
ney (2007) propose a process algebraic approach enhan-
ced with constraint-reasoning capabilities—RASA for
the specification of semantic aspects of agent interaction
protocols. Using RASA, intelligent agents can reason at
run-time about their possible actions and effects in order
to tune their performances. However, Miller and McBur-
ney (2007) only present a simplistic example and it is not
clear when and how the RASA framework should be ap-
plied in practice. Finally, Rahimi et al. (2002) propose an
extension of higher-order π-calculus to represent the in-
telligence component of an autonomous agent.

As for as their application areas are concerned,
middle-agents were recently put forward by Fasli (2007)
in the context of e-commerce. The author covers in some
detail Matchmaker, Broker, Broadcaster and Recommen-
der with a focus on interaction protocols and languages
for describing requester preferences and provider capabi-
lities. However, while the Matchmaker description fits wi-
thin the models that we propose in our paper, note that
Broker described by Fasli (2007) actually corresponds to
our model of Front-agent.

Communities of middle-agents were also used for
self-organization of distributed information systems ac-
cording to dynamically changing user preferences and
characteristics (Wang, 2002). The focus of this work was
set on flexibility and scalability issues, rather than formal
modeling and understanding of middle-agent typology.

3. Modeling assumptions

In this section we introduce the basic modeling assump-
tions that we employ in our modeling and analysis of inte-
ractions between requesters, providers and middle-agents.
These assumptions include (i) abstracting away from do-
main and language specific details, and (ii) taking into ac-
count the distinction between subscriptions and ordinary
requests.

3.1. Domain and language specific details. There is
certainly a domain dependent component of intermedia-
tion, involving domain or language specific aspects of pre-

ferences and capabilities of requesters and providers.
For example, there are clearly domain-specific diffe-

rences between searching and intermediation of business
or holidays travel packages in an e-travel environment and
discovering learning resources (for example, a program-
ming course) for an e-learning application. However, we
would expect that interactions necessary to search for a
travel package that has a given set of characteristics by
querying travel agencies and to search for a programming
course whose completion would guarantee a certain level
of competence in a given programming language are basi-
cally the same.

Following this idea, in our framework we abstract
away from (i) the specific and domain dependent details
of the environment, i.e., we do not care if the target of our
analysis is, for example, related to learning, commerce or
travel, and (ii) actual languages used for representing re-
quests, responses, preferences, and capabilities, i.e., we do
not care if requests and responses are for example, repre-
sented using FIPA ACL3 and capabilities and preferences
using FIPA SL4. In other words, we abstract away from
the matching activity and, instead, we focus on the dyna-
mics of interactions, i.e., sequences of messages exchan-
ged between involved parties—requesters, providers and
middle-agents.

One apparent weakness introduced by adopting this
assumption is setting the focus on control modeling de-
tails (agents and their interactions), rather than on data
modeling details. This claim is supported by the observa-
tion that the goal of real world implementations of agent
systems with middle-agents is usually mediation and da-
ta transfer. While abstraction from data type specification
can be of course limiting for the achievement of the go-
al of precise specification and design of an agent system
as part of a software development process, this abstrac-
tion can be extremely useful for characterizing types of
middle-agents and understanding the interaction require-
ments of parties involved. Moreover, if we also consider
the goal of formal verification of agent interactions, data
abstraction can be extremely useful for reducing the state-
space explosion in model checking (Zhang et al., 2010).
Finally, note that there are proposals to enhance process
algebraic approaches with the ability of handling data by
means of equational abstract data types, like μCRL, de-

3http://www.fipa.org/specs/fipa00061.
4http://www.fipa.org/specs/fipa00008.

http://www.fipa.org/specs/fipa00061.
http://www.fipa.org/specs/fipa00008.


FSP and FLTL framework for specification and verification of middle-agents 13

scribed in detail by Fokkink (2007). However, this appro-
ach is outside the scope of this paper and therefore we will
not pursue it here.

3.2. Subscriptions versus ordinary requests. Follo-
wing a recent work of Mbala et al. (2006), we found
it useful to distinguish from the very beginning between
subscriptions and ordinary requests. Subscriptions can be
defined as long-lived or reproducible “requests” (Mbala
et al., 2006), while ordinary requests are non-reproducible
(simply called requests in what follows). The difference
is that a successful subscription will be continually se-
rved until it is eventually canceled (by the requester—
subscriber in this particular case), while an ordinary requ-
est is issued and served at most once or eventually abando-
ned (by the middle-agent). For example, a buyer agent can
submit a request to a directory agent that manages infor-
mation about seller agents and the categories of products
they sell to find out a list of potential sellers of a given
product. Once issued, the request is served by providing
the list of sellers and the conversation between the buy-
er agent and the directory agent ends. Differently, a travel
agent can subscribe to a weather information provider that
periodically sends weather information to all her subscri-
bers.

Note that the distinction between requests and sub-
scriptions is related to serving requests either in pull or in
push mode (Wong and Sycara, 2000). A request served in
pull mode is either immediately served or declined by the
middle-agent, while a request served in push mode is me-
morized and the requester notified later if the request can
be served or it is abandoned by the middle-agent.

The situation is symmetric from the point of view of
providers. In this case, a provision (of services, resources
or information) can be either non-reproducible or repro-
ducible. In the first case, the provision, once consumed,
is no longer available until explicitly made so by the pro-
vider, while in the second case the provision is continu-
ously available until explicitly canceled by the provider.
An example of a non-reproducible provision is a seller
that sells a book on eBay—once the book is sold, it will no
longer be available for sale. An example of a reproducible
provision is a weather information provider like Weather
Underground.

Note that reproducibility and non-reproducibility of
requests and provisions will affect the interaction patterns
between requesters, providers and middle-agents. As the
focus of our work is to precisely characterize middle-
agents types as proposed by Decker et al. (1997), we had
to assume that requests are non-reproducible (i.e., we fo-
cus on requests, and not subscriptions) and that provisions
are reproducible. However, the other situations are also
conceivable, leading obviously to different models.

