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Modeling of reliability characteristics typically assumes that components and systems fail if a certain individual damage
level is exceeded. Every (mechanical) system damage increases irreversibly due to employed loading and (mechanical)
stress, respectively. The main issue of damage estimation is adequate determination of the actual state-of-damage. Sev-
eral mathematical modeling approaches are known in the literature, focusing on the task of how loading effects damage
progression (e.g., Wöhler, 1870) for wear processes. Those models are only valid for specific loading conditions, a priori
assumptions, set points, etc. This contribution proposes a general model, covering adequately the deterioration of a set
of comparable systems under comparable loading. The main goal of this contribution is to derive the loading–damage
connection directly from observation without assuming any damage models at the outset. Moreover, the connection is not
investigated in detail (e.g., to examine the changes in material, etc.) but only approximated with a probabilistic approach.
The idea is subdivided into two phases: A problem-specific relation between loading applied (to a structure, which con-
tributes to the stress) and failure is derived from simulation, where a probabilistic approach only assumes a distribution
function. Subsequently, an adequate general model is set up to describe deterioration progression. The scheme will be
shown through simulation-based results and can be used for estimation of the remaining useful life and predictive mainte-
nance/control.

Keywords: reliability, parameter estimation, damage accumulation, probabilistic simulation.

1. Introduction

A major challenge in today’s systems is to address com-
peting objectives such as enhanced safety, improved reli-
ability, reduced life cycle costs, etc. To compromise for
those tasks, the most harmful factors have to be identi-
fied and their negative effects compensated by appropriate
countermeasures. In today’s maintenance decision policy,
proper estimation of deterioration due to loading in field
usage (e.g., typical environmental conditions, etc.) poses
a major challenge. In some industrial sectors and prod-
ucts, traditional maintenance strategies consider worst-
case scenarios for operation conditions to reduce the prob-
ability of premature failures. Consequently, the system
has an oversized safety margin and/or has to be main-
tained earlier than its planned end of lifetime (in terms
of threshold values for kilometers, operation time, cycles,
etc.). Those maintenance strategies are commonly used
especially for systems where failures lead to a loss of
safety and/or immense financial losses. Though highly
reliable and safe operation can be guaranteed, the life cy-

cle costs are increased and the availability is reduced due
to frequent inspection intervals and down times. For less
safety relevant systems the replacement is feasible as close
to its (individual) failure as possible. One of the main
issues is to make a timely maintenance decision, based
on the on-line degradation information. This concept is
called Condition-Based Maintenance (CBM). Advanta-
geous, real field operation is considered on-line. The ob-
jective of CBM is to calculate relevant information about
the actual reliability of a system. In the work of Banjevic
(2009), the Remaining Useful Life (RUL) of the system
is defined as Xt = T − t (for T > t), if the system has
survived until time t and T is the time to failure. Other
information used for CBM purposes is known in the lit-
erature, i.e., actual damage, state-of-health, probability of
failure, etc.

The key feature for compromising adaptively for
safety, reliability, and costs (e.g., premature maintenance)
over the whole life time and during field usage is to esti-
mate the actual (remaining useful) life and/or damage and
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control the affecting loading profiles (Wolters, 2008). To
cope with this challenge, the loading–failure connections
have to be known.

The proposed concept details the idea of how to state
an appropriate loading–damage relation. In Section 2 the
main idea of using mathematical models for damage cal-
culation is discussed and a brief introduction to known
damage accumulation models is given. The core idea is
illustrated by means of a mechanical system: the novel
approach is explained. Especially the process of defining
a suitable model with a suitable set of parameters is de-
tailed. In Section 3 the results of calculations are shown.
This contribution closes with a discussion of the results
and an outlook.

2. Damage estimation

In the literature, loading (as the measurable
force/operating condition) and stress (as the individ-
ual reaction on the loading applied) are discussed
differently. Here, the prerequisite for the novel model
is to use only directly measurable signals (loading).
Anyhow, in the literature, both terms are often used
interchangeably.

The calculation of damage is usually realized using
assumptions of underlying damage accumulation laws.
A well-known and controversially discussed example for
a damage accumulation law is introduced by Wöhler
(1870). A large sample size of comparable tensile spec-
imens are cycled under constant, uniaxial loading until
failure. The data reveal the nominal stress S (as a con-
sequence of loading), required to cause a failure in N
number of cycles. This S–N correlation is used for the
most widely spread damage accumulation law developed
by Palmgren (1924) and Miner (1945).

