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and some principles for the coming FT architectures. The current context of FDIR is presented by describing the approach
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1. Introduction

Today satellites are designed to find an equilibrium be-
tween three major axes: cost, performance and availabil-
ity. Cost is driven by commercial constraints; perfor-
mance is driven by industrial competitiveness; availabil-
ity is driven by the mission. Satellites have evolved in the
last 50 years from pre-programmed automata performing
a priori known tasks and unable to react against unfore-
seen events to smart embedded systems able to take pre-
programmed decisions on event occurrence or able to re-
act against context changes. Following this trend, tomor-
row satellites will become autonomous embedded systems
able to achieve mission goals with limited ground interac-
tion.

In such an evolution, FDIR systems are on the criti-
cal path of satellite design. FDIR has a direct impact on
satellite cost and availability, and indirectly on the per-
formance. It is a cornerstone for the satellite’s autonomy
enhancement. Like all the embedded functions on a satel-
lite, FDIR needs to be designed and validated before being
integrated. Usually this validation is time-consuming and

complex, leading to introduction of risks regarding plan-
ning and to cost overtaking. Definition of adequate FDIR
strategies can decrease these risks without reducing FDIR
functionalities and/or perimeter. Availability is directly
dependent on the FDIR system. Reaction time for detec-
tion and fault isolation, robustness and ability to recover
from a failure are indeed sizing elements of satellite avail-
ability. For missions requiring a high level of availability
(like telecommunication ones), FDIR is often very sophis-
ticated and structured in different levels in order to min-
imize the effect of a fault with regard to the whole satel-
lite, leading to a reduction in mission outage. On the other
hand, when the required availability level is medium (sci-
entific Earth observation missions require availability but
short mission interruption are allowed and have no conse-
quence), satellite saving is preferred to mission follow-on.

In this case, fault isolation and recovery may be very
weak, leading most of the time the satellite to its safe
mode, waiting for ground intervention. Requirements
for satellite on-board autonomy are constantly increasing.
This need comes from a new kind of missions: Martian
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missions require to be able to land; in the next gener-
ation of Martian missions, they are foreseen to perform
in-orbit rendezvous. In the frame of future Earth observa-
tion missions, the ground-board commandability loop re-
quired to be shortened in order to increase the reactivity:
for instance, when fire or pollution detection occurs, some
more detailed observations are quickly needed. Satellites
will be able to take this kind of decisions autonomously,
shortening the reaction loop between detection and action.
This paper gives an introduction to Fault Tolerance (FT) in
the space domain and some FDIR principles for the com-
ing FT architectures. Then the current context of FDIR
is presented by describing the approach implemented on
telecommunication satellites and more precisely on one of
the most FDIR sensible subsystems: the AOCS (Attitude
and Orbit Control System). Following the current state of
FDIR in the space domain, some perspectives are given:
a centralized distributed FDIR strategy for the next gen-
eration of autonomous satellites and some research tracks
such as active diagnosis and hybrid diagnosis.

2. About fault tolerance

Safety should not be confused with fault tolerance. Fig-
ure 1 shows the positioning of safety (guarantee of not
loosing the spacecraft) and fault tolerance (guarantee of
no mission outage) areas. The level of performance
achieved by an FTC architecture is based on the fault anal-
ysis concept, which is directly related to the performance
of the proposed FDIR strategy.

The result of the performance evaluation should
guarantee that the design does not allow the satellite to
move to the unsafe area, and that it does maintain with
a given probability (close to 1) the working point in the
nominal area (degraded modes are allowed in some cases).
This goal is reached by an FDI strategy able to detect
and identify faults quickly, and guaranteeing fault contain-
ment.

This split of the working area permits to define the
criticality of faults. The following classes can be consid-
ered to sort the anticipated faults:

• Cunsafe: The fault leads to the unsafe area (in the
simulation domain, the simulator becomes unstable
and breaks down).

• Csafe1: The fault leads to the mission outage area
(in the simulation domain, the tracking error diverges
and can lead to a simulation break down).

• Csafe2: The fault leads to the degraded performance
area (in the simulation domain, fault is detected and
should be recovered).

