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NEW STABILITY CONDITIONS FOR POSITIVE CONTINUOUS–DISCRETE 2D
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New necessary and sufficient conditions for asymptotic stability of positive continuous-discrete 2D linear systems are esta-
blished. Necessary conditions for the stability are also given. The stability tests are demonstrated on numerical examples.
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1. Introduction

In positive systems inputs, state variables and outputs take
only nonnegative values. A variety of models having posi-
tive systems behavior can be found in engineering, mana-
gement science, economics, social sciences, biology and
medicine, etc. An overview of the state of the art in po-
sitive systems is given in the monographs of Farina and
Rinaldi (2000) as well as Kaczorek (2002).

Positive continuous-discrete 2D linear systems were
introduced by Kaczorek (1998) along with positive hybrid
linear systems (Kaczorek, 2007) and positive fractional
2D hybrid systems (Kaczorek, 2008a). Various methods
of solvability of 2D hybrid linear systems were discussed
by Kaczorek et al. (2008), and the solution to singular 2D
hybrids linear systems was derived by Sajewski (2009).
The realization problem for positive 2D hybrid systems
was addressed by Kaczorek (2008b). Some problems of
dynamics and control of 2D hybrid systems were con-
sidered by Dymkov et al. (2004) and Gałkowski et al.
(2003). The problems of stability and robust stability of
2D continuous-discrete linear systems were investigated
by Bistritz (2003), Busłowicz (2010a; 2010b, 2011) and
Xiao (2001a; 2001b; 2003). Recently, stability and robust
stability of a general model and of a Roesser type model
of scalar continuous-discrete linear systems were analy-
zed by Busłowicz (2010a; 2010b; 2011).

In this paper, new necessary and sufficient conditions
for asymptotic stability of positive continuous-discrete 2D
linear systems will be presented.

The following notation will be used: R is the set of
real numbers, Z+ stands for the set of nonnegative inte-

gers, R
n×m denotes the set of n×m real matrices, R

n×m
+

is the set of n × m matrices with nonnegative entries and
R

n
+ = R

n×1
+ , In denotes the n × n identity matrix.

2. Preliminaries

Consider the linear autonomous continuous-discrete 2D
system (Kaczorek, 1998; 2002)

ẋ(t, i + 1) = A0x(t, i) + A1ẋ(t, i) + A2x(t, i + 1),
t ∈ R+, i ∈ Z+, (1)

where ẋ(t, i) = ∂x(t, i)/∂t, x(t, i) ∈ R
n, Ak ∈ R

n×n

for k = 0, 1, 2.

Definition 1. The linear continuous-discrete 2D system
(1) is called (internally) positive if x(t, i) ∈ R

n
+, t ∈ R+,

i ∈ Z+ for all initial conditions

x(0, i) ∈ R
n
+, i ∈ Z+,

x(t, 0) ∈ R
n
+, ẋ(t, 0) ∈ R

n
+, t ∈ R+. (2)

Theorem 1. (Kaczorek, 1998; 2002) The linear
continuous-discrete 2D system (1) is positive if and
only if

A2 ∈ Mn, A0, A1 ∈ R
n×n
+ ,

A0 + A1A2 ∈ R
n×n
+ , (3)

where Mn is the set of n × n Metzler matrices (with non-
negative off-diagonal entries).

kaczorek@isep.pw.edu.pl


522 T. Kaczorek

 

Fig. 1. Shifting the zeros w into the unit circle of the complex plane.

The system (1) is called asymptotically stable if

lim
t→∞,i→∞

x(t, i) = 0.

Theorem 2. (Kaczorek, 2002) The linear continuous-
discrete 2D system (1) is asymptotically stable if and only
if the zeros of the polynomial

det[Insz − A0 − A1s − A2z]

= snzn + an,n−1s
nzn−1 + an−1,nsn−1zn

+ · · · + a10s + a01z + a00 (4)

are located in the left half of the complex plane s and in
the unit circle of the complex plane z.

Theorem 3. (Kaczorek, 2002) The positive linear system

ẋ = Ax, A ∈ Mn (5)

is asymptotically stable if and only if the characteristic
polynomial

det[Ins − A] = sn + an−1s
n−1 + · · · + a1s + a0 (6)

has positive coefficients, i.e., ak > 0 for k = 0, 1, . . . ,
n − 1.

Lemma 1. (Farina and Rinaldi, 2000) A nonnegative ma-
trix A ∈ R

n×n
+ is asymptotically stable (a nonnegative

Schur matrix) if and only if the Metzler matrix A − In is
asymptotically stable (a Metzler Hurwitz matrix).