The first point of general criticism of this hypothesis
is that even a large number of comparable (tensile) tests
leads to an ambiguous stress S vs. cycle N relation. The
results for S are hardly reproducible and scatter over a
range of N .

The second point is that “real structures seldom, if
ever, experience constant amplitude loading” (Downing
and Socie, 1982). Hence, the transferability of those re-
sults to real applications (variable, multiaxial loading) is
widely discussed, e.g., by Holmen (1979) using the ex-
ample of various load histories on the fatigue behavior of
concrete.

Although the damage accumulation law is discussed
controversially, the idea of identifying fatigue perfor-
mance experimentally is used in manifold domains, e.g.,
accumulator testing. Those tests reveal the sensitivity of
loading factors (temperature, force, electricity, etc.) on
deterioration but are time and cost intensive.

Henceforth, the data base used for this contribution is
obtained by simulation. The classical damage accumula-

tion model by Wöhler (1870), Palmgren (1924) and Miner
(1945) is considered to represent the loading–damage
connection of the reference system. The novel and several
classical models are calculated in parallel with the dam-
age accumulation, based on two different loading profiles.
The results of damage progression are subsequently com-
pared to the reference one.

2.1. Model structure. A scheme of a real system
with loading as input and damage-equivalent signal as
output is shown in Fig. 1. Based on this idea, differ-
ent models have been developed, to estimate real sys-
tems’ damage behavior. According to the Miner rule
(Palmgren, 1924; Miner, 1945), the damage D can be cal-
culated if the S–N curve and the related damage accu-
mulation model are known. Furthermore, the stress S is
assumed to be proportional to the loading L. At the be-
ginning of the 1950s, Henry (1955), Marco and Starkey
(1954), as well as Hwang and Han (1986), among oth-
ers, adapted the Miner rule to specific problems, i.e., spe-
cial material behavior, maximal tolerable strain borders,
etc. The majority of the damage accumulation hypotheses
assume that all loading profiles L (above a certain level)
cause an incremental damage d, independent of the ac-
tual state-of-damage and the load applied (history). All
these are similar in that the state-of-damage calculation
consists of two phases: first, the incremental damage d for
a given interval i of loading is calculated; subsequently,
the damage is accumulated to the total damage D. A de-
tailed description of different approaches and models for
incremental and accumulated (non)linear damage calcula-
tion is given by Wolters (2008).

Loading L

Real

Damage Dsystem

(as signal) (as information)

Fig. 1. Schematic input/output relation of a system; sample
damage progression due to loading.

As illustrated in Fig. 2, three different calculation
paths are followed. The column on the left represents the
reference model. The loading–damage correlation used is
detailed in Section 2.1.1. The model output is denoted by
Dr.

The column “Novel approach” details the idea of the
general model, which was not derived from physical ef-
fects/observations. This model considers directly stochas-
tic side effects and loading profiles. The calculation re-
sults are denoted by Dg.

The last column depicts the classical approach. Due
to the prerequisite of the classical models of Palmgren
(1924) and Miner (1945), the loading L has to be clas-
sified first. Then, the loading L and classified loading Li
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Fig. 2. Overview of the loading → damage model.

are used for the damage hypotheses. Due to the above
mentioned problem of local validity of damage models
(adapted to special material behavior, maximal tolerable
strain borders, etc.), the incremental and the accumulated
damage are calculated in parallel by several models. By
using different models with different sets of parameters,
the calculation results change significantly. The damage
hypotheses consists of two parts: First, the incremental
damage d is calculated by n different incremental damage
calculation models m1...n. Subsequently, q different mod-
els g1...q for damage accumulation derive the accumulated
damage D1...n,1...q from each incremental damage d1...n.

The following section is divided into three parts:
First, the mathematical model of the reference system is
introduced. All results of Dn,q and Dg are compared to
the reference damage progression Dr. Then, two math-
ematical models using classical approaches are detailed.
The drawback of deterministic models is pointed out
briefly, and the novel method of concluding from failed
systems to the actual average damage are discussed in de-
tail.

2.1.1. Reference model. The causal chain from load-
ing to damage is graphically shown in Fig. 3. In order
to calculate the damage, the loading L, acting on the
system, has to be classified first. Therefore, the load-
ing L is quantized by a classification algorithm and an-
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d
i

S-N-curve accumul.
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Damage

f(...)

Damage
calcul.