• Csafe3: The fault is detectable in the nominal area
(the fault has a weak impact on the control loop (par-
tially compensated by the robustness of the design)).

• Csafe4: The fault is not detectable in the nominal
area (the fault has no impact on the control loop
(fully compensated by the robustness of the design),
of order of magnitude similar to noise, disturbance
and perturbation).

3. Autonomy level and a fault tolerant space
architecture

Autonomy levels constitute alternatives which can be used
to define the FTC architecture, based on the requested
level of autonomy. Typically a mission uses today the E2
level (and for some advanced observation and science mis-
sions E3 level) as defined by the ECSS (2005). We sum-
marize in Table 1 the different levels of autonomy defined
in the ECSS standard.

3.1. Fault tolerant space architecture. Based on the
above levels of autonomy, the selected architecture should
permit some flexibility in task sharing between the Board
and the Ground segments. This means that some inter-
faces should be clearly identified between the different
components of the architecture, and that the latter should
be strongly structured. The use of layers allows meeting
these constraints and permits the execution of some parts
on the Ground instead of on the Board.

The development of a complex autonomous system
consists in the organization of the components in a closed
loop architecture. Many existing architectures embedding
decisional capabilities are based on hierarchical layers. In
the robotics domain, for instance, the “3T architecture”
(Bonasso et al., 1997) is based on three layers consisting
of three components which are a reactive feedback con-

Fig. 1. Safety and FTC positioning.
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Table 1. ECSS autonomy levels.
Level Description Functions

E1 Mission execution under ground control Real-time control from the Ground for nominal operations
Limited on-board capability for safety issues Execution of time-tagged commands for safety issues

E2 Execution of pre-planned, ground-defined, Capability to store time-based commands
mission operations on-board in an on-board scheduler

E3 Execution of adaptive Event-based autonomous operations
mission operations on-board Execution of on-board operations control procedures

E4 Execution of goal-oriented Goal-oriented mission re-planning
mission operations on-board

trol system, a reactive plan execution system and a time-
consuming deliberative system. The “LAAS architecture”
(Alami et al., 1998) is also decomposed into three lev-
els: a functional level contains a set of modules encoding
the basic functionalities; a decisional level is responsible
for both plan generation and plan execution; and the in-
between execution control level has a fault protection role
and filters the commands sent to the functional level by
the decisional level.

In the space domain, the architecture deployed for the
Remote Agent experiment (Muscettola et al., 1998) inte-
grates three hierarchical components: a planning system
responsible for back-to-back mission planning, an execu-
tive used to refine the activities in the plan, and a diagnosis
and reconfiguration system.

Similarly, Lemai et al. (2006) propose to organize
the architecture along three hierarchical levels (see Fig. 2).
These levels are characterized by different reaction times,
they handle more or less abstract data representations and
have different types of knowledge of the system state
(global or local). They interact through commands sent to
the lower level and reports/alarms sent to the upper level.
The decision level is in charge of programming the activ-
ities of the platform and/or the payload, and monitoring
the execution of the activity plan. This level can be active
(with or without planning) or inactive. The operational
level is in charge of the execution of operations (decompo-
sition and routing of commands, monitoring of the global
state of the system). The functional level gathers the pro-
cedures and control loops of the operational subsystems.

The three levels of the decisional architecture allow
one to organize the knowledge by an abstraction level with
different time constraints. The decision level is most ab-
stract and has the longest reaction time (order of magni-
tude of an hour). The functional level is the most time
constrained (real time) in the architecture. The equipment
level (not represented here) is a hard real time one. It han-
dles the data and the drivers of on-board units.

3.2. Foreseen FDIR structure in a fault tolerant space
architecture. From the system level point of view, data
are coming from all components (sensors, actuators, sub-
systems) and are considered a priori to be hybrid, discrete

or continuous. The three kinds of data must be proceeded
by the system level FDIR in order to track the satellite’s
state. But due to the limited on-board resources and in
order to reduce the FDIR algorithm computational need,
an abstraction of the continuous and hybrid data to dis-
crete ones can be performed as proposed by Bayoudh et al.
(2008). Abstracted discrete data are easier to compute and
often require fewer computing resources. By using such
an abstraction, it is possible to cope with the complexity
of the whole system.

