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The problem of fault tolerant control is studied from the behavioral point of view. In this mathematical framework, the
concept of interconnection among the variables describing the system is a key point. The problem is that the behavior we
intend to control is not known. Therefore, we are interested in designing a fault accommodation scheme for an unknown
behavior through an appropriate behavioral interconnection. Here we deal simply with the trajectories that are generated
by the system in real time. These trajectories determine the behavior of a system in various (faulty/healthy) modes. Based
on the desired interconnected behavior, only the trajectories that obey certain laws are selected. These laws, representing
the desired behavior, can indeed be achieved by a regular interconnection. Thus, when the trajectories do not belong to a
certain desired behavior, it is considered to be due to the occurrence of a fault in the system. The vantage point is that the
fault tolerant control problem now becomes completely a model-free scheme. Moreover, no explicit fault diagnosis module
is required in our approach. The proposed fault tolerance mechanism is illustrated on an aircraft during the landing phase.
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1. Introduction

A fault represents an unexpected change in the system dy-
namics that tends to degrade the overall system perfor-
mance and can lead to system instability as well. Gener-
ally, a Fault Tolerant Control (FTC) system includes two
modules: the Fault Diagnosis (FD) module and the Fault
Accommodation (FA) module (see Fig. 1). The former is
a monitoring module that is used to detect faults and di-
agnose their location and significance in a system. The
module with a fault estimation sub-module is very often
regarded as Fault Detection and Isolation (FDI). The latter
is a Fault-recovery module that controls the faulty system
in a specific way, such that the system still achieves the
objectives which were met by the healthy system before
the occurrence of fault.

The general block diagram of a fault tolerant con-
trol is shown in Fig. 1. The main controller activities
occur on the execution level. In the faultless case, the
nominal controller attenuates the disturbance d and en-
sures set-point following and other requirements on the
closed loop system on the execution level. On the super-
vision level, the diagnosis block simply recognizes that
the closed-loop system is faultless and no change of the
control law is necessary. If a fault occurs, the supervi-
sion level makes the control loop fault-tolerant. The diag-

nostic block identifies the fault and gives this information
as D to the fault accommodation block. The FA module
adjusts the controller to the new situation, such that the
closed loop satisfies the performance specifications (Jain
et al., 2010; Zhang and Jiang, 1999).

The problem of fault tolerant control is often handled
in two ways, namely, using a model-based approach and
a model-free approach. In the former the full informa-
tion of the actual plant is known a priori. Accordingly, a
subsystem (state observer, output observer, Kalman’s fil-
ter, etc.) is built, which reconstructs the plant output and
diagnoses the fault. The fault is then accommodated us-
ing the FA module. On the other hand, generally, in the
so-called model-free approaches in the existing literature,
the model of the plant is estimated. Nevertheless, the plant
knowledge is required during estimation in real-time as
well. Hence, the knowledge of a plant model is mandatory
at any time to achieve fault tolerance either by assuming
the plant model to be known or to be estimated. This en-
tails the model mismatching issue that can generate false
alarms, even in the faultless situation.

Consider the case of disgraceful performance degra-
dation where control objectives are modified to achieve
partial tolerance to a fault. This implies that after the ac-
commodation of the fault, the current state of the plant still
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Fig. 1. Fault tolerant control architecture: r is a reference sig-
nal, u is the control signal, y is the output signal, f is a
fault signal, d is a disturbance, D is the diagnosis infor-
mation and C is the controller redesign information.

involves some dynamics of the fault in the faulty mode
that have not been accommodated entirely. Therefore, the
fault diagnosis module must be adaptive with respect to
the fault accommodation module so that the further mod-
eling issue can be averted. Otherwise, it will again result
in a false alarm.

As we have seen, FTC requires two distinctive mod-
ules that operate sequentially to accommodate the fault.
These two modules involve their respective time delays,
particularly, known as fault detection delay and fault ac-
commodation delay. Significant attention has to be paid
while handling these time delays. In the time interval be-
tween the occurrence of a fault and its accommodation,
the stability aspects of any FTC scheme become a con-
cern. In addition, due to historical reasons and the com-
plexity of the problem, most of the research on FD and
FA was carried out in two directions. Specifically, most of
the FDI techniques are developed as a diagnostic or mon-
itoring tool, rather than an integral part of FTC systems.
As a result, some existing FD methods may not satisfy
the need of controller reconfiguration in the FA module.
On the other hand, most of the research on reconfigurable
controls is carried out assuming the availability of a per-
fect FD. Little attention has been paid to the analysis and
design with the overall system structure and interaction
between FD and FA modules (Zhang and Jiang, 2008).

Seeing these shortcomings, the objective of this work
is to develop a generic method for fault tolerant control
based on real trajectories from the system subjected to
faults. The main aim of the paper is to formulate a model-
free approach to FTC that does not require any informa-
tion about the plant in real-time. Unlike in the so-called
subspace approach for FTC by Ding et al. (2009), we do
not focus on designing an FDI module that implicitly re-
quires the knowledge of the plant parameters. On the
contrary, our approach does not include any explicit FD
module. The idea here is to choose an appropriate con-
trol law such that the system in any (faulty/healthy) mode
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Fig. 2. Structure of a logic-based switching controller (a), struc-
ture of the supervisor (b).

achieves the performance specifications without the need
for a plant model. We employed the mathematical frame-
work of behavioral systems for the proposed approach. In
the last decade, the behavioral point of view has received
increasingly broader acceptance as an approach for mod-
eling dynamic systems, and now it is generally viewed as
a cogent framework for system analysis (Zerz, 2008). The
proposed FTC mechanism is illustrated on an aircraft dur-
ing the landing phase.