Eq(1) Eq(2) Eq(3)

Fig. 3. Calculation of damage Dr of the reference system.

alyzed for containing amplitudes. This can be realized
by the rainflow-counting algorithm developed by Down-
ing and Socie (1982). Other classification methods, e.g.,
range-pair counting, peak-counting, etc., can be imple-
mented; their effect on the calculation result/performance
can be measured and compared with those of other algo-
rithms. The loss of information due to classification re-
sulting from this algorithm is not discussed here.

In general, a classification algorithm reduces the
spectrum of varying signals to the important set of sim-
ple reversals. The rainflow-counting algorithm creates a
histogram of cyclic loadings by splitting it into i equidis-
tant intervals. Subsequently, each data block is classified
into k different amplitudes, each at its own occurrence.
In this contribution, the mean loading level is defined as
zero, so only the amplitude distribution is of interest. The
results are shown in Fig. 4 for a given load profile.

As stated above, the Miner rule assumes that stress S
is proportional to loading L, and every stress S damages
the system independently from the moment of application.
Hence, the quantized signal for one interval i represents
the classified stress Si.

In the following, the stress is processed with the
S–N curve which is derived from material tests with a
large sample size of specimen. Those tests reveal char-
acteristic points of the S–N relation, e.g., the low-cycle-
fatigue point at (N1, S1), and the endurance limit SD at
(N2, S2). As preliminarily mentioned, even a large sam-
ple size leads to an ambiguous relation between stress S
and cycle N . Therefore, the probabilistic nature of fail-
ure has to be considered by varying failure rates, cf. the
work by Bebbington et al. (2007), due to varying mate-
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Fig. 4. Rainflow matrix of a load profile, classified into k differ-
ent amplitudes.
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Fig. 5. Calculated damage progression Dr of the reference sys-
tem.

rial behavior/quality, etc. These probabilistic effects are
considered during simulation by varying the characteris-
tic points and hence the S–N relation.

The maximum number of tolerable cycles N(k) for a
certain stress amplitude Si(k) is defined by Wöhler (1870)
as

log10(N(k)) =
log10(Si(k)) −

(
S1 − N1

S2 − S1

N2 − N1

)

S2 − S1

N2 − N1

.

(1)
The Miner rule derives for the incremental damage

di,k =
ΔN(k)
N(k)

(2)

of the reference system, where ΔN(k) represents the ac-
tual number of load cycles applied for amplitude k.

The accumulated damage Dr is the summarized in-
cremental damage

Dr =
∑

i

∑
k

di,k. (3)

The loading L is designed such that the calculated
value of D reaches the maximum tolerable damage D∗

(here assumed as 1) within i steps. Hence, the damage
Dr progresses within i steps from Dr = 0 (i.e., undam-
aged) to Dr = 1 (i.e., failure). Due to the assumption
that loading damages the system continuously, a mono-
tonic increase of damage Dr is obtained.

Instead of using the time as the independent variable,
damage progression is calculated over a meta-parameter
X , denoting system-specific quantities, e.g., driven kilo-
meters, time of usage, remaining useful life, etc.

In Fig. 5, the simulation result for the damage curve
of the reference system is shown.

The degradation Dr represents the damage progres-
sion, which is derived from simulation with deterministic
(fixed) values. As stated, this assumption is only valid
for the average damage progression, derived from a set

of comparable systems, operated under comparable load-
ings. This point will discussed again in Section 2.1.3.

2.1.2. Classical models. The structure of damage cal-
culation, as depicted in Fig. 3, is maintained, but the algo-
rithm for incremental damage calculation is exchanged.
Due to the need for classifying the input signal L into
amplitude-occurrence classes Si, the standard Miner rule
for damage accumulation as introduced in Eqn. (1) will be
kept fixed.

In the sequel, models for incremental damage calcu-
lation, substituting Eqn. (2), are introduced.

The approach of Henry (1955) (model m1) considers
a changing endurance limit SD and an associated durabil-
ity ND. The incremental damage is calculated as

di =
∑

k

ΔN(k)
N(k)

1 +
1 − ΔN(k)

N(k)

Si(k)−SD

SD

, (4)

here ΔN(k) describes the number of loads applied, N(k)
the number of maximum tolerable loads at a certain load
level Si, and SD the endurance limit of the undamaged
system.

The mathematical model m2 for incremental dam-
age calculation is suggested by Marco and Starkey (1954),
considering nonlinear behavior. The incremental damage
di is described by

di =
∑

k

(
ΔN(k)
N(k)

)ci

, (5)

with ci as a function of the actual load level Si(k). The
algorithm for damage accumulation is the same.