4. Modeling framework

Before presenting FSP models of middle-agents we first
briefly review FSP and then we introduce the guidelines
of our modeling approach.

4.1. Overview of FSP. FSP is an algebraic specifica-
tion technique of concurrent and cooperating computa-
tional processes as finite state labeled transition systems
(LTSs hereafter). FSP allows a more compact and easy to
manage description of an LTS, rather than by directly de-
scribing it as a list of states and transitions between states.

An FSP model consists of a finite set of sequential
and/or composite process definitions. Additionally, a se-
quential process definition consists of a sequence of one
or more definitions of local processes. A process defini-
tion consists of a process name associated with a process
term.

FSP uses a rich set of constructs for process terms
(see Magee and Kramer, 2006) . For the purpose of this
paper we are using the following constructs: (i) action pre-
fix (a → P ), nondeterministic choice (P |Q), and process
alphabet extension (P + {a1, . . . , an}) for sequential pro-
cess terms, and (ii) parallel composition (P ||Q) and re-
labeling (P/{new1/old1, . . . , newk/oldk}) for composi-
te process terms.

FSP has operational semantics given via an LTS. The
mapping of an FSP term to an LTS is described in detail
by Magee and Kramer (2006), and it follows the intuitive
meaning of FSP constructs.

4.2. Modeling guidelines. We propose the following
guidelines to be applied in the development of FSP models
of middle-agents:

(i) Agents are modeled as FSP processes. As our process
language is FSP, we chose to model agents types as sequ-
ential processes. Instantiation of an agent of a given type
can be defined by invoking the associated process with a
suitable relabeling of its alphabet.

(ii) A multi-agent system is modeled as a parallel compo-
sition of processes. It follows that communication betwe-
en agents is modeled by appropriately utilizing the syn-
chronization capabilities of FSP. In FSP, synchronization
of processes of a parallel composition is done by default
on their common alphabets. Accordingly, special care sho-
uld be taken in order to accurately model agent communi-
cation using FSP synchronization. Depending on circum-
stances this will require relabeling and/or alphabet exten-
sion of local processes (see, for example, the Matchmaker
model from Fig. 1). Relabeling is utilized when a new pro-
cess is instantiated via its process name, so basically it is
a reusability mechanism. Alphabet extension is utilized to
correctly model parameter passing between processes via
action synchronization. This modeling is not so obvious,
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and therefore we explain it by means of an example. Let
us suppose that a process Q must pass a parameter v with
the value in a finite set V to a process P . The decision of
what value is passed by Q to P is taken by Q and usually
only some of the values (not all) in V can be passed—
let us denote this set of values by V ′ ⊆ V . This situation
is modeled by a set of actions send(v) indexed with all
the values of v that can be set by Q (i.e., values from the
set V ′). Actions send(v) must be performed by both P
and Q, but because P does not know the value of v that
is passed by Q, it must be able to execute all the actions
send(v ∈ V), so all of them will be automatically inclu-
ded in its alphabet. As Q will execute an action send(v)
such that v is a value that must be passed to P , it fol-
lows that only actions send(v ∈ V ′) will be part of Q’s
alphabet. Communication between P and Q is modeled
by considering the parallel composition of P and Q. Note
that if v ∈ V ′ then action synchronization will correctly
model passing of v from Q to P . However, if v ∈ V \ V ′,
the process P will be able to execute send(v), while Q
will not, so execution of P ‖ Q will proceed without syn-
chronization with action send(v). This incorrect behavior
can be corrected by extending the alphabet of Q, so inste-
ad of Q we shall use Q′ = Q + {send(v ∈ V)}. In this
situation, if v ∈ V \ V ′, then the processes P and Q′ must
synchronize on their common alphabets, and independent
execution of P without synchronization with Q′ will not
be possible for actions send(v) where v ∈ V \ V ′.

Note that alphabet extension is utilized in the Match-
maker model (see Section 5.1).

(iii) We assume that R is the set of requesters and P is the
set of providers. The identity of requester and provider
agents is explicitly represented by integer indexes r ∈ R
and p ∈ P .

(iv) Requests made by requester agents are indexed with
the requester ID. Requests made to the providers are inde-
xed with the provider ID. It follows that (a) requests from
requesters to middle-agents are indexed only with the ID
of the requester—action request(r), and (b) requests from
middle-agents to providers are indexed only with the ID of
the providers; (c) requests made by requesters directly to
providers are indexed with both the IDs of the requester
and the provider—action request_to_provider (r, p). No-
te that details like request preferences and service capabi-
lities are abstracted away from our models, as we consider
them unnecessary to understand the specific particularities
of interaction for each type of middle-agent. Accordingly,
this assumption means that details of a request/capability
are “incorporated” in the ID of the requester/provider.

(v) The matching operation is modeled as a relation M
between the sets P of providers and R of requesters, i.e.,
M ⊆ P×R. If r is a requester ID then the set P of IDs of
matching providers that results from a matching operation
is P = M(r). Symmetrically, if p is a provider ID then

the set R of the IDs of matching requesters that results
from a matching operation is R = M−1(p).

(vi) We define some action naming conventions with the
role of standardizing the communication interfaces of the
agents with the exterior environment consisting of requ-
esters, providers, and possibly other middle-agents. A pro-
vider will use the action offer to register a capability
and action withdraw to unregister a capability with the
middle-agent. As for the provider’s service interface, we
use the convention receive_request / send_reply to mo-
del the receipt of a service request and return of a reply.
A requester will use the action request for requesting a
service from the middle-agent. If the service is not inter-
mediated by the middle-agent, then the middle-agent will
respond with the action tell . If the service is intermediated
by the middle-agent, then the middle-agent will respond
either with the action success if the serve provision was
successful or with the action fail in the case of failure to
service the requester.

5. FSP models of Matchmaker, Front-agent
and Broker

Based on our literature overview, we noticed that frequ-
ently utilized middle-agents for connecting provider and
requester agents are Matchmaker, Front-agent, and Bro-
ker. In this section, we present and discuss their FSP mo-
dels, using the framework and the modeling assumptions
introduced in the previous sections. Taking into account
that the modeling principles are general and the resulting
models are complex enough, one can easily apply this mo-
deling approach to the other types of middle-agents (see,
e.g., the model of Recommender discussed by Bădică et al.
(2007)).