2. Active fault tolerant control strategy

In a model based fault tolerant control, it is generally that
the primary aim is to estimate the constraints Cf(θf) of
the faulty system for the FD module. Based on this infor-
mation, a new control law is applied in the fault accom-
modation phase such that the system satisfies the perfor-
mance specifications. The scheme is termed active fault
tolerance. On the contrary, in passive fault tolerance the
control law is not redesigned subject to the occurrence of
a fault. This implies that the system objectives can be ob-
tained when the system is healthy, as well as when the
system is faulty with the same control law. Hence, in the
literature, passive FTC systems are also known as reliable
control systems (Zhao and Jiang, 1998) or control systems
with integrity.

Fault tolerant control is concerned with the control
of a faulty system. This implies that we can regard any
FTC problem as a control problem subject to the state of
the system (healthy/faulty). The problem is completely



Model-free reconfiguration mechanism for fault tolerance 127

defined by the triple (Blanke et al., 2003)

〈O, C(θ), U〉, (1)

where the objective O defines what the system is expected
to achieve. This implies that the system should satisfy
certain performance specifications. The constraints C are
functional relations that depend on some parameter vector
θ. The controlled system satisfies these constraints over
time. This represents the state and measurement equations
of an actual plant model in state space representation. The
set U represents admissible control laws. These control
laws are designed so as to achieve the desired objective.

Now, let us analyze the impact of faults on the con-
trol problem. The occurrence of a fault on the system
transforms the control problem from 〈O, Cn(θn), U〉 into
〈O, Cf(θf), Uf〉, f ∈ F, where F indexes the set of all faults
considered, Cn(θn) is the set of nominal constraints with
nominal system parameters, and Cf(θf) is a set of faulty
constraints with faulty system parameters. Generally, the
occurrence of a fault does not result in a change of sys-
tem objectives because the main idea of fault tolerant con-
trol is to try to reach them even in the presence of a fault.
However, this may sometimes be impossible. In the case
when current specified objectives cannot to be achieved,
the problem is transformed into finding new objectives
which are less restrictive such that the system still man-
ages to satisfy the fault-tolerance property. This is known
as disgraceful degraded performance in the FTC litera-
ture.

One of the active approaches to FTC is to employ
switching theory that is based on constructing a bank
of controllers, each controller being associated with a
healthy or a faulty plant mode. The selection of a con-
troller to be used for the present working mode is assumed
to be achieved with some delay. The critical issue in any
model-based Active FTC System (AFTCS) is the limited
amount of time available for FD and for control system
reconfiguration. The theory of logic based switching con-
trol provides a unique direction for AFTCS without using
an explicit diagnosis module, which relies on a bank of
controllers (Fig. 2 (a)).

The supervisor block shown in Fig. 2(b) is composed
of a set of estimators, followed by the so-called perfor-
mance evaluation block and a switching logic scheme.
Each estimator reconstructs the actual plant output in ei-
ther healthy or faulty working modes. Its performance is
evaluated by computing a norm of the output estimation
error, and the estimator that yields the smallest error cor-
responds to the present working mode. Consequently, the
controller corresponding to the smallest value of the per-
formance index is applied to the process by the switching
logic. Here the notion of performance evaluation does not
correspond to the closed loop system performance.

This approach has some shortcomings from a practi-
cal point of view. In the present configuration, the scheme

presupposes that for each fault a reasonable controller has
been designed before the plant is put into operation. How-
ever, the presence condition of a right controller is as-
sumed in the controller bank. To build a set of estimators,
partial or complete knowledge of the plant is required and,
therefore, introducing model mismatch issues. In other
words, the above scheme requires the knowledge of the
plant model in real-time as well. Nevertheless, one cannot
ignore the role of gradual convergence in the latter ap-
proach, required to estimate the current working mode. A
notable feature of our proposed scheme is that it does not
require an explicit fault diagnosis module in real-time.

3. FTC in the behavioral context

A mathematical model in the behavioral setting is viewed
as any dynamical relation among system variables clas-
sified as manifest variables and latent variables. Indeed,
the resulting dynamical relations are constrained by the
time-evolution of these variables. Hence, the collection
of all time trajectories satisfying these equations is called
the behavior. When the trajectories do not belong to a
specified desired behavior, the cause is the occurrence of
a fault. The following gives a precise definition of the
concept of a dynamical system.

Definition 1. A dynamical system Σ is represented by a
triple Σ = (T, W,B) where T ⊆ R is called the time axis,
W ⊆ R

w is called the signal space and B ⊆ W
T is called

the behavior. A trajectory is a function

w :

{
T → W,

t �→ w(t).

The set W is the space in which the system time-
signals take on their values and the behavior B ⊆ W

T is
a family of W-valued time trajectories. Any behavior of a
dynamical system is also represented by its kernel repre-
sentation, B :≡ P ( d

dt )w = 0, where P ∈ R
•×w[ξ] and

ξ is an indeterminate operator. By assuming this point of
view, important aspects of the classical system theory have
been translated and solved in the behavioral framework.

3.1. Control via system interconnection. In the be-
havioral setting, a control problem is viewed as an inter-
connection of two dynamical subsystems. These subsys-
tems are the plant and the controller. Here we will con-
sider the case of partial interconnection, which is different
from the notion of full interconnection. The difference lies
in the fact that in the latter all the variables are accessible
for interconnection while in the former only few are avail-
able. Therefore, it is natural to separate the variable w as
w := [ w c ]T , where w is the manifest variable and c
is the latent variable (see Fig. 3(a)).

If Σ1 = (T, W,B1) and Σ2 = (T, W,B2) are two
dynamical subsystems with the same time axis and same
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Fig. 3. Interconnection of subsystems (a), feedback control in
the behavioral context (b).

signal space, then the interconnection of Σ1 and Σ2 shared
by variable c, denoted as Σ1 ∧c Σ2, is defined as Σ1 ∧c

Σ2 := (T, W,B1 ∧c B2). Thus, the behavior of Σ1 ∧c Σ2

consists simply of those trajectories w : T → W which
are compatible with both the laws of Σ1 and of Σ2. In
a closed-loop feedback control, w and c are also termed
to-be controlled variables and control variables (see Fig.
3(b)).