From a theoretical point of view, the discrete events
used for performing the diagnosis and the monitoring of
the satellite’s state are used within a diagnoser frame-
work (Sampath et al., 1995) or, for more efficiency,
within a component-based diagnoser framework (Pencole
et al., 2006). The diagnoser represents the different states
that can be reached by the satellite. Only observables
(events, alarms, residual switches, etc.) are used in the di-
agnoser, allowing one to remove the non-observable part
of the design model but possibly leading to ambiguous

Fig. 2. Overview of a decisional architecture.
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states. In addition, the diagnoser can be used to deter-
mine the diagnosability degree of the fault set (Bayoudh
et al., 2009). By checking the non-discriminable faults
present in a diagnoser’s state, one can determine the ob-
servables which have to be added to achieve complete
fault isolation. The diagnoser uses only discrete events
and commands as input. So all the data coming from
the functional subsystems have to be abstracted to discrete
events.

An implementation of such an architecture is pro-
posed by Bayoudh et al. (2008) and illustrated in Fig. 3.
Each block is briefly described hereafter.

• Residual bench: The bench is composed by all the
residuals, computed in the different modes. The form
of the residuals is based on the consistency, threshold
and/or range checks.

• Residual filter: Mode switches are characterized by a
spurious jump of the residual values that is due to the
fact that the temporal window over which observa-
tions are recorded to evaluate the residuals overlaps
over two modes. Since residuals have been designed
for every mode separately, this may cause false alarm
problems. This is solved by implementing a resid-
ual filter that takes as input residual values computed
at every time step, and generating as output clean
Boolean indicators that reflect the consistency be-
tween the model and the observed behaviour. The
principle of the filtering is to hold on to the current
value as long as the residual is not computed to a dif-
ferent value during a specified number of steps. This
number determines filter sensitivity with respect to
rough residual changes. It is set according to the time
response of the physical system.

• Residual discrete events generator: The diagnosis of
the hybrid system is performed by the diagnoser built
from the underlying discrete-event system enriched
with events that capture continuous diagnosis knowl-
edge. To generate these events, we use pre-computed
theoretical mode signatures to define discrete events
associated to mode signature (based on the residuals)
change. By doing so, we have defined an abstraction
function from the continuous domain to the discrete-
event domain. The abstraction of continuous dynam-
ics changes in terms of discrete events allows us to
define the language of the hybrid system, which de-
scribes the evolution of the system behaviour.

• Hybrid diagnoser: The diagnoser approach is ap-
plied to hybrid systems by computing a hybrid di-
agnoser (i.e., a finite state machine) from behaviour
automaton. Then, this diagnoser is used to track the
system mode on-line. It takes as input observable
(pure) discrete events, and observable events issued
from the abstraction of continuous dynamics.

The approach is compliant with a hierarchical FDIR
strategy based on temporal filtering, to permit the detec-
tion of faults at the lowest level. The residual bench can
be restricted to the use of equipment internal check, data
consistency check, data transmission check, threshold or
range based monitoring, etc. In this case the discrete event
generator is composed by the event raised when the mon-
itoring is violated. The hybrid diagnoser can be a simple
discrete automaton, which associates to each event a re-
covery action, and performs the temporal filtering of fault
occurrence.

Fig. 3. Principle of hybrid diagnosis.

The next section is concerned with FDIR as defined
and implemented today. Most of the constraints and re-
quirements described in the current section are fulfilled
implicitly.

4. FDIR function and main strategies

For satellites, we consider an FDIR function having four
main roles:

1. anomaly detection,

2. isolation and recovery,

3. active configuration on-board storing before fault oc-
currence,

4. ground information about the occurred fault and its
associated recovery action.

Items 1 and 2 are usually part of the classical FDIR.
Items 3 and 4 are related to industrial constraints and
linked to the need to understand what has happened on-
board (return of experience) and who is responsible. The
FDIR function is a sizing element to reach the required
level of autonomy for the satellite (this level is dependent
on the orbit and variable following the mission), to have
the required availability and to define the robustness.