Note that we start with an intuitive description of
types of middle-agents that aims at providing a concise
natural language description of middle-agent interaction
patterns with requesters and providers, emphasizing the
initial assumptions that were used for their classification
(Decker et al., 1997) and follow with the specification and
analysis of their formal FSP models.

5.1. Matchmaker middle-agent in FSP. A Matchma-
ker middle-agent (also known as Yellow-pages, see Ta-
ble 1) assumes that, before the interaction between the re-
quester and the provider, requester preferences are known
only to the requester, while provider capabilities are or
will become known to all interaction participants. This
means that a provider will have to advertise its capabili-
ties with Matchmaker, and Matchmaker is responsible for
matching a request with registered capabilities advertise-
ments. However, the fact that provider capabilities are ini-
tially known also by the requester means that the result of
the matching (i.e., the set of matching providers) will be
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returned by Matchmaker to the requester (provider capabi-
lities become thus known to the requester), and the choice
of the matching provider is the responsibility of the requ-
ester. Consequently, the transaction is not intermediated
by Matchmaker, as would be the case, for example, with
Broker or Front-agent.

The block diagram and FSP specification of a system
with requesters, providers and Matchmaker are shown in
Fig. 1.

The Provider agent registers its capability offer (the
action offer ) with Matchmaker and then enters a loop
where it receives requests from Requester agents via the
action receive_request and processes and replies accor-
dingly via the action send_reply . Note that Provider can
also withdraw a registered capability offer, and while its
capability is not registered it always refuses to serve a re-
quest (the action refuse_request).

The Requester agent submits a request to Matchma-
ker (the action send_request) and then waits for a re-
ply. Matchmaker replies with a set of matching provi-
ders (the action tell with the argument M(r) ∩ P re-
presenting the set of matches; here P is the set of regi-
stered providers and M(r) is the set of matching pro-
viders). Then Requester has the option to choose which
provider from set P to contact for performing the servi-
ce (the action send_request_to_provider with argument
p ∈ P representing the chosen provider). Finally, Requ-
ester waits for a reply from the contacted provider (the
action receive_reply).

The Matchmaker agent registers and unregisters Pro-
vider offers and answers Requester requests for mat-
ching offers. Matchmaker informs Requester about ava-
ilable registered offers (the action tell ). Note that Re-
quester is responsible for choosing an appropriate mat-
ching offer from the available matching offers (the ac-
tion send_request_to_provider ). This complicates a bit
the behavior of Requester compared with Front-agent and
Broker cases (see Subsections 5.2 and 5.3).

Special care is taken to accurately model agent com-
munication using FSP synchronization. The Matchmaker
model requires alphabet extension (construct {tell(r′ ∈
R, P ′ ⊆ P)} in Fig. 1) to correctly model communica-
tion between Matchmaker and Requester.

A critical situation may occur when a matching of-
fer is found but the matching Provider chooses to can-
cel its offer by unregistering it with Matchmaker before it
is actually contacted by Requester. This ability of Provi-
der is modeled with the action refuse_request . Note that
this situation cannot occur with Front-agent and Broker
(remember that both Front-agent and Broker intermediate
the request on behalf of Requester), so we did not have to
model this ability of Provider in those cases.

5.2. Front-agent middle-agent in FSP. A Front-agent
middle-agent (also known as Proxy, see Table 1) assumes

that, before the interaction between the requester and the
provider, requester preferences are known only to the re-
quester, while provider capabilities are known both to pro-
vider and the middle-agent. This means that the provider
will have to advertise its capabilities with Front-agent, and
Front-agent is responsible for matching a request with re-
gistered capabilities advertisements. Additionally, as the
provider capabilities will not be known to the requester,
Front-agent also has the responsibility of intermediating
the transaction between the requester and the matching
provider (this is why often this type of middle-agent is cal-
led Broker rather than Front-agent; in our opinion a true
Broker, is different, see below).

The block diagram and FSP specification of a sys-
tem composed of requesters, providers and Front-agent
are shown in Fig. 2.

The Provider agent is similar to the Matchmaker ca-
se. The Requester agent is simpler than the Matchma-
ker case: it submits a request to Front-agent (the action
send_request ) and then waits for Front-agent to either re-
solve that request (the action success) or fail (the action
fail ).

The Front-agent agent processes requests from Requ-
ester agents and registers offers from Provider agents. No-
te that, unlike Matchmaker, Front-agent has the responsi-
bility of choosing an appropriate matching provider from
the available matching providers M(r)∩P (here P is the
set of registered providers and M(r) is the set of mat-
ching providers) using the action fragent_request and to
resolve the request (the action fragent_request). Finally,
the result is passed to the Requester agent using the action
success. In conclusion, the actual Provider that fulfils the
request for Requester on behalf of Front-agent is hidden
from Requester that issued the request.

5.3. Broker middle-agent in FSP. A Broker middle-
agent (see Table 1) assumes that, before the interaction
between the requester and the provider, requester prefe-
rences are known only to the requester and the middle-
agent and provider capabilities are known only to the pro-
vider and the middle-agent. The crucial point is, however,
that requester preferences will not be known to the pro-
vider and provider capabilities will not be known to the
requester. This means that Broker will truly intermediate
transactions between providers and requesters in both di-
rections: (i) if a requester submits a request either it cannot
be matched and it is registered with Broker or it is matched
with a provider capability and then transaction is interme-
diated by Broker, and (ii) if a provider advertises a capa-
bility then the capability is registered with Broker and it is
also matched against registered requests; neither match is
found and nothing more happens or matches are found and
corresponding transactions are intermediated by Broker.

The block diagram and FSP specification of a system
composed of requesters, providers and Broker are shown
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Requester(r) Matchmaker 

Provider(p) 

request(r) 

tell(r,P) 

offer(p) 

send_req_to_provider(r,p)

refuse_request(r,p) 

withdraw(p)

receive_reply(r,p) 

Provider = (offer → ProcessRequest |
receive_request → refuse_request → Provider),

ProcessRequest = (receive_request → send_reply → ProcessRequest |
withdraw → Provider).