In the case of a Linear Time Invariant (LTI) system,
there exist co-prime polynomials Ry and Ru such that
G = R−1

y Ru, where G(ξ) is the rational representation
of plant. In the behavioral context, a control problem is
now formulated as follows. Assume that the plant, a dy-
namical subsystem Σp = (T, W,Pf ) whose behavior is
given by

Pf = {(w, c) ∈ R
q+p | R(ξ)w = M(ξ)c} (2)

with appropriate R ∈ R
•×q[ξ] and M ∈ R

•×p[ξ], where

[ R(ξ) −M(ξ) ]
[

w(t)
c(t)

]
= 0,

is the kernel representation of the plant’s behavior, w :=
(rT , yT )T , c := (eT , uT )T and

R =
[

0 Ry

1 −1

]
, M =

[
0 Ru

1 0

]
.

Here Pf represents the full behavior of the plant,
and the manifest behavior in to-be-controlled variables is
given by

P = {w ∈ R
q | ∃c ∈ R

p such that (w, c) ∈ Pf}. (3)

Similarly, for the controller, there exist co-prime
polynomials Ce and Cu such that C = C−1

e Cu, where
C(ξ) is the rational representation of the controller and its
behavior is described as

C = {c ∈ R
p | H(ξ)c = 0}, (4)

with H ∈ R
•×p[ξ], where H(ξ)c(t) = 0 is the kernel

representation. The interconnection between Pf and C re-
sults in a manifest controlled behavior, K = (Pf ∧c C)w,
defined as

K = {w ∈ R
q | ∃c ∈ C such that (w, c) ∈ Pf}. (5)

Therefore, we say that K is implemented by C, which (in
connection with the hidden behavior N ) gives the imple-
mentability condition (Belur and Trentelman, 2002),

N ⊂ K ⊂ P , (6)

where the hidden behavior is defined as the behavior con-
sisting of plant trajectories with the interconnection vari-
ables put equal to zero. It is described as

N = {w ∈ R
q | (w, 0) ∈ Pf}.

Let us present an example of a control problem in the be-
havioral framework.

Example 1. Given a plant

G(ξ) =
ξ − 1

ξ(ξ + 1)

and the controller

C(ξ) = − ξ + 1
ξ + 2.6

,

find the controlled behavior K.
We get

y

u
=

ξ − 1
ξ(ξ + 1)

=
Ru(ξ)
Ry(ξ)

,

[ξ(ξ + 1)]y + (−ξ + 1)u = 0,

e = r − y,

Pf :=
[

1 −1 −1 0
0 ξ2 + ξ 0 −ξ + 1

] ⎡
⎢⎢⎣

r
y
e
u

⎤
⎥⎥⎦ = 0.

For the controller C(ξ), we obtain

u

e
= − ξ + 1

ξ + 2.6
=

Cu

Ce
,

(ξ + 1)e + (ξ + 2.6)u = 0,

C :=
[

0 0 ξ + 1 ξ + 2.6
]
⎡
⎢⎢⎣

r
y
e
u

⎤
⎥⎥⎦ = 0,
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(Pf ∧c C)w :

=

⎡
⎣1 −1 −1 0
0 ξ2 + ξ 0 −ξ + 1
0 0 ξ + 1 ξ + 2.6

⎤
⎦

⎡
⎢⎢⎣

r
y
e
u

⎤
⎥⎥⎦ = 0.

From (6) K is a restricted behavior in P and K =
(Pf ∧c C)w (Polderman and Willems, 1997, Sec. 6.2.3),
and hence there must exist an unimodular matrix. The
greatest common divisor of Ru(ξ) and Ce(ξ) is 1. Us-
ing the Bezout identity, there exist polynomials a(ξ) and
b(ξ) such that a(ξ) · Ru(ξ) + b(ξ) · Ce(ξ) = 1. Define
unimodular matrices U1(ξ), U2(ξ) as follows:

U1(ξ) =

⎡
⎣ 1 0 0

0 1 0
ξ + 1 0 1

⎤
⎦ ,

U2(ξ) =

⎡
⎣1 0 0
0 a(ξ) b(ξ)
0 ξ + 2.6 ξ − 1

⎤
⎦

Here

a(ξ) = − 1
3.6

, b(ξ) =
1

3.6
.

We easily check that

U2(ξ)U1(ξ)

⎡
⎣ 1 −1 −1 0

0 ξ2 + ξ 0 −ξ + 1
0 0 ξ + 1 ξ + 2.6

⎤
⎦

=

⎡
⎣ 1 −1 −1 0

ξ+1
3.6 − (ξ+1)2

3.6 0 ξ+0.8
1.8

ξ2 − 1 (ξ + 1)(ξ2 + 1.6ξ + 1) 0 0

⎤
⎦ ,

K :=

⎡
⎣ 1 −1 −1 0

ξ+1
3.6 − (ξ+1)2

3.6 0 ξ+0.8
1.8

ξ2 − 1 (ξ + 1)(ξ2 + 1.6ξ + 1) 0 0

⎤
⎦

×

⎡
⎢⎢⎣

r
y
e
u

⎤
⎥⎥⎦ = 0. (7)

Here we see that the relation between r and y is given
by the third row in the above equation. �

In this framework, the control problem is also for-
mulated as finding a controller C that yields a desired con-
trolled behavior D. Hence the controller C should yield a
controlled behavior K such that K ⊆ D . If it is possible
to find a controller C that yields K ⊆ D, then D is said
to be implementable or implemented by C. Further, if a
given desired behavior D is implementable, we say that
‘the control problem is solvable’. Polderman (2000) pro-
posed that, for a given control objective, we must select a

desired behavior to design a controller such that the con-
trol objectives are satisfied, while Weiland et al. (1997)
proposed that, for a given control objective, there exists
an equivalent desired behavior to design a controller such
that the control objectives are satisfied. These two inves-
tigations were generally formalized as a single entity by
van der Schaft (2003) to design a controller based upon
the desired behavior. This controller is termed the canoni-
cal controller, irrespective of the control objective. There-
fore, we can regard the desired behavior D as equivalent
to the control objective O.