To reach a high correlation of Dn with the reference
damage Dr, the set of parameters of each mathematical
model has to be determined and adapted to the special
given problem (here material, stress profile, etc). The
calculation is very sensitive to wrongly chosen bound-
aries/assumptions, as mentioned before. As stated by Troć
and Unold (2010), “[. . . ] the construction of algorithms
letting the parameters adapt themselves to the problem
is a critical and open problem [. . . ]”. In practice, this
task is solved, e.g., by look-up tables for material be-
havior, if the system constraints are sufficiently known.
Here, unknown/insufficiently known parameters but exact
knowledge output data over the whole system usage are
assumed. This contribution focuses on time-domain para-
metric models and methods, due to the fact that the exper-
imental data are obtained in time-domain (Nelles, 2001).
As all models have parametric form and Dr is known,
classical parameter identification tasks are applicable.
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2.1.3. Novel approach. The actual damage D of a
(mechanical) system at a certain point in system usage x
can usually not be measured. Hence, neither certain (in-
termediate) damage points nor the damage progression it-
self for an individual system can be determined/measured
as assumed above. The only measurable information is
binary information if the system is still in operation or al-
ready failed. The calculation of a realistic, real damage
progression between D = 0 and D = 1, based only on
these two pieces of information (in operation or failed),
is hardly possible. Therefore, a related probabilistic ap-
proach for identifying damage progression experimentally
in combination with appropriate tests will be used in-
stead. The idea is based on early contributions by Wöhler
(1870). Comparable systems operating under comparable
operating conditions are considered. Hence, only two sce-
narios for failure are possible: either all systems fail at the
same point in system usage X , or all systems fail at in-
dividual points xj . If the former assumption is fulfilled,
a simple deterministic model for damage calculation can
be stated, based on a single measurement. As known from
observation, this scenario is unlikely for most real systems
and hence will not be a subject of further investigations.
The latter scenario is considered in the following.

A sample size of f systems is operated with com-
parable load profiles. The number j of failed systems at
certain points xj is counted. Hence, the discrete points
xj of failure are directly measurable, but the damage pro-
gression itself is unknown for each system from D = 0
(undamaged) to D = 1 (failure). To conclude from these
discrete points xj to the damage progression, the distribu-
tion of observed failures Dj over system usage xj can be
investigated.

As proposed, a failure is defined as the exceedance
of the individual damage Dj of the maximum tolerable
damage level D∗. Hence, a premature failure of system
j appears at point (xj , Dj = D∗ = 1). That means that
the individual points of failure in system usage only vary
in xj , where Dj is at that certain point equal to 1. The
distribution of xj over X revel information about the gen-
eral distribution of lifetime within the examined set of sys-
tems. The probability of failure is assumed as Weibull’s,
which is a common approach for such (mechanical) appli-
cations (Castillo and Fernández-Canteli, 2006).

The probability distribution function (pdf), param-
eterized by experimentally observed failures, is subse-
quently used to estimate the average damage Dav over
each point of failure xj in system usage. A graphical
illustration of the realization is depicted in Fig. 6. The
presented four systems of a collective (f = 10) failed at
individual points in system usage at x1 to x4. The Weibull
parameters are derived from the distribution of xj over X
(not depicted). This pdf is then used for all observed xj

(F1 to F4), where the shaded areas beneath each distri-
bution curve are proportional to the counted number j of

Fig. 6. Conclusion from the number of failed systems to the av-
erage accumulated damage via the Weibull distribution.

failed systems at that instant in system usage xj , e.g., area
F1 represents the failure probability of 10%. Accordingly,
the projection of each modal point onto the system usage-
damage plane (dotted line) is equal to the average (most
probable) actual state-of-damage D at system usage xj .

To conclude from this discrete information (four
modal values, representing the average damage at the
shown four points xj ) to a continuous damage progression
over system usage X , the following assumption can be
stated generally: Due to the loading applied, the average
damage progression will increase monotonically. There-
fore, a monotonic increasing spline with supporting points
at the modal values for each observed failure at xj is taken
and assumed to be very close to the curve of reference
damage progression Dr. This spline represents the aver-
age system usage–damage curve and is used as an approx-
imation of the reference damage progression from Fig. 5.
Hence, the probability of the actual state-of-damage can
be calculated for other points in system usage xj , with
f > 10.