Requester = (send_request → WaitReply),
WaitReply = (tell(P ⊆ P) → if P �= ∅ then ContactProvider(P ) else Requester),
ContactProvider(P ⊆ P) = (while P �= ∅ send_request_to_provider(p ∈ P ) →

{receive_reply(p), refuse_request(p)} → Requester).

Matchmaker = Matchmaker(∅),
Matchmaker(P ⊆ P) = (request(r ∈ R) → MatchReq(r, P ) |

offer(p ∈ P \ P ) → Matchmaker(P ∪ {p}) |
withdraw(p ∈ P ) → Matchmaker(P \ {p})),

MatchReq(r ∈ R, P ⊆ P) = (tell(r,M(r) ∩ P ) → Matchmaker(P )) + {tell(r′ ∈ R, P ′ ⊆ P)}.

Requester(r ∈ R) = Requester/{request(r)/send_request, tell(r, P ⊆ P)/tell(P ),
send_request_to_provider(r, p ∈ P)/send_request_to_provider(p),
receive_reply(r, p ∈ P)/receive_reply(p), refuse_request(r, p ∈ P)/refuse_request(p)}.

Provider(p ∈ P) = Provider/{offer(p)/offer ,
send_request_to_provider(r ∈ R, p)/receive_request,
receive_reply(r ∈ R, p)/send_reply, refuse_reply(r ∈ R, p)/refuse_reply}.

System = Matchmaker || (||r∈RRequester(r)) || (||p∈PProvider(p)).

Fig. 1. System with the Matchmaker middle-agent.

in Fig. 3. Provider and Requester agents are similar to the
Front-agent case.

Broker processes requests from Requesters and pro-
cesses and registers offers from Providers. If a request can
be served based on available matching offers, then Broker
behaves similarly to Front-agent. Unlike Front-agent, if
a request cannot be served based on currently registered
offers, then, rather than reporting failure, the request is
recorded until either (i) a new matching offer is registe-
red with the Broker, or (ii) the request is deemed failed.
Note that when a new offer is registered, Broker determi-
nes the set of recorded (i.e., not yet served) matching re-
quests – M−1(p) ∩ R (note that M−1(p) is the set of
matching requesters and R is the set of recorded requ-
esters) and serves them using the matching provider p –
ContactProviderOff sub-process in Fig. 3.

5.4. System properties. A basic desirable property of
systems with middle-agents is that they are free of de-
adlocks. The result is formally stated as follows.

Proposition 1. The systems with Matchmaker, Front-

agent and Broker shown in Figs. 1–3 are deadlock free.

Proof. We consider only the proof for the Matchmaker
system. The proofs for Front-agent and Broker follow the
pattern and are therefore omitted.

Let us consider an arbitrary system state S. As the
system is a parallel composition of processes, state S is
composed of sub-states corresponding to Matchmaker and
to each of the Provider and Requester processes. Any pro-
gress from S will be caused by an interaction between two
processes: Matchmaker with Provider, Matchmaker with
Requester or Requester with Provider. Note that Match-
maker can be in one of two states: (i) Matchmaker(P ) with
P ⊆ P ; (ii) MatchReq(r, P ) with r ∈ R and P ⊆ P .

In the first case, this means that Matchmaker finali-
zed to process a request and is waiting for a new one. If a
new request is available, we are done. If Provider is ava-
ilable to register/unregister a capability offer, we are again
done. Otherwise, this means that all requesters submitted
requests to providers and wait for service. In this case, we
randomly pick a pair Requester(r) and Provider (p) with
r ∈ R and p ∈ P , and the system will proceed with inte-
raction between Requester(r) and Provider (p).
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Requester(r) Front-agent 

Provider(p) 

request(r) 

success(r) 

offer(p)

fragent_req (p)

fragent_reply(r,p)

fail(r) 

withdraw(p) 

Provider = (offer → ProcessRequest),
ProcessRequest = (receive_request → send_reply → ProcessRequest |

withdraw → Provider).

Requester = (send_request → WaitReply),
WaitReply = ({sucess, fail} → Requester).

Frontagent = Frontagent(∅),
Frontagent(P ⊆ P) = (request(r ∈ R) → ResolveReq(r, P ) |

offer(p ∈ P\P ) → Frontagent(P ∪ {p}) |
withdraw(p ∈ P ) → Frontagent(P \ {p})),

ResolveReq(r ∈ R, P ⊆ P) = (if M(r) ∩ P = ∅ then fail(r) → Frontagent(P )
else ContactProvider(r,M(r) ∩ P, P )),

ContactProvider(r ∈ R, P ′ ⊆ P, P ⊆ P) = (while P ′ �= ∅ fragent_req(p ∈ P ′) → fragent_reply(p) →
success(r) → Frontagent(P )).

Requester(r ∈ R) = Requester/{request(r)/send_request, fail(r)/fail, success(r)/success}.
Provider(p ∈ P) = Provider/{offer(p)/offer , fragent_req(p)/receive_request,

fragent_reply(p)/send_reply, withdraw(p)/withdraw}.
System = Frontagent || (||r∈RRequester(r)) || (||p∈PProvider(p)).

Fig. 2. System with the Front-agent middle-agent.

In the second case, progress will occur through in-
teraction between Matchmaker and Requester(r), as
Requester(r) is definitely in state WaitReply . �

6. FLTL modeling of system properties

In this section we show how qualitative properties can be
defined for systems with requesters, providers and middle-
agents. Clearly, there are many types of properties that can
be defined for multi-agent systems, focusing either on ty-
pical features of agents like autonomy, proactiveness, re-
activeness and adaptivity (Brazier et al., 2004), or on more
specific aspects like those related to complex sequences of
messages that agents may exchange during a negotiation
process (Podorozhny et al., 2007). A full coverage of ty-
pes of properties that are specific to each type of middle-
agent would require a more elaborated treatment and it is
therefore beyond the scope of this paper. Nevertheless, in
this section we exploit the FSP models introduced in the
previous section by showing (using examples) how pro-
totypical qualitative properties can be defined in tempo-
ral logic for systems with Matchmaker and Front-agent
middle-agents (Bădică and Bădică, 2008a).