3.2. Switching control in the behavioral context.
The theory of switching control relies on constructing a
bank of controllers. Adopting a well-defined switching
algorithm, one of the controllers in the bank is selected
such that the control objectives are satisfied. In the anal-
ysis and development phase, it has been assumed that a
finite set of controllers

C = {C1, C2, . . . , CN} (8)

is constructed in such a way that in every situation, ei-
ther a healthy or faulty mode of the plant, there is at least
one controller in that set which has the appropriate con-
trol action and is able to satisfy the control objectives.
The notion of directability in the behavioral framework
precisely describes the existence of a controller bank. A
definition of weak directability is given below (Polderman
and Willems, 1997).

Definition 2. Let w1, w2 ∈ B and t ∈ T. We say that
w1 is weakly directable to w2 at time t′′ if there exists a
trajectory w3 ∈ B and a t′ ≤ t′′ such that

w3(t) =

{
w1(t), t ≤ t′,
w2(t), t > t′′.

In the above definition, the trajectories before t′ be-
long to an undesired behavior. Therefore, satisfying the
weak directability on the plant ensures that it is possible
to switch the trajectory at any time t′ such that it achieves
the desired behavior after time t′′, introducing some time
delay.

Remark 1. The notion of directability is stronger than
Definition 2. Unlike weak directability, the interconnected
system satisfying directability does not allow any time-
delay while switching to the desired trajectory. If the in-
terconnected system is weakly directable, then it is equiv-
alent to say that there must exist a controller such that
K ⊆ D.

Interestingly, the behavior we intend to control is of
the form given by (2). The matrices of polynomials R(ξ)
and M(ξ) are unknown. Once a fault occurs, the behavior
of the closed loop becomes inconsistent with respect to the
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desired behavior, and it must be compensated by making
an interconnection with another controller (compensator).

A compensator is a set of laws that restrict the inter-
connection variable c and therefore w. Beyond any doubt,
the measurements provide information about a dynami-
cal system. These measurements give partial knowledge
about the systems and might be thought of as representing
a small set of the behavior of a dynamical system. This
can be formalized by viewing these measurements, col-
lected over time τ , as a nonempty subset M of W

T. Pol-
derman (2000) uses a somewhat similar explanation re-
lying only on the measurements taken from a dynamical
system. In that explanation, each time a measurement is
completed, a model from that measurements is derived us-
ing an iterative algorithm. A controller is then generated
so that the interconnection satisfies the control objective
for that particular derived model. This model is known as
the Most Powerful Unfalsified Model (MPUM). A formal
definition of measurements illustrating the plant behavior
(Willems, 1986) is given as follows.

Definition 3. Given a vector space of time signals W
T, a

model or dynamical system Σp = (T, W,Pf), a mapping
Oτ : W

T → W
T and a measurement set Mτ ⊂ Oτ (WT),

we say that the behavior Pf is said to be unfalsified by the
measurement set Mτ if

Mτ ⊂ Oτ (Pf ),
where Oτ (x) is the experimental observation time sam-
pling operator defined by

[Oτ (x)](t) =
{

x(t), ta − τ ≤ t < ta ,
0, otherwise,

where ta is arbitrary current time. Thus Oτ (x) returns
values of x(t) only for past time intervals over which ex-
perimental observations of x(t) have been recorded. The
measurement set Mτ is the set of actual experimental ob-
servations of the plant behavior as observed through the
time sampler Oτ . Thus, O−1

τ (Mτ ) is a behavior that in-
terpolates the observed data during the time interval τ .

Definition 4. Given a vector space of time signals
(T × W), a controller Σc = (T, W, C), a desired behavior
D, a mapping Oτ : W

T → W
T and a measurement set

Mτ ⊂ Oτ (WT), we say that a controller Σc is unfalsified
by the measurement set Mτ if

Oτ (O−1
τ (Mτ )) ∧c C) ⊂ Oτ (D),

where O−1
τ (Mτ )) ∧c C = K. Definition 4 supposes

roughly that a controller, whose behavior is denoted by
C, is said to be unfalsified if the set of trajectories that are
consistent with the data and the controller, at the past ob-
servation times, is a subset of the desired set Oτ (D). As
we are working in real time, introducing the time sampling
operator is justified.

Pf

Controller-1

Plant
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Controller-2

Controller-n

CRM
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Fig. 4. Switching control scheme for FTC in the behavioral set-
ting.

Remark 2. The underlying idea of utilizing the behav-
ioral approach is that it captures the behavior of the plant
without any explicit modeling. In Definition 4, the trajec-
tories collected over an interval τ determine the behavior
of the plant. Later, we shall show that the performance
of the closed loop is analyzed as well during this interval
only.

Consider the architecture of switching control for
FTC in the behavioral setting as shown in Fig. 4, the su-
pervisor or Reconfiguration Mechanism (RM) manages
the switching of controllers from the set given in (8) into
feedback with the plant such that the closed loop sat-
isfies the control objective despite the occurrence of a
fault. From the FTC problem (1), when a fault occurs,
it converts the control problem from 〈O, Cn(θn), U〉 into
〈O, Cf(θf), Uf〉, f ∈ F where F indexes the set of all faults
considered. Constraints C(θ) in any mode (healthy/faulty)
are unknown.

The RM performs a when-which task that implies
when to change the control law and which controller
should be switched into feedback with the evolving plant.
From the hypothesis of the existence of at least one cor-
rective controller in the pre-designed set (8) for the faults
occurring in the plant and taking Definition 4 into ac-
count, a simple conceptual solution to the controller selec-
tion would be to evaluate experimentally each candidate
controller’s performance by applying it to the plant. Un-
fortunately, not all the potential controllers can be tested
simultaneously in the feedback loop. To overcome this
situation, the idea of identifying directly the right correc-
tive controller to be switched into the feedback loop using
only the experimental information up to the current time
would be appealing. The problem amounts to inferring the
closed loop behavior from the observed data produced by
the plant driven by a different controller.