Usually, modern FDIR prefers to maintain the mis-
sion (mandatory for the telecommunication satellite) even
if it is in degraded mode, on most of the usual and antici-
pated fault occurrences. In any case, the extreme recovery
is made of safe mode, in which the satellite is guaranteed
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to be controlled. In this last case, the Ground is in charge
to perform an expertise and to determine the required re-
configuration to allow the satellite to return in operational
conditions.

Thales Alenia Space currently uses two main satellite
platforms. One is dedicated to Earth science and observa-
tion and the other to telecommunication satellites. Both
have different FDIR strategies, which are detailed below.

4.1. Half-satellite’s FDIR strategy. The Earth science
and observation platform is based on a very simple FDIR
principle. When a fault is detected, there is no isolation
phase. The satellite is fully reconfigured and all units are
switched to a redundant one. This can be called a “half-
satellite” strategy. Then the Ground is in charge of recov-
ering the satellite and correct the anomaly. This strategy
is very basic and requires little validation effort. It is ap-
plicable only to mission requiring a small availability rate
and guarantees keeping the satellite in a safe mode.

4.2. Hierarchical FDIR strategy. Telecommunication
satellites have a more sophisticated FDIR strategy due to
the requirement of high availability. When a fault occurs,
the satellite should be kept in operational mode, even if it
is degraded. The strategy used by Thales Alenia Space is
based on a set of hierarchical levels permitting a graduated
reaction with regard to the kind of faults. Such a hierar-
chical structure allows recovering the fault shortly and to
minimize the perimeter of the effects. Isolation is guaran-
teed by a local process. Each failure is recovered at the
lowest possible layer to limit the impact on the mission.

The hierarchy is composed of four levels which have
different reaction times and are activated successively by
order of criticality. The faults are filtered at each level: a
higher level can only be called when the lower level has
been activated several times (or when a fault depending on
this level occurs).

Level 0 deals with failures having no impact on
the satellite’s subsystem performances and matches faults
which can be recovered by local correction (bit flip, CRC,
etc.). Detection is performed internally in the units. The
recovery is autonomous and local to the unit.

Level 1 deals with failures requiring switching a unit
to a redundant one. Detection is performed outside the
unit and the recovery is done by the subsystem in which
the unit is involved. The effect of such a failure can lead to
temporary degraded mode without any effect on the mis-
sion goals. For instance, when a sensor fails, the subsys-
tem can use the last measure to perform its processing or
extrapolate the next values in some cases. The recovery is
autonomous and has an effect on the subsystem.

Levels 2/3 are often mixed due to the fact that they
have the same kind of detection and recovery action. They
deal with performance losses for a subsystem. Level 2 is

strictly related to the occurrence of several alarms coming
from lowest levels. This means that the recovery action
which has been engaged has not corrected the anomaly
and that the fault has to be considered more globally at
subsystem or the platform level. Level 3 is related to
faults on FDIR units such as software or Processor Mod-
ule (PM). These faults are recovered by switching on a
redundant PM.

The most critical level such as Level 4, which is ac-
tivated in case of several alarms from Levels 2/3 or hard-
ware alarms. This kind of alarms are the last ones which
can be raised by the satellite and are consequent to a criti-
cal breakdown leading to safe mode. Recovery in this case
is done by the Ground and the mission is interrupted.

Through these four levels the identification is sel-
dom considered due to the fact that the detection is suf-
ficiently precise to perform the identification at the same
time. Most of the detection and recovery actions are soft-
ware, except for Level 4. Degraded modes are associated
to the faults activating Level 1 or 2. In the case of Level 2
occurrence, mission performances are often degraded, but
the mission goes on.

Figure 4 shows the hierarchical FDIR strategy. The
higher the level, the more critical the fault but lower the
occurrence probability of the faults. In terms of valida-
tion, the cost and effort are very high due to the complex-
ity of the architecture. Nevertheless, the main advantage
of such an architecture is the possibility to activate or de-
activate one or several levels depending on the mission
requirements.

5. AOCS

The AOCS (Attitude and Orbit Control Subsystem) is in
charge of maintaining the satellite on its orbit and to con-
trol the pointing in the required range to achieve the ex-
pected performances. This subsystem is composed of sen-
sors and actuators which have redundant units.