Formal modeling of agent systems has the advantage
that models can be systematically checked against user-

defined properties. A property is defined by a statement
that should be true for all the possible execution paths
of the system. A property is used to describe a desirable
feature of the system behavior. The definition and analy-
sis of properties of middle-agents have the advantage that
they enable a formal and concise, rather than informal and
speculative, comparison of types of middle-agents.

Properties of software systems are usually expres-
sed as formulas in a temporal logic language (Clarke
et al., 1986). Temporal logics are a subclass of modal lo-
gics specially tailored for declarative specification of pro-
perties of dynamic systems defined as labeled transition
systems. Clearly, multi-agent systems that contain middle-
agents are a special class of software systems composed
of many agents that dynamically interact and coordinate
their actions by message exchange.

A property holds if the associated formula is true for
all the possible executions of the system, as it is described
by the system model. For system models captured using
FSP it has been shown that a very convenient temporal lo-
gic for property expression is fluent linear temporal logic
(FLTL) (Magee and Kramer, 2006).

In FLTL, primitive properties are expressed using flu-
ents. A fluent is a property whose truth is triggered by an
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Requester(r) Broker 

Provider(p) 

request(r) 

success(r) 

offer(p)

broker_req (p)

broker_reply(r,p)

fail(r) 

withdraw(p) 

Provider = (offer → ProcessRequest),
ProcessRequest = (receive_request → send_reply → ProcessRequest |

withdraw → Provider).

Requester = (send_request → WaitReply),
WaitReply = ({sucess, fail} → Requester).

Broker = Broker(∅, ∅),
Broker(R ⊆ R, P ⊆ P) = (request(r ∈ R \ R) → ResolveReq(r, R, P ) |

offer(p ∈ P \ P ) → ResolveOff (p, R, P ) |
withdraw(p ∈ P ) → Broker(R, P \ {p}) |
while R �= ∅ fail(r ∈ R) → Broker(R \ {r}, P )),

ResolveReq(r ∈ R, R ⊆ R, P ⊆ P) = (if M(r) ∩ P = ∅ then Broker(R ∪ {r}, P )
else ContactProviderReq(r, R,M(r) ∩ P, P )),

ContactProviderReq(r ∈ R, R ⊆ R, P ′ ⊆ P, P ⊆ R) = (while P ′ �= ∅ broker_req(p ∈ P ′) → broker_reply(p) → success(r) →
Broker(R, P )),

ResolveOff (p ∈ P, R ⊆ R, P ⊆ P) = (if M−1(p) ∩ R = ∅ then Broker(R, P ∪ {p})
else ContactProviderOff (p,M−1(p) ∩ R, R, P )),

ContactProviderOff (p ∈ P, R′ ⊆ R, R ⊆ R, P ⊆ P) = (if R′ �= ∅ then broker_req(p) → broker_reply(p) →
success(r ∈ R′) → ContactProviderOff (p, R′ \ {r}, R \ {r}, P )
else Broker(R, P )).

Requester(r ∈ R) = Requester/{request(r)/send_request, fail(r)/fail, success(r)/success}.
Provider(p ∈ P) = Provider/{offer(p)/offer , fragent_req(p)/receive_request,

fragent_reply(p)/send_reply, withdraw(p)/withdraw}.
System = Broker || (||r∈RRequester(r)) || (||p∈PProvider(p)).

Fig. 3. System with the Broker middle-agent.

initiating event and that holds until the signalling of a ter-
minating event. In FSP, it is natural to model initiating
and terminating events by executing specific actions. The-
refore, following (Magee and Kramer, 2006), a fluent is
defined as a triple:

fluent F

= 〈{i1, . . . , im}, {t1, . . . , tn}〉 initially B,

where (i) {i1, . . . , im} and {t1, . . . , tn} are disjoint sets
of initiating events and terminating events and (ii) B is
true or false and represents the initial value of F (when
the initial value B of the fluent is not given, it is assumed
to be false by default). When any of the initiating actions
is observed, F becomes true and remains so until any of
the terminating actions is observed.

Every action a defines a singleton fluent F (a) having
a as the single initiating action and the rest of all actions

as terminating actions as follows:

fluent F (a) = 〈{a}, A \ {a}〉.

A singleton fluent F (a) is usually written as a in FLTL
formulas.

FLTL formulas are built over fluent propositions (in-
cluding singleton fluents) using the usual logical operators
∧,∨,→,¬ and temporal operators X (next), U (until), W
(weak until), F (eventually) and G (always) (Magee and
Kramer, 2006). A property P is specified using an FLTL
formula Φ as follows:

assert P = Φ.

Property specification was recognized as a difficult
task requiring expert knowledge in formal methods, espe-
cially in temporal logic. However, according to the rigoro-
us analysis performed by Dwyer et al. (1999), most of the
specifications fall into the category of specification pat-
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terns. Therefore, in our work we have looked into the ap-
plication of property specification patterns to the verifi-
cation of Matchmaker and Front-agent middle-agents. In
particular, we show how response properties that check
if a given situation must always be followed by another
situation can be applied to the verification of our system.