Moreover, without further modeling assumptions on
the plant Σp, it is logically impossible to verify that a con-
troller Σc will implement an interconnected system K that
achieves the desired behaviorD. Thus we provide a bound
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on the time of a controller to be present in the closed loop
so that its performance can be analyzed during that time
interval. The controller will be provisionally retained as
the best available controller until it is falsified (or rejected)
or possibly outmoded by a better controller present in the
bank. As in real time operation, it is impossible to fore-
see the realization of the desired behavior by a closed loop
system, unless we know the model of the plant. Whenever
the controller is not rejected by the experimental data, it is
said to be unfalsified. This formulation is based on an ap-
proach which is popularly known as the unfalsified control
concept (Safonov and Tsao, 1997).

Notice that the observed data Mτ are not related to
any particular experimental setting. Hence a deep con-
sequence of Definition 4 is that the controller Σc can be
tested, even if it is not actually interconnected to the plant.
This fact is a powerful tool for evaluating the ability of an
off-the-shelf controller to perform corrective actions and
satisfy the performance objective following an unexpected
change in a feedback loop. Weiland et al. (1997) formal-
ize the desired or acceptable behavior with the notion of
control objective as follows.

Definition 5. A control objective is a quadruple O =
(Rmin,Smin,Rmax,Smax) of subsets of W

T. A controller
Σc is said to achieve the control objective O for the inter-
polated plant behavior O−1

τ (Mτ ) if the behavior Oτ (K)
satisfies the inclusions

Oτ (Smin) ⊆ Oτ (K) + Oτ (Rmin), (9)

Oτ (K) ∩ Oτ (Rmax) ⊆ Oτ (Smax). (10)

The control objective O from (1) specifies the de-
sired behavior. It is specified in terms of a minimal and
a maximal requirement on the behavior of the controlled
system. Thus we call (9) a minimal and (10) a maxi-
mal requirement for Oτ (K). Roughly speaking, the mini-
mal requirement formalizes the idea that Oτ (K) should be
“sufficiently rich” so that a suitable extension of this sys-
tem contains at least a specified set of trajectories (such
as disturbances, reference trajectories or norm-bounded
signals). The maximal requirement articulates the perfor-
mance of the system.

Definition 6. Given L+
2 , the space of square integrable

trajectories which vanish for t < 0, the truncated L2

inner-product 〈w1,w2〉τ and norm ‖w‖τ are denoted by

〈w1,w2〉τ �
∫ t+τ

t

wT
1 (t)w2(t) dt,

‖w‖τ �
√
〈w,w〉τ ,

where w : R → R
q .

Let Q = QT be a real symmetric full rank indefinite
q × q matrix and suppose that

Q = Q+ − Q−,

where Q+ ≥ 0 and Q− ≥ 0 are such that q+ := rank Q+

and q− := rank Q− satisfy q+ + q− = q. Given such a
Q, the control objective is defined by the quadruple

Rmin := Q−L+
2 , (11)

Smin := L+
2 , (12)

Rmax := L+
2 , (13)

Smax := {w ∈ L+
2 | J(w) ≡ 〈w, Qw〉 ≥ 0}, (14)

where J(w) is the performance index.
Let w be partitioned as

w :=
[
r u y

]T ∈ W
T,

where r has dimension nr > 0, u has dimension nu > 0,
y has dimension ny > 0 and nw = nr + nu + ny . The
H∞ control problem amounts then to finding a controller
which, when connect in the closed-loop, makes the system
stable and satisfying

λ2‖r‖2
τ − ‖u‖2

τ − ‖y‖2
τ

=

〈⎡
⎣r
u
y

⎤
⎦ ,

⎡
⎣λ2Inr 0 0

0 −Inu 0
0 0 −Iny

⎤
⎦

⎡
⎣r
u
y

⎤
⎦〉

τ

≥ 0,

∀w ∈ L+
2 , (15)

where the constant λ > 0 is an upper bound of the H∞
norm of the closed loop transfer function (see Grimble,
1993, Chapter 3).

Now we proceed with the controller falsification test.
For an unknown dynamical system Σp = (T, W,Pf),
named the plant, we have a set of measurements Mτ dur-
ing the time interval τ composed of trajectories u and y
such that O−1

τ (Mτ ) ⊆ Pf , where

Mτ = {(r, u, y) ∈ Oτ (WT) | u = u(m), y = y(m)},
(16)

with W
T = R× U × Y , for some

(u(m), y(m)) ∈ Oτ (U × Y).

In other words, (u(m), y(m)) is the data measured
during τ . The performance evaluation of a controller Ck

based on the measurement set (u(m), y(m)) proceeds as
follows. The behavior of the controller Ck is given by

Ck = {w := (r, u, y) ∈ W
T | u(t) = Ck(r(t) − y(t))},

(17)
so that, based on the measurements, the signal r should
have been

rk(t) = C−1
k u(m)(t) + y(m)(t) (18)

for ta − τ ≤ t ≤ ta, where we have assumed that all
the controllers in the set are Stable Causally Left Invert-
ible (SCLI) controllers. Note that this assumption is not
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restrictive since the controllers can be designed to be bi-
proper. Alternatively, in order to avoid the restriction to
the minimum phase (SCLI) controllers, we can use the
Matrix Fraction Description (MFD) form (Stefanovic and
Safonov, 2008) for the controllers.