A general model describing the unknown input–
output relation is used in the following. Although Palm-
gren and Miner suggested a linear damage accumulation
hypothesis, no linear general model, e.g., ARX, ARMAX,
Box–Jenkins, etc., calculates the damage progression ac-
curately. Thus, a time-delay-neural-network in a nonlin-
ear ARX structure for single input/output (one layer) data
is chosen by

D̂g(i) = f(Dg(i − 1), . . . , Dg(i − na),
L(i − 1), . . . , L(i − nb)). (6)

Here, the output D̂g(i) is calculated in two steps: first, the
input and output signals are delayed to different degrees,
second, a nonlinear activation function f(·) (here a static
neural network) estimates the output. Nelles (2001) pro-
poses a sigmoid function for the nonlinear activation func-
tion, which is used here. Other functions for nonlinear dy-



484 K.-U. Dettmann and D. Söffker

namic modeling e.g., Hammerstein models, Wiener mod-
els, neural or wavelet networks can also be used. This gen-
eral nonlinear ARX model is used to calculate the damage
progression by identification.

The proposed method is applicable for systems with
a sufficiently spreading failure probability, and will not
prevent all failures but needs failures to obtain an ade-
quate data base. With an increasing number of usage–
failure relations, the observed behavior (damage progres-
sion) can be described in greater detail. Correspondingly,
this approach estimates the damage progression in the
most important (in terms of maintenance, failure predic-
tion, etc.) close-to-failure phase. Due to the importance
of this phase, probabilistic information about a premature
failure can be stated by the proposed method. The more
the state-of-damage spreads, the earlier the algorithm is
parameterized. Depending on the observed system and
its failure mechanism, this warning is maybe sufficient to
avoid premature failures.

3. Simulation results

All models are simulated with two different input signals
L1 and L2, and the results are discussed. The load profile
L1 leads to the damage progression D1, where L2 causes
D2. The indices m1, m2, and g refer to the model used.
The accumulated damage will be evaluated with the refer-
ence damage progression of D1

r and D2
r of the reference

model.

3.1. Damage calculation with the loading profile L1.
The results of the classical models m1 and m2 are de-
picted in Fig. 7. The solid line denotes the reference dam-
age progression D1

r , the dotted line is the result calculated
by the model m2, and the dash-dotted line belongs to the
model m1. In summary, none of the models reproduces
the reference damage progression sufficiently.

The application of the novel model is divided into
two steps: First, the neural network is trained with known
loading and damage data. A part of the loading profile L1

and the reference damage progression D1
r is used for train-

ing purpose. Next, only the loading L1 is used as input.
Accordingly, the estimated damage D1

g can be compared
to the reference damage D1

r .
The damage shapes are obtained as depicted in Fig. 8.

As can be seen, the reference and the calculated curve
shapes fit sufficiently. Hence a prediction can be made
based on the calculated parameters and the assumed
model.

The influence of the training data size (part of L1)
on the prediction accuracy is discussed in the following.
In Fig. 9, different calculated damage accumulations are
depicted, where the thick line represents the damage pro-
gression D1

r of the reference system.

Fig. 7. Comparison of reference damage progression D1
r and re-

sults of classical models m1 and m2.

At the beginning, no information is available about
the actual state-of-damage until the first system fails at
x1. Subsequently, the above introduced algorithm com-
putes the most probable damage of the collective of sys-
tems. As a result, rough knowledge about the degradation
is obtained and the nonlinear ARX model can be trained.
It can be seen from Fig. 9 that the nonlinear ARX calcu-
lation results (e.g., gx1), which use a small information
base for the training purpose, predict the damage progres-
sion insufficiently. With an increasing number j of failed
systems at xj , the identified mathematical models can be
calculated in greater detail. For all points x1 to x4 of sys-
tem usage, the nonlinear ARX model is re-trained and the
remaining system usage of the examined collective of sys-
tems up to the moment/situation X is predicted.

The prediction error reduces with the increasing

Fig. 8. Comparison of reference damage progression D1
r and

calculated D1
g (nonlinear ARX model).
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Fig. 9. Reference and predicted damage accumulations.

number of failed systems, and the curve fits better and bet-
ter the reference damage curve D1

r .

3.2. Damage calculation with the loading profile L2.
To assure that the trained model describes the damage pro-
gression accurately, a new input signal L2 is generated and
the damage progression D2

r is calculated with the identical
reference system model from Section 2.1.1. If the primar-
ily received model (mainly the parameters of the Weibull
distribution) still describes the damage accumulation ad-
equately, the nonlinear ARX model can be used to define
reliability characteristics. No re-training is performed.