For the Matchmaker middle-agent, we can define a
fluent that holds while Matchmaker is processing a request
from a given Requester,

fluent MM _PROC_REQ(r ∈ R)
= 〈{request(r)}, {tell (r, P ⊆ P)}〉

Similarly, we can define a fluent that holds while the
system (Matchmaker and Provider) is processing a requ-
est from a given Requester. Note that this property cap-
tures also the intuition that the requester can finalize the
processing immediately (without getting receive_reply or
refuse_request) when there is no registered provider,

fluent PROC_REQ(r ∈ R)
= 〈{request(r)}, {receive_reply(r, p ∈ P),
refuse_request(r, p ∈ P), tell(r, ∅)}〉

Similarly, we can define a fluent that holds while
Front-agent is processing a request from a given Requ-
ester,

fluent FA_PROC_REQ(r ∈ R)
= 〈{request(r)}, {success(r), fail (r)}〉

We can also describe the REGISTERED fluent that
holds while Provider is registered with either Matchmaker
or Front-agent (note that the REGISTERED fluent holds
also for the Broker middle-agent),

fluent REGISTERED(p ∈ P)
= 〈{offer(r)}, {withdraw (r)}〉

Using the REGISTERED(p ∈ P) properties, we
can define an indexed set of properties MATCHES (r ∈
R) that are true when there is a registered Provider that
matches the given Requester r ∈ R,

assert MATCHES (r ∈ R)
= ∨p∈M(r)REGISTERED(p)

Using the defined fluents and formulas, we can
express two characterizing response properties of a sys-
tem with Front-agent: (i) “If a Requester issues a requ-
est to Front-agent, then Front-agent will eventually reply
either with success or failure” and (ii) “If Requester issu-
es a request to Front-agent and there is at least one mat-
ching Provider registered with Front-agent, then Front-

agent will eventually reply with success”. These proper-
ties can be formally defined using FLTL as follows:

assert FA_RESPONSE (r ∈ R)
= G (request(r) →

(FA_PROC_REQ(r)U (success(r) ∨ fail (r))))
assert FA_MATCHING_RESPONSE (r ∈ R)
= G ((request(r) ∧ MATCHES (r)) →

(FA_PROC_REQ(r)U success(r))).

Different response properties can be defined for the
Matchmaker middle-agent: “If Requester issues a requ-
est to Matchmaker, then Matchmaker will eventually reply
with the set of matching providers”,

assert MM _RESPONSE(r ∈ R)
= G (request(r)
→ (MM _PROC_REQ(r)U ∨P⊆M(r) tell(r, P )))

We would be tempted to define a response property
of the system with Matchmaker similar to Front-agent: “If
there is a matching Provider offer already registered with
Matchmaker when a request is issued by Requester, then
the request will be served by a matching Provider”,

assert MM _MATCHING_RESPONSE_BAD
(r ∈ R)
= G ((request(r) ∧ MATCHES (r)) →
(PROC_REQ(r)U receive_reply(r, p ∈ P)))

Note, however, that this property does NOT hold! Betwe-
en the time the matching offers are provided to Requester
by Matchmaker and the time when Requester decides to
contact a matching Provider, it may happen that the mat-
ching Provider decides to cancel the offer by unregistering
with Matchmaker.

The correct reformulation of this property would re-
quire to guarantee that the system will either perform the
request and reply accordingly (the action receive_reply)
or will indicate explicitly that fulfilling the request was
refused (the action refuse_request),

assert MM _MATCHING_RESPONSE(r ∈ R)
= G ((request(r) ∧ MATCHES (r)) →

(PROC_REQ(r)U {receive_reply(r, p ∈ P),
refuse_request(r, p ∈ P)}))

7. Experiments and discussions

We conducted a series of experiments to check the cor-
rectness of our models introduced in Section 5. As a side
effect, we also recorded the size of the state model expres-
sed as the number of states and transitions, depending on
the number of requesters and providers.
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7.1. Experimental setup. Firstly we had to express the
general models shown in Figs. 1–3 using the FSP/FLTL
language supported by the LTSA tool (version 3.0)
(Magee and Kramer, 2006). The main difficulty is the en-
coding of processes indexed with sets in the language sup-
ported by LTSA.

Assuming that S is a set with n elements, the map-
ping of processes indexed with sets and/or set elements to
the FSP notation supported by LTSA follows the guideli-
nes: (i) an index s ∈ S is encoded as [s]; (ii) an index S ⊆
S is encoded as [s1] . . . [sn] such that si = 1 if i ∈ S and
si = 0 if i �∈ S. For example, ResolveReq(2, {1}, {1, 3})
is mapped to ResolveReq[2][1][0][1][0][1]
and tell(1, {2, 3}) is mapped to tell[1][0][1][1].

Note that a mapping can be defined such that the size
of the resulting FSP specification is linear in the product
of number of providers with the number of requesters5.
This is an important desiderata to make the resulting FSP
specification of a practical value.

Proposition 2. Let m = |R| and n = |P|. The sys-
tems with Matchmaker, Front-agent and Broker shown in
Figs. 1–3 can be mapped to the FSP language supported
by the LTSA tool such that the size of the resulting specifi-
cation is O(m × n).

Proof. The result is a consequence of the following two
observations.

First note that the mapping of set indexed names of
processes and actions produces new names of size linear
with m and n.

Second, the application of the following mapping ru-
les produces parts of FSP specification that clearly have a
size of O(m × n).

If Proc(S ⊆ S) is a set indexed process and |S| = n,
then the construct

Proc(S ⊆ S) = (while S �= ∅ action(s ∈ S) . . . )

is mapped to (here assuming n = 3)

Proc[s1:0..1][s2:0..1][s3:0..1] = (
while s1 == 1 action[1] ... |
while s2 == 1 action[2] ... |
while s3 == 1 action[3] ...).

Note that the size of the resulting specification is O(n).
If Proci(S ⊆ S), i = 1, 2, are set indexed processes

and |S| = n, then the construct

Proc1(S ⊆ S) = (while S �= ∅ Proc2(S) . . . )

is mapped to (here assuming n = 3)

5Do not confuse the size of the FSP specification (i.e., the size of the
FSP code measured, for example, as the number of nodes of its syntax
tree) with the size of the LTS corresponding to this specification.

{Proc1[s1:0..1][s2:0..1][s3:0..1] = (
if s1 == 1 || s2 == 1 || s3 == 1
then Proc2[s1:0..1][s2:0..1]
[s3:0..1] ...)