The signal wk = (rk, u(m), y(m)) ∈ W
T on the time

interval [ta − τ, ta] clearly belongs to the controller be-
havior Ck as well as to O−1

τ (Mτ ), i.e., wk ∈ Oτ (Ck ∧c

O−1
τ (Mτ )). From Definition 4, a controller Ck is unfalsi-

fied by the experimental measurements Mτ generated by
an unknown plant whenever wk ∈ Oτ (D), i.e., the feed-
back loop with the current controller satisfies the control
objective O at wk ∈ W

T for a certain value of λ. We de-
note by Owi the control objective O at wi. Equation (18)
defines a filter Fk that reconstructs the reference signal rk

from the measurements of (u, y) (Yamé and Sauter, 2008).
The above procedure can also be applied to any off-the-
shelf controller in the set (8) of N potential candidate con-
trollers, thus yielding N performance indexes,

{J(wi), i = 1, 2, . . . , N}. (19)

The unfalsified controllers are those controllers with
index i that satisfy the control objective Owi for a cer-
tain value of λ. These performance indexes facilitate the
selection of right unfalsified controller that can switch
into the loop. The explicit structure of the reconfigura-
tion mechanism consists of a bank of filters (18), a per-
formance index generator producing the indexes (19), and
a controller selector block as shown in Fig. 5. The con-
troller selector block is a system that produces a piece-
wise constant signal (the switching signal) σ based on
{J(wi)}N

i=1 whose task is to select the corrective con-
troller from the bank. The switching signal is a map from
the time axis T to the controllers index set {1, 2, . . . , N},
i.e., σ : T → {1, 2, . . . , N}.

As we have mentioned earlier, we take the measure-
ments and scrutinize the performance index on the time in-
terval [ta−τ, ta]. This implies that, if it requires switching
of the controller, the switch will occur after time τ exclu-
sively. Therefore, it imposes a lower bound on the length
of intervals between successive switches. This minimum
length of time in which a controller is active in the loop
is known as the dwell time. The logic is then realized
through

σ(t) = σ(ta) for ta ≤ t < ta+1 (20)

with an updating rule (21), where k̂ is the index of a
to-be-switched controller. The controller selector block
contains the control selection algorithm given in (20) and
(21). The switching logic implements the following: It
lets the stable dynamics of the closed-loop switched sys-
tem have enough time to decay before a next possible
switching occurs, and it bounds the detection delay, i.e.,
the time elapsed from the occurrence of a fault to the in-
validation of the active controller. Note that a short de-
tection delay requirement will need a short dwell-time
that clearly conflicts with the stability of the closed-loop
switched system. Moreover, Wang and Safonov (2005)
prove and Baldi et al. (2010) experimentally illustrate that
the unfalsified control concept cannot prevent the destabi-
lizing controller to be switched in the feedback loop. This
implies that the switching signal σ ∈ {1, 2, . . . , N} fol-
lows a certain switching order before selecting the right
controller. Hence, the corrective controller will not be
switched directly in the loop. Therefore, any destabiliz-
ing controller is expected to remain in the loop during the
time interval τ . This also infringes the stability of the
switching system. Thus here we see that the stability of
the closed loop conflicts for two reasons: (a) due to the
short dwell time that may lead to multiple switching, (b)
due to the impact of a destabilizing controller operating in
the closed loop during the time interval τ .

For (b), we can assume that the controllers installed
in the bank are stabilizing for at least one working mode
of the plant. For the latter case, we do not consider the
multiple switching any more. Since it is well known that
the large dwell time itself ensures the global exponential
stability (Morse, 2008), these stabilizing controllers cor-
respond to the modes, i.e., there always exist at least one
plant/controller stable interconnection. Reacting to these
issues, a lower bound to τ should be imposed to ensure
the exponential stability of the overall switched system
(Morse, 2008, Lemma 1.1). As a result, a lower bound
on the dwell time is also determined in the analysis and
development phase.

As we have mentioned, for a fixed short dwell time,
there will be multiple switchings in the system. On the
other hand, a fixed large dwell time can lead to the sec-
ond stability issue. Therefore, in much the same way as
in the work of Stefanovic and Safonov (2008), the dwell
time must be adaptive with the evolving time. Stefanovic
and Safonov (2008) discuss the finiteness of the overall
number of switches in the case of multiple switchings and
develop a bound on it that depends on the data. Since
it is also proven that the final controller will be the cor-
rective one, which implies that the number of switches
would be some finite value and hence there could be a
set of data for which the number of switches can be ar-
bitrarily large (though finite). Nevertheless, this situation
depends on the switching algorithm and the evaluation of
the performance functional. Adopting a more precise view
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σ(ta+1) =

⎧⎨
⎩

σ(ta), if Cσ(ta) is not falsified,

k̂ = arg min
k �=σ(ta)

{J(wk)}, if Owk is not satisfied for some value of λ. (21)

of Stefanovic and Safonov (2008), the performance of all
the controllers is evaluated on the whole time axis, start-
ing from the origin to the current time. In the switching
algorithm the performance functional is evaluated for all
the controllers, even if it has already been falsified. How-
ever, in our switching algorithm, the correct controller is
selected in one shot.

As mentioned before, we evaluate the performance in
a fixed time window, and thus the evaluation of the dwell
time of Morse (2008, Lemma 1.1) considers the fact that
the right controller is identified. Moreover, for the stabil-
ity of the overall system, the performance index should
reflect any instability taking place in the closed loop. This
feature is termed cost-detectability (Stefanovic and Sa-
fonov, 2008), which is different from plant detectability.
At the same time, cost-detectability is determined from
the knowledge of the performance index and the candi-
date controllers, based upon the trajectories generated by
the system in real time. The formal definition is as fol-
lows.

Definition 7. Let wm
i = (r, um, ym) denote the measured

trajectories and J(wi) denote the performance index with
the i-th controller Ci as the current controller. The set
{J(wi)}N

i=1 is said to be cost-detectable if, without any
assumption on the plant and for every i ∈ {1, 2, . . . , N},
the following statements are equivalent:

1. J(wm
f ), where f ∈ {1, 2, . . . , N} is bounded as t

increases to infinity, where the index f corresponds
to the final corrective controller;

2. the control objective O of the system O−1
τ (Mτ ))∧cC

is satisfied by the trajectory wm
i for some value of λ.

From Definition 7, it is now clear that any unpermit-
ted behavior in the closed loop will be reflected by the
performance index evaluation. The proposed algorithm
to achieve real-time fault tolerant control is illustrated in
Fig. 6. The following theorem provides the main result.