5.1. FDIR overview. Detection, isolation and recov-
ery are based on three hierarchical monitoring levels: lo-

Fig. 4. Hierarchical FDIR strategy.
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cal monitoring at the unit level, functional monitoring at
the subsystem level, and global monitoring at the satellite
level. Local monitoring deals with Levels 0 and 1 and is
based on unit health monitoring, leading to detection, and
at the same time to identification, of failed units and to
switching to the redundant one. All the processing is per-
formed locally in the unit environment and has no impact
outside this perimeter.

The functional monitoring performs FDIR at the sub-
system level in two ways: performance monitoring and
consistency check between units. Functional monitoring
is able to perform fault detection but often not fault isola-
tion. Some additional processing is needed. Recovery is
done by redundant unit switching, even if the diagnosis is
not confirmed. Diagnosis candidates are reconfigured and
then deeper analysis is performed to confirm or infirm the
first conclusion. This monitoring is related to Level 1 and
to Level 2 of the previously presented FDIR hierarchy.

The global monitoring is equivalent to Level 4. It
implies only hardware mechanisms, which raise and lead
the satellite to safe mode. Only detection is performed
here (no isolation), recovery actions are always the same:
switch to safe mode. Then the context is analysed by
the Ground and the satellite is reconfigured to operational
mode.

5.2. Detection at Level 1. This section covers detec-
tion used for local monitoring and part of functional mon-
itoring for the consistency based part. Detection is based
on three kinds of checks: internal unit checks, data trans-
mission checks and consistency checks.

Health internal checks are the simplest detections on
a satellite. When the unit allows it, it performs some in-
ternal monitoring and provides a health status. This status
is reported in the TeleMetry (TM) for the Ground and is
used on-board to raise a local alarm. Depending on the
criticality of the status, the unit is switched to a redundant
one or the data are just corrected. This kind of detection
is applied to most of the complex on-board sensors and
actuators.

Data transmission checks aim at detecting protocol
communication anomalies. They concern all the units
connected to a data communication network. Protocol is
often secured and real time, which allows one to access
a set of indicators describing the data transmission status.
For instance, each command is confirmed by an acknowl-
edgement. TM uses frame counters to detect loss of data.
Checksum is used to monitor the data validity. All these
elements are part of the protocol and are part of the FDIR
information used to detect misbehaviour of an embedded
data communication network.

Consistency checks are used to complete the two pre-
vious kinds of detections and to address the monitoring of
the data value. The two previous detection means allow
dealing only with the unit health status and data transmis-

sion but do not cover the value of the data. This concerns
again all the on-board sensors and actuators. Three differ-
ent kinds of consistency checks are described below

• Data consistency: simple checks verify the continu-
ity of the measure provided by a sensor. The detected
faults are a rupture in the value dynamics or a value
frozen at its last measurement.

• Measure consistency: cross checks between two re-
dundant sensors to compute some residuals. The de-
tected faults are an anomaly of one of the two sen-
sors. Often redundancy measurement is only be-
tween two sensors, allowing the detection but not the
isolation of the guilty unit. A detailed example is
provided is Section 5.3.

• Command consistency: the goal is to confirm the ex-
pected effect of a given command. It allows validat-
ing the good behaviour of the command transmission
chain and of the actuator. For instance, when a valve
is requested to be opened, the flag of valve openness
is checked to confirm command execution. Note that
all these detection means are run under the constraint
of quick detection time and use about five samples
(about 0.5 seconds) of signal to make a decision.

5.3. Measure consistency detection as an example of
detection at Level 1. Measurement consistency applies
on two redundant sensors. The Inertial Measurement Unit
(IMU, cf. Fig. 5) is used on a satellite to measure the
attitude evolution.

It is composed of a set of an accelerometer and a gy-
roscope. Two IMUs are present on-board and designed in
a pyramidal geometrical configuration permitting to cross
check the measured values. Figure 6 shows the geometri-
cal representation of each vector position.

Fig. 5. Inertial measurement unit.
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Following this geometrical position, failure detection
is based on three residual relations:

(s1 + s4) − (s2 + s5) = 0, (1)

(s2 + s5) − (s3 + s6) = 0, (2)

(s3 + s6) − (s1 + s4) = 0, (3)

where si (i = 1, . . . , 6) represent trigonometric functions.
This representation is used to avoid complex formula de-
scription. The example we provide below is based on a
constant drift failure on the IMU1 z axis gyroscope as
shown in Fig. 7.