By feeding the new L2 data into the previously de-
rived general model, the damage curve is calculated and
shown in Fig. 10. Again, the reference and the calcu-
lated damage progression match sufficiently. The curve
diverges quantitatively with an increasing prediction hori-
zon from the reference damage. For investigations with
the focus on qualitative results, the nonlinear ARX model
can be used if, e.g., the influence of an applied stress on
the damage behavior of an system is of interest.

The nonlinear ARX model derived from a measured
input and a probabilistic approximation of the average
damage progression can be used to calculate the damage
progression for different input signals. It can therefore be
used as a deterioration model for this system. As shown,
this cannot be achieved with the classical approaches.

The achieved nonlinear ARX model is able to calcu-
late the damage progression caused by the employed load
profile adequately. The most probable state-of-damage
and the remaining system usage can be calculated; no as-
sumptions about the classification algorithm, etc., have to
be made. Furthermore, the model is independent of the
chosen load profiles L1 and L2. The information about the
actual state-of-damage can then be used for the remaining
useful life prediction, the activation of limp home modes,
etc.

Fig. 10. Comparison of accumulated damage progression cal-
culated with the reference system and mg with L2 as
the input signal.

4. Conclusion

The knowledge about the on-line state-of-damage of a sys-
tem/component is a central aspect for condition monitor-
ing and predictive control/maintenance. The direct mea-
surement of damage-related states or direct correlations
to physical effects is usually not possible, even when the
physical effects cause signals being measurable and the
signals features allow the direct relation to the damage
level or the conclusion to the remaining useful life. State-
of-the-art strategies use static knowledge and several as-
sumptions about the environmental/operating conditions
to at least realize preventive maintenance. One drawback
is that the system is not used up to its maximal possible
point of usage.

To improve this, the stress–damage relation is inves-
tigated in this contribution. The transfer behavior for an
arbitrary mechanical system with stress as input and dam-
age as output is described by the classical damage accu-
mulation hypothesis and is assumed to describe the dam-
aging behavior of a real system. Hence, the damage pro-
gression for an input stress signal can be calculated.

In real applications, neither the complex damage ac-
cumulation model, nor the parameters can be determined.
This central problem is solved in two steps: First, the av-
erage actual damage is determined by counting the failing
systems and assuming a damage distribution. Then the
suggested stress-damage models are parametrized.

The idea developed and proposed in this contribution
relates the simulated stress profiles and number of failed
systems of a collective to the underlying damage progres-
sion law and its parameters.

For this purpose, the failures of a collective of sys-
tems operated under comparable operating conditions are
counted/observed. By assuming a Weibull distributed fail-
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ure probability of the countable event (failure before the
average end of a lifetime), the most probable average dam-
age of the collective can be derived. This approach is the
basis for concluding to the average actual damage of the
whole collective.

Subsequently, two different mathematical models
known from the literature are used to calculate the dam-
age progression. Additionally, a novel nonlinear approach
is realized, which is not based on physical effects. As
shown, linear models are not able to describe the damage
progression adequately.

In conclusion, the developed general model was used
with a different stress signal—related results are shown.
The calculated damage progression is sufficiently close to
the reference one.

Once the information about the average state-of-
damage of a collective is obtained, strategies for extend-
ing the average system usage, as proposed by Söffker and
Rakowsky (1997), Ławryńczuk (2009), and Ławryńczuk
and Tatjewski (2010), become possible.
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Dirk Söffker was born in Hameln, Germany.
He received the Dipl.-Ing. degree in mechani-
cal engineering from the University of Hannover,
Germany, in 1995, and the habilitation license in
automatic control from the University of Wup-
pertal, Germany, in 2001. Since 2001, he has
been holding the Chair of Dynamics and Con-
trol, University of Duisburg–Essen, Germany. He
is involved in several national and international
projects and affairs, as well as in undergraduate,

graduate, and Ph.D. education programs. His research interests are also
focused on the dynamics and control of mechanical engineering sys-
tems, as well as related methods of control, diagnosis, reliability, and
operation.

Received: 26 February 2010
Revised: 17 December 2010


	Introduction
	Damage estimation
	Model structure
	Reference model
	Classical models
	Novel approach


	Simulation results
	Damage calculation with the loading profile L1
	Damage calculation with the loading profile L2

	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [597.600 842.400]
>> setpagedevice