Theorem 1. Let D be the desired behavior that cap-
tures the control objective O (Definition 5) using a cost-
detectable performance functional J(w) (Definition 7), τ
be the interval during which the behavior of plant is deter-
mined, and the interconnection between the plant and the
controller assumed to be weakly directable (Definition 2).
For any system with σ(t) selected in accordance with (20)
and (21), the following statements are equivalent:

• with any occurrence of unpermitted behavior, the
system is fault-tolerant;

Given

D,C, τ

Form a measurement set

Mτ ∈ Oτ (W
T )

J(wk) ≥ λ

Switch ‘off-the-shelf’ controller

k̂ = arg min{J(wk)}k �=σ(ta)

Analysis &

development phase
1.

Determine the

behavior of plant
2.

Fulfills the

cost-detectability
3.

Re-configure

the controller
4.

Fig. 6. Proposed algorithm.

• global stability of the final interconnected system is
assured by the experimental measurement set Mτ .

Proof. See Appendix. �

Note that here we provided the ‘logic-based switch-
ing’ mechanism contrary to the switching criterion dealt
with by Yang et al. (2009), who used the so-called contin-
uous arbitrary switching criterion. Certainly, with a peri-
odic switching law the stability issue during the switching
becomes a concern. It is studied by Hespanha et al. (2003)
that the limitations often seen in an arbitrary switching are
successfully overcome in a logic-based switching.

4. Simulation example

In this section, we show an application of the proposed
approach to constructing the autopilot mechanism for an
aircraft during the landing phase (Oishi et al., 2002). The
auto-landing system of the modern aircraft is supposed to
follow a certain trajectory called glide-slope. The land-
ing of a civil transport aircraft is divided into three parts,
namely, approaching a trajectory, flare, and touchdown
and ground run. Figure 7 shows the aircraft in a certain
trajectory-approaching phase, which constitutes the final
phase of the descent (i.e., the glide-slope). The Instru-
ment Landing System (ILS) on ground determines the dif-
ference between the actual trajectory of the aircraft and
the reference trajectory imposed for the descent. Here the
purpose is to design a fault tolerant autopilot that fully
supports the conduct of the flight in the vertical plane
along the glide scope. In these simulations, we ignored
the lateral movement and rolling movements of the air-
craft assuming that these aspects are handled by another
automated system.
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For the problem considered (longitudinal flight), the
aircraft is seen as a system with three outputs that are mea-
sured in real-time: the speed V , the angle γ of the flight
path, and the distance from the center of mass of the air-
craft relative to the glide-slope herr. The control inputs of
the system are the aircraft thrust T and the elevator com-
mand δ (Oishi et al., 2002). The elevator is a movable
aerodynamic surface located in the empennage that con-
trols the pitch of the aircraft. We assume there are no dy-
namics between the elevator command and the angle of
attack α of the wing. Thus, we view α as equivalent to δ,
and consequently, for the sake of simplicity, we treat α as
a control input. The thrust controls the speed V of the air-
craft. The objective is that the aircraft follows along the
glide–slope, making a desired flight path angle at 3 de-
grees clockwise (i.e., γr = −3 deg). Thus, it makes herr

zero. The non-linear model of the longitudinal dynamics
of a large jet aircraft is given as⎡

⎢⎢⎢⎢⎢⎢⎣

m
dV

dt

mV
dγ

dt
dherr

dt

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎣−D(α, V ) + T cosα − mgsinγ

L(α, V ) + T sinα − mgcosγ
V (sinγ + cosγtanγR)

⎤
⎦ , (22)

cf. the work of Yamé (2005) for the data and the parame-
ters of the aircraft.

4.1. Fault scenario. For illustrating the FTC mecha-
nism, we consider a complete loss of one of the control
surfaces, i.e., a fault in the elevator. Two modes of the air-
craft system are considered: the nominal mode (no fault)
and a complete stuck in the angle of attack (faulty mode).

4.2. Constructing a controller bank. We use the fol-
lowing linearized model for designing a controller bank
around the trim points, α = 2.686 deg and T = 4.23 ×
104N :

ẋ = Ax + Bu, z = Cx, (23)

where

x =
[
V γ herr

]T
, u =

[
α T

]T
,

A =

⎡
⎣−0.0180 −9.7966 0

0.0029 −0.0063 0
0 81.9123 0

⎤
⎦ ,

B =

⎡
⎣−4.8374 5.2574× 10−6

0.5786 3.0149× 10−9

0 0

⎤
⎦ , C =

⎡
⎣1 0 0
0 1 0
0 0 1

⎤
⎦ .

As mentioned before, the control objective is to
maintain herr equal to zero. However, the references to
be tracked are V and herr. Thus, the output is now given
as y = Cox, where

Co =
[
1 0 0
0 0 1

]
.

We design two corresponding controllers for the two dif-
ferent modes based on (23). The control law is given as

u(t) = −K · z(t) + Kp · e(t) + Ki ·
t∫

0

e(ϑ) dϑ (24)

with e(t) = w − y, where w is the reference trajec-
tory. The matrix gain corresponding to the measure-
ment (or state) feedback is designed using the pole-
placement technique. The poles for both modes are placed
at (−2.8782,−2.3026 ± 1.7269i) which makes the sys-
tem internally stable. The matrix gains corresponding to
the “Proportional + Integral” (PI) structure allow follow-
ing the desired trajectory. The gains for healthy and faulty
modes are then chosen as

Kh =
[
2.328× 10−3 7.919 0.174
5.461× 105 5.409 × 10−3 1.598 × 105

]
,

Kph =
[

2.2 × 10−3 5.21 × 10−2

9.2755× 105 5.9528× 106

]
,

Kih =
[

2.2 × 10−2 1.563 × 10−1

9.2755× 106 1.7858× 107

]
,

Kf =
[

0 0 0
7.926× 105 1.091× 109 1.886 × 107

]
,

Kpf =
[

1 131.63
−1.9018× 104 9.5928× 104

]
,

Kif =
[

0.6339 2.7853× 103

−1.2057× 104 2.0298× 106

]
.