The three relations have been computed and led to
the results shown in Fig. 8. Two of the residuals are vio-
lated, (1) and (2). The third one, (3), is nominal (the value
close to zero).

The three residuals allow one to perform the detec-
tion phase but not isolation. Table 2 shows for the first
column having value false (residual (1) is violated), the
second column having value false (residual (2)) and the
third column having value true that there is an ambiguity
between a failure on s2, on s5, or a double failure.

Some additional tests are then performed on-board
to identify the faulty component and achieve the isolation

Fig. 6. Geometrical representation of IMU sensors.

Fig. 7. Sensor values for the IMU (axis by axis). The constant
drift is shown on the right upper curve.

Table 2. Fault detection table.

phase. Details of these tests are not provided in the frame
of this paper. Table 3 shows the fault isolation table, which
ensures discriminability between the faults.

This example shows how on-board residuals are used
to perform consistency checks between two redundant
measurements. Not all the residuals are permanently com-
puted, only those useful for the detection. This strategy
saves the (weak) on-board resources (CPU, memory) on a
satellite and is compliant with the FDIR requirements and
constraints.

5.4. Detection at Level 2. Level 2 detections are re-
lated to AOCS performance monitoring. The performance

Fig. 8. Residual computation (upper curve for (1), medium
curve for (2) and bottom curve for (3)).

Table 3. Fault isolation table.
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is evaluated through the attitude and the mode’s changes
monitoring. The AOCS subsystem is based on modes
which aim at acquiring the required attitude by successive
and more and more precise manoeuvres.

Attitude is a key element for operational mode. Most
of the spatial missions have strong constraints on the
pointing, and hence on the attitude. Attitude monitoring
is very basic and consists in checking the current mea-
sured attitude with regard to a range. In case of a raised
alarm, the satellite is switched to a less precise mode and
the AOCS tries to reach the targeted attitude again. In case
of failure, a second alarm of Level 2 is raised leading to
a Level 4 alarm as presented before. The satellite goes to
safe mode. The whole AOCS chain is reconfigured and
the mission is interrupted.

The second kind of monitoring concerns mode acqui-
sition. A mode is acquired when it has reached its targeted
attitude. To prevent an anomaly during mode changes,
some time-outs are used. In case of time-out, the satel-
lite is set back to its previous mode and there is another
attempt to change AOCS mode. In case of failure, two
Level 2 alarms are raised and lead to safe mode and to a
total AOCS reconfiguration.

5.5. Detection at Level 4. Level 4 detections are only
hardware and constitute the last detection in terms of crit-
icality. There are high level alarms leading to safe mode
and to Ground intervention. Three hardware alarms are
used. All are on sensors for the Earth and the Sun: the
alarm is raised when the Earth or the Sun is out of view
of the detectors; the third one deals with actuators: it is
raised when a thruster is opened too long.

When these alarms occur, the satellite moves to safe
mode, and the AOCS is fully re-initialized by switching
all the units to redundant ones.

5.6. Conclusion on FDIR for the AOCS. As one
can notice, FDIR for the AOCS is mainly composed of
simple detections (range checks, time-out, data monitor-
ing) and autonomous reconfiguration based on redundant
units switching. The identification is seldom activated
due to the lack of needs. Once the satellite is flying,
few possibilities of reconfigurations are available, and pre-
cise identification is not mandatory. The granularity level
for a repair is at the unit (sensor, actuator, processing
unit) level. Reconfiguration is based on action sequences
(called event sequences or on-board control procedures
(Garcia et al., 2004), which are a priori programmed and
then executed as a reflex reaction to an FDIR alarm (i.e.,
an event for the satellite).

6. Next generation of the FDIR strategy

The FDIR strategy presented is oriented to the telecom-
munication satellite market, which requires strong robust-

ness and minimization of mission outage. The trend for
this kind of mission is to keep the existing FDIR strat-
egy by improving the detection phase. The hierarchical
and decentralized aspects, will still be used in the next
decades. On the other hand, observation and scientific
missions require more and more advanced autonomy in
terms of reaction time reduction and on-board decisions.
The next generation of missions should offer an opportu-
nity to introduce new FDIR concepts on-board.