Note that the size of the resulting specification is O(n).
If S1 and S2 are sets, |S1| = m and |S2| = n, M ⊆

S1 × S2 is a relation, then the construct

Proc1(s ∈ S1, S ⊆ S2) = (if M(s) ∩ S = ∅ then . . .
else Proc2(M(s) ∩ S) . . . )

is mapped to (here assuming m = 2, n = 3 and M =
{(1, 2), (1, 3), (2, 1), (2, 2)})

Proc1[s:1..2][s1:0..1][s2:0..1]
[s3:0..1] = (

if s == 1 then
if s2 == 0 && s3 == 0 then ...
else Proc2[0][s2][s3] ...

else if s == 2 then ...
if s1 == 0 && s2 == 0 then ...
else Proc2[s1][s2][0] ...).

Note that the size of the resulting specification is
O(m × n). �

7.2. Results and discussion. In the experiments we
considered three systems composed of: (i) n requesters
and n+1 providers, 2 ≤ n ≤ 5; (ii) ones middle-agent per
system (Matchmaker, Front-agent and respectively, Bro-
ker); and, (iii) the matching relation M = {(i, i + 1)|1 ≤
i ≤ n} ∪ {(i, i + 2)|1 ≤ i ≤ n − 1} ∪ {n, 1)}.

We utilized model checking tools provided by LTSA
to analyze the resulting FSP models of these systems
that contain Matchmaker, Front-agent and Broker middle-
agents. The result of this analysis shows that these models
are free of deadlocks, which is consistent with theoreti-
cal results (Section 5.4, Proposition 1). Sizes in terms of
the number of states and transitions of their corresponding
labeled transition systems are presented in Tables 2–4.

For example, in Fig. 4 we present the encoding of the
Front-agent system from Fig. 2 using the FSP notation
supported by the LTSA tool. Note that this system conta-
ins one Front-agent, two Requester agents and three Pro-
vider agents. The matching function is defined as follows:
M = {(1, 2), (1, 3), (2, 3), (2, 1)}, i.e., Requester1 will
match with Provider2 and Provider3, and Requester2 will
match with Provider3 and Provider1. Referring to Fig. 4,
the fact that the request of Requester1 must match with
Provider2 and Provider3 is modeled as follows:

ResolveReq[r:1..2][p1:0..1][p2:0..1]
[p3:0..1] =

if r == 1 then
if p2 == 0 && p3 == 0 then
(fail[r]
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Table 2. LTS size of the system with the Matchmaker middle-agent.
# requesters # providers # states # transitions # states after minimization

2 3 608 2272 376
3 4 3392 14720 2064
4 5 166400 1010176 N/A
5 6 > 1000000 > 7000000 N/A

Table 3. LTS size of the system with the Front-agent middle-agent.
# requesters # providers # states # transitions # states after minimization

2 3 56 92 52
3 4 160 268 148
4 5 416 704 384
5 6 1024 1744 944

-> Frontagent[p1][p2][p3])
else ContactProvider[r][0][p2][p3]
...

This means that when r = 1, i.e., Front-agent re-
ceived a request from Requester1 and neither Provider2
nor Provider3 are registered (i.e., p2 = 0 and p3 = 0),
Front-agent will return failure, otherwise it will proceed
to serving the request.

7.3. Experiments with properties verification. We
also conducted model checking experiments with LTSA
to check our models of Matchmaker and Front-
agent against the FLTL qualitative properties intro-
duced in Section 6. We updated our mapping fra-
mework with the mapping of FLTL formulas. For
example, the response properties MM _RESPONSE ,
MM _MATCHING_RESPONSE_BAD , as well as
MM _MATCHING_RESPONSE for Matchmaker are
shown in Fig. 5 (assuming there are four requesters, five
providers and M(2) = {3, 4})6.

We utilized the LTSA tool to check the property
MM _MATCHING_RESPONSE_BAD for r = 2. We
obtained the trace presented in Fig. 6 that shows that the
property does not hold.

More precisely, taking into account that in this sys-
tem there are four requesters and five providers, this tra-
ce points out to the following system execution scenario:
Providers 1, 2 and 3 register their offers with Matchma-
ker; Requester 2 queries Matchmaker, which consequen-
tly responds with a single matching offer – {3} (remem-
ber that in this example Requester 2 matches with Pro-
viders 3 and 4); Provider 3 then cancels the offer; final-
ly, Requester 2 contacts Provider 3, which however, has
to refuse the request, as it was canceled before. Sum-
marizing, when request[2] occurred, MATCHES[2]

6FSP and FLTL models used in experiments are available at
http://software.ucv.ro/~cbadica/fsp/amcs10_models.zip.

was true (as REGISTERED[3] was true), while the flu-
ent PROC_REQ[2] ceased to be true before the oc-
currence of an event receive_reply[2][p] with
1 ≤ p ≤ 5, as it was required by the property
MM_RESPONSE2_BAD.

Our conclusion after applying LTSA to checking FSP
models of middle-agents is that, despite the usefulness of
model checking to verify simple models of middle agents,
the technique is limited for at least two reasons: (i) the ap-
proach is not general because it is only able to check speci-
fic instances of systems with a given number of agents and
a specific matching relation rather than general models;
(ii) the state-space explosion problem hinders the analysis
of systems with a larger number of states.

Nevertheless, we think that the developed models
are useful to better understand available types of middle-
agents and to enable a theoretical study of their qualitative
properties, which would be obviously more robust than
the experimental investigation using model checking.

8. Conclusions

Our work sheds light on the modeling of software sys-
tems incorporating middle-agents using process algebra
for defining the semantics of the different actors in such
applications. In particular, we proposed a formal frame-
work based on FSP process algebra and FLTL temporal
logic for the modeling and verification of systems that
contain requesters, providers and middle-agents. We ap-
plied this framework to model and verify systems with
three types of middle-agents: Matchmaker, Front-agent,
and Broker. For each system, we defined a sample set of
qualitative properties expressed in FLTL and we checked
the resulting models against these properties with the help
of the LTSA analysis tool. While this work might look
incomplete with respect (i) to the coverage of the set of
nine types of middle-agents that were identified in the li-
terature, and (ii) to considering only those properties that
are formally expressible using FLTL, it still has a sen-

http://software.ucv.ro/~cbadica/fsp/amcs10_models.zip.
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Table 4. LTS size of the system with the Broker middle-agent.
# requesters # providers # states # transitions # states after minimization