The subscripts h and f represent the gains for healthy and
faulty modes, respectively.

4.3. Parameters of the supervisor. The time inter-
val during which the measurements are taken is τ and the
performance is evaluated with ta, the instants of possible
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Fig. 8. Closed-loop signals aircraft autopilot landing system.

switchings. The performance threshold λ distinguishes
various modes of the system. These parameters are set
to λ = 5, τ = 5 s.

An experiment is run with a complete stuck in the
angle of attack appearing at 30 s. The closed-loop signals
of Fig. 8 show that the real-time FTC system successfully
reacts at 40 s by switching to Controller 2 (faulty mode
controller). After an acceptable transient, the control ob-
jective is recovered as seen from the distance from the
center of mass of the aircraft relative to the glide-scope
approaching to zero. Note that since the FTC scheme is
based on the control performance, when the active con-
troller is invalidated by the operating plant data, the su-
pervisor puts into feedback the best controller from the
set of potential controllers that is, the controller yielding
optimal closed-loop performance in real-time.

5. Conclusion

In this paper, the fault tolerant control problem has been
formalized in the behavioral setting using the concept
of system interconnection. This results in a model-free
reconfiguration scheme in real-time that is solely based
upon the input-output trajectories. In fact, the concept of
interconnection among the variables describing the sys-
tem is regulated by the closed-loop performance evalu-
ation. A cost-detectable “performance functional” cap-
tures the control objectives effectively and plays the role
of a detector for any abnormal situation or faults in the
closed-loop system. On detecting this undesired behavior
of the closed loop, an appropriate interconnection is made
in real-time without using an explicit model of the plant so
that the control objective is satisfied at any time. A novel
feature of this scheme is that it does not require any FDI
unit. This clearly rules out the issues of generating false
or missed alarms associated with standard FDI units, and
thus increases the reliability of the FTC system.
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(now the University Lorraine), France. Since
1993 he has been a full professor at this uni-
versity, where he teaches automatic control. He
was the head of the Electrical Engineering De-
partment for four years, and now he is a vice-
dean of the Faculty of Science and Technology.
He is a member of the Research Center in Auto-
matic Control of Nancy (CRAN) associated with

the French National Center for Scientific Research (CNRS). He is also
a member of the French-German Institute for Automatic Control and
Robotics (IAR), where he has chaired a working group on intelligent
control and fault diagnosis. His current research interests are focused on
model-based fault diagnosis and fault tolerant control with emphasis on
networked control systems. The results of his research works are pub-
lished in over 50 articles in journals and book contributions as well as
150 conference papers.

Appendix

The proof of Theorem 1 is somewhat similar to the sta-
bility proof of Stefanovic and Safonov (2008). First, it is
convenient to provide the following lemma.

Lemma 1. Consider a fault tolerant system with σ(t)
selected in accordance with (20) and (21). For any con-
troller Ck in the loop, the corresponding virtual reference
r̃k converges exponentially to the true reference r.

Proof. For any controller Ck, (18) yields

Cku (ξ)r̃(t) = Cke(ξ)u(t) + Cku(ξ)y(t).

The corresponding controller in the loop gives the control
signal by

Cke (ξ)u(t) = Cku(ξ)r(t) − Cku(ξ)y(t).

From the above two equations, we get

Cku(ξ)(r̃(t) − r(t)) = 0.

Hence, r̃(t) − r(t) converges exponentially to zero with
Cku(ξ) being a co-prime factor. �

We show our results corresponding to an H∞-stable
(15) interconnected system by the measurement set Mτ .

Proof of Theorem 1. Recall that, by construction, r̃i

can be viewed as the virtual reference that, if injected
into the interconnected system (P ∧C)i, would reproduce
(u(m), y(m)). Then, for any index i corresponding to an
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H∞-stable interconnected system, there exist positive re-
als α̃1, α̃2, δ̃1, δ̃2 such that

‖u(m)‖ ≤ α̃1‖r̃i‖ + δ̃1, ‖y(m)‖ ≤ α̃2‖r̃i‖ + δ̃2.

In other words, for every right controller connected
to the corresponding plant working mode, the intercon-
nected system P ∧ C is H∞-stable by the set of trajecto-
ries w := (r̃i, u

(m), y(m)), regardless of the switching se-
quence σ(t), t ∈ T. Consequently, from Definition 7, we
conclude that J(w) is bounded by λ. Since the measure-
ment set Mτ determines the behavior of the plant, after
the occurrence of a fault the unfalsification inequality will
not be satisfied.

By Remark 1, there exists a controller Cf such
that the performance functional corresponding to Cf is
minimal relative to the connected controller Ci in the
loop. Thus, on directing Cf in the loop, the system
(P ∧ C)f is H∞-stable by the set of trajectories w :=
(r̃f , u(m), y(m)). Then, there exist finite nonnegative con-
stants α1, α2, δ1, and δ2 such that

‖u(m)‖ ≤ α1‖r̃f‖ + δ1, ‖y(m)‖ ≤ α2‖r̃f‖ + δ2.

As the virtual reference r̃f converges exponentially
to the true reference r, there exists a finite nonnegative
constant δ such that

‖r̃τ
f‖ ≤ ‖rτ‖ + ‖r̃τ

f − rτ‖ ≤ ‖rτ‖ + δ.

Consequently, we conclude that

‖u(m)‖ ≤ α1‖r‖ + β1, ‖y(m)‖ ≤ α2‖r‖ + β2,

where β1 := α1δ + δ1 ≈ 0, β2 := α2δ + δ2 ≈ 0 and α1 +
α2 = λ, viz. the system P∧C is H∞-stable by Mτ . Here
we see, after the occurrence of a fault, following (20) and
(21), that the interconnected system is H∞-stable. Hence,
it is a fault tolerant system.
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