To fulfil the requirements and constraints described
in Section 3, the FDIR strategy should be hierarchical
(knowledge inherited from the TAS background) and pro-
vide a unique gate to exchange information with the de-
cisional level (role of the operational FDIR component in
the decisional architecture) to manage recovery at optimal
time, with regard to the current mission context and activ-
ities in progress.

The next generation of FDIR strategies should thus
be centralized and distributed: centralized in the sense
that on-board decision requires having at a single location
a synthetic view of the satellite state; distributed in the
sense that it should allow keeping local FDIR in the sub-
system and at unit level. This strategy is fully compliant
with the hierarchical one presented in Section 4.2. Levels
0, 1 and 2 are covered by the distributed parts and Levels
3 and 4 by the centralized one. Designing such an FDIR
architecture is a way of defining some generic FDIR con-
cepts allowing TAS to re-use the centralized part; from an
industrial point of view, to better master the planning and
to reduce the cost.

In addition, decoupling global (at the satellite level)
and local FDIR allows one to relax the constraints on the
latter in terms of development, and could permit to intro-
duce, for specific needs, some advanced FDIR techniques
such as H∞ based filters, etc. (cf. Grenaille et al., 2004).
Exchanges between central and distributed parts are fore-
seen under the form of discrete events (command, residual
status switch, mode change, etc.), the central part handling
all these discrete events through some kinds of automata
(Bayoudh et al., 2008).

Using dedicated FDIR algorithms is a cornerstone
of a distributed FDIR strategy because the amount of re-
quired on-board resources can be limited and the informa-
tion required by the algorithms can be minimized. Two
main parameters are taken into account for the selection
of the algorithms: reaction time of the system to diag-
nose and the kind of data to handle (discrete, continu-
ous, hybrid). The AOCS or GNC (Guidance, Naviga-
tion and Control) require short reaction time and han-
dle mainly continuous data (issued from sensors and pro-
cessed in a control loop) and some discrete data (mode
management, for instance). The techniques used for
this functional chain vary from a threshold value resid-
ual to more advanced FDIR techniques (such as robust
FDIR, consistency checks, etc.) (Grenaille et al., 2004)
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or hybrid model based diagnosis (Benazera and Travé-
Massuyès, 2009). At the upper level described previ-
ously, the different FDIR elements are translated to dis-
crete events. Thresholds are converted to events occurring
when the value crosses the threshold. Residuals are con-
sidered like switches: an event is raised when a residual
state changes (i.e., when it is not zero). Estimators can
also be used to generate residuals.

7. Conclusions

FDIR in the space domain appears often as very simple
and seems old fashioned. There are some reasons for this,
related to the domain. First, the on-board resources are
very weak (about 20 MHz and 4 MB RAM for a basic
configuration nowadays in Europe) and do not allow one
to perform complex computations on-board. Most of the
complex FDIR algorithms are run on the Ground getting
as input telemetry coming from the satellite. Secondly,
there is a weak need to improve FDIR on-board. For
the commercial market, FDIR techniques used today ful-
fil the customer requirements in terms of availability and
autonomy, and have proven their robustness. FDIR evolu-
tion for the next years will be devoted to the FDIR devel-
opment process (design, validation and tests) rather than
to really increasing the on-board capabilities of the tech-
niques.

Nevertheless, Thales Alenia Space is exploring sev-
eral research axes about FDIR. The most promising seems
to be active diagnosis, which consists in injecting com-
mands to highlight the symptoms and intends to make the
isolation phase easier. Another studied axis is the cou-
pling between some on-board decision (like planning) and
the FDIR.

Finally, some new mission features require particular
attention with regard to FDIR, like the rendezvous mis-
sion phase, the docking and the landing. The first two
deal with collision avoidance and target acquisition, and
the last one with hazard avoidance. The new mission
features require more accurate FDIR techniques to detect
some faults with order of magnitude similar to the mea-
surement noise level, whereas the faults considered today
are at least one order of magnitude higher than the noise
level.
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