2 3 293 464 281
3 4 1788 2997 1718

// M ={(1,2),(1,3),(2,1),(2,2)}
Frontagent = Frontagent[0][0][0],
Frontagent[p1:0..1][p2:0..1][p3:0..1] = (

request[r:1..2] -> ResolveReq[r][p1][p2][p3] |
when p1 == 0 offer[1] -> Frontagent[1][p2][p3] |
when p2 == 0 offer[2] -> Frontagent[p1][1][p3] |
when p3 == 0 offer[3] -> Frontagent[p1][p2][1]

),
ResolveReq[r:1..2][p1:0..1][p2:0..1][p3:0..1] =

if r == 1 then
if p2 == 0 && p3 == 0 then (fail[r] -> Frontagent[p1][p2][p3])
else ContactProvider[r][0][p2][p3]

else if r == 2 then
if p1 == 0 && p2 == 0 then (fail[r] -> Frontagent[p1][p2][p3])
else ContactProvider[r][p1][p2][0],

ContactProvider[r:1..2][p1:0..1][p2:0..1][p3:0..1] = (
when p1 == 1 fragent_req[1] -> fragent_reply[1] -> success[r] -> Frontagent[p1][p2][p3] |
when p2 == 1 fragent_req[2] -> fragent_reply[2] -> success[r] -> Frontagent[p1][p2][p3] |
when p3 == 1 fragent_req[3] -> fragent_reply[3] -> success[r] -> Frontagent[p1][p2][p3]).

Requester = (
send_request -> WaitReply),

WaitReply = (
{success, fail}-> Requester).

Provider =
(offer -> ProcessRequests),

ProcessRequests = (
receive_request -> send_reply -> ProcessRequests).

||Reequester1 = Requester/{request[1]/send_request,fail[1]/fail,success[1]/success}.
||Reequester2 = Requester/{request[2]/send_request,fail[2]/fail,success[2]/success}.

||Provider1 = Provider/{offer[1]/offer,fragent_req[1]/receive_request,fragent_reply[1]/send_reply}.
||Provider2 = Provider/{offer[2]/offer,fragent_req[2]/receive_request,fragent_reply[2]/send_reply}.
||Provider3 = Provider/{offer[3]/offer,fragent_req[3]/receive_request,fragent_reply[3]/send_reply}.

||System = (Frontagent || Reequester1 || Reequester2 || Provider1 || Provider2 || Provider3).

Fig. 4. Encoding of the Front-agent model with n = 2 for the LTSA tool.

const False = 0
const R = 4
const P = 5
fluent REGISTERED[p:1..P] =

<{offer[p]},{withdraw[p]}> initially False
fluent PROC_REQ[r:1..R] =

<{request[r]},{receive_reply[r][p:1..P],refuse_request[r][p:1..P]}> initially False
fluent MATCHMAKER_PROC_REQ[r:1..R] =

<{request[r]},{tell[r][p1:0..1][p2:0..1][p3:0..1][p4:0..1][p5:0..1]}> initially False
assert MATCHES2 =

(REGISTERED[3] || REGISTERED[4])
assert MM_RESPONSE2 =

[](request[2] -> (MATCHMAKER_PROC_REQ[2] U {tell[2][p1:0..1][p2:0..1][p3:0..1][p4:0..1][p5:0..1]}))
assert MM_MATCHING_RESPONSE2_BAD =

[](request[2] && MATCHES2 -> (PROC_REQ[2] U receive_reply[2][p:1..P]))
assert MM_MATCHING_RESPONSE2 =

[](request[2] && MATCHES2 -> (PROC_REQ[2] U {receive_reply[2][p:1..P],refuse_request[2][p:1..P]}))

Fig. 5. Encodings of system properties for the LTSA tool.
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Violation of LTL property: @MM_RESPONSE2_BAD
Trace to terminal set of states:

offer.1
offer.2
offer.3 REGISTERED.3
request.2 REGISTERED.3 && PROC_REQ.2
tell.2.0.0.1.0.0 REGISTERED.3 && PROC_REQ.2
withdraw.3 PROC_REQ.2
send_req_to_provider.2.3 PROC_REQ.2
refuse_request.2.3
offer.3 REGISTERED.3
request.2 REGISTERED.3 && PROC_REQ.2
tell.2.0.0.1.0.0 REGISTERED.3 && PROC_REQ.2
offer.4 REGISTERED.3 && REGISTERED.4 && PROC_REQ.2
request.3 REGISTERED.3 && REGISTERED.4 && PROC_REQ.2
tell.3.0.0.0.1.0 REGISTERED.3 && REGISTERED.4 && PROC_REQ.2
offer.5 REGISTERED.3 && REGISTERED.4 && PROC_REQ.2
request.4 REGISTERED.3 && REGISTERED.4 && PROC_REQ.2
tell.4.1.0.0.0.1 REGISTERED.3 && REGISTERED.4 && PROC_REQ.2
withdraw.3 REGISTERED.4 && PROC_REQ.2
request.1 REGISTERED.4 && PROC_REQ.2

Cycle in terminal set:
tell.1.0.1.0.0.0 REGISTERED.4 && PROC_REQ.2
send_req_to_provider.1.2 REGISTERED.4 && PROC_REQ.2
receive_reply.1.2 REGISTERED.4 && PROC_REQ.2
request.1 REGISTERED.4 && PROC_REQ.2

LTL Property Check in: 14593ms

Fig. 6. Trace of property verification using LTSA.

se of completeness by a full treatment of the modeling-
specification-verification cycle of a software system. In
the future, we intend to (i) model more complex systems
containing all types of middle-agents using a compositio-
nal approach; (ii) extend the framework for properties spe-
cification and verification with a comprehensive analysis
of properties specific to all nine types of middle-agents.
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Bădică, A., Bădică, C. and Liţoiu, L. (2007). Middle-agents
interactions as finite state processes: Overview and exam-
ple, Proceedings of the 16th IEEE International Workshop
on Enabling Technologies: Infrastructure for Collaborati-
ve Enterprises (WETICE 2007), Paris, France, pp. 12–17.
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