3. Main result

Theorem 4. The positive linear continuous-discrete 2D
system (1) is asymptotically stable if and only if all coeffi-
cients of the polynomial

det[Ins(z + 1) − A0 − A1s − A2(z + 1)]

= snzn + ān,n−1s
nzn−1 + ān−1,nsn−1zn

+ · · · + ā10s + ā01z + ā00 (7)

are positive, i.e.,

āk,l > 0 for k, l = 0, 1, . . . , n (ān,n = 1). (8)

Proof. It is well known that the zeros w1, . . . , wn of the
characteristic polynomial

det[Inw−A] = wn + an−1w
n−1 + · · ·+ a1w + a0 (9)

located in the unit circle in the left half of the complex
plane w can be shifted into the unit circle of the complex
plane z by the substitution w = z + 14 (Fig. 1), i.e., the
zeros z1, . . . , zn (zk = wk + 1, k = 1, . . . , n) of the cha-
racteristic polynomial

det[In(z + 1) − A]

= zn + ân−1z
n−1 + · · · + â1z + â0. (10)

are located in the unit circle of the complex plane.
Note that the polynomial (7) is the characteristic po-

lynomial of the positive system

ẋ(t, i + 1)
= (A0 + A2)x(t, i) + (A1 − In)ẋ(t, i)

+ A2x(t, i + 1).

and its matrices (A0 + A2), (A1 − In), A2 are Metzger
matrices. The sum of those matrices is also a Metzler ma-
trix. Therefore, by Theorem 3 and the results of Kaczorek
(2009), the positive continuous-discrete 2D system (1) is
asymptotically stable if and only if the coefficients of the
polynomial (7) are positive. �
Example 1. Consider the system (1) with the matrices

A0 =
[

0.2 0
0.1 0.1

]
,

A1 =
[

0.4 0
0.5 0.3

]
,

A2 =
[ −0.3 0

1 −0.2

]
.

(11)
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The matrices (11) satisfy the conditions (3) since

A0 + A1A2 =
[

0.08 0
0.25 0.04

]
∈ R

2×2
+ , (12)

and then the system is positive.
In this case, the polynomial (7) has the form

det[Ins(z + 1) − A0 − A1s − A2(z + 1)]

= det
[

s(z + 1) − 0.2 − 0.4s + 0.3(z + 1)
−0.1 − 0.5s− (z + 1)

0
s(z + 1) − 0.1 − 0.3s + 0.2(z + 1)

]

= s2z2 + 1.3s2z + 0.5sz2 + 0.42s2 + 0.06z2

+0.53sz + 0.13s + 0.05z + 0.01.

(13)

All coefficients of the polynomial (13) are positive.
Therefore, by Theorem 4, the positive continuous-discrete
system (1) with (11) is asymptotically stable.

Theorem 5. The positive continuous-discrete 2D linear
system (1) is unstable if one of the following conditions is
satisfied:

(i) det[−(A0 + A2)] ≤ 0,

(ii) det[−A2] ≤ 0,

(iii) det[In − A1] ≤ 0.

Proof. Substitution of s = z =0 into (7) yields

det[−(A0 + A2)] = ā00. (14)

If the condition (i) is satisfied, then from (14) we have
ā00 ≤ 0, and by Theorem 4 the system (1) is unstable.
Substituting s = 0 into (7) we obtain

det[−A2z − (A0 + A2)]
= ā0,nzn + · · · + ā01z + ā00, (15)

and det[−A2] = ā0,n. If the condition (ii) is met, then
ā0n ≤ 0, and by Theorem 4 the system (1) is unstable.
Similarly, substituting z = 0 into (7) we obtain

det[(In − A1)s − (A0 + A2)]
= ān,0s

n + · · · + ā10s + ā00 (16)

and det[(In−A1)] = ān,0. If the condition (iii) is met then
ān,0 ≤ 0 and, by Theorem 4, the system (1) is unstable.

�

Example 2. Consider the system (1) with the matrices

A0 =
[

0.5 0.3
0.4 0.4

]
,

A1 =
[

0.2 0.1
0.1 0.3

]
,

A2 =
[ −0.3 0.1

0.2 −0.4

]
.

(17)

The matrices (17) satisfy the conditions (3) since

A0 + A1A2 =
[

0.46 0.28
0.43 0.29

]
∈ R

2×2
+ , (18)

and then the system is positive.
Using (17), we obtain

det[−(A0 + A2)] = det
[ −0.2 −0.4

−0.6 0

]
= −0.24,

det[−A2] = det
[

0.3 −0.1
−0.2 0.4

]
= 0.1,

det[In − A1] = det
[

0.8 −0.1
−0.1 0.7

]
= 0.55,

and the condition (i) of Theorem 5 is satisfied. Therefore,
the positive system (1) with (17) is unstable.

In this case the polynomial (7) has the form

det[Ins(z + 1) − A0 − A1s − A2(z + 1)]

= det
[

sz + 0.8s + 0.3z − 0.2 −0.1s − 0.1z − 0.4
−0.1s − 0.2z − 0.6 sz + 0.7s + 0.4z

]

= s2z2 + 1.5s2z + 0.7sz2 + 0.55s2 + 0.1z2 + 0.3sz

−0.24s− 0.22z − 0.24,
(19)

and, by Theorem 4, the system is also unstable.

4. Concluding remarks

New necessary and sufficient conditions for the asympto-
tic stability of continuous-discrete 2D linear systems have
been established (Theorem 4). Some necessary conditions
for asymptotic stability have also been given. The effec-
tiveness of the new stability tests have been demonstra-
ted on numerical examples. The deliberations can be also
extended to fractional positive 2D continuous-discrete li-
near systems.
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