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JAKUB STĘPIEŃ ∗,∗∗, ANDRZEJ POLAŃSKI ∗,∗∗, KONRAD WOJCIECHOWSKI ∗,∗∗

∗ Institute of Informatics
Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland

e-mail: {Jakub.Stepien,Andrzej.Polanski,Konrad.Wojciechowski}@polsl.pl

∗∗Polish-Japanese Institute of Information Technology
Aleja Legionów 2, 41-902 Bytom, Poland

When conducting a dynamic simulation of a multibody mechanical system, the model definition may need to be altered
during the simulation course due to, e.g., changes in the way the system interacts with external objects. In this paper, we
propose a general procedure for modifying simulation models of articulated figures, particularly useful when dealing with
systems in time-varying contact with the environment. The proposed algorithm adjusts model connectivity, geometry and
current state, producing its equivalent ready to be used by the simulation procedure. Furthermore, we also provide a simple
usage scenario—a passive planar biped walker.
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1. Introduction

Modeling multibody mechanical systems subject to multi-
ple and time-varying contacts with the environment is still
a challenging problem for researchers designing proce-
dures for simulating multibody mechanical systems. At-
taching the system to a base can be used as a computa-
tionally cheap and precise way to simulate systems hav-
ing a single contact point with the environment as long as
we can express the nature of the contact with a bilateral
constraint (a joint). Such a bilateral contact constraint is
a reasonable approximation for a sticking contact, e.g., a
human/robot leg placed on a non-slippery ground. How-
ever, expressing the single contact with the environment
by means of a joint attached to a base makes this con-
tact enter the model definition, and whenever the location
of the contact changes (or vanishes) during the course of
simulation, care must be taken to alter the model defini-
tion.

In this paper we describe linear-time, on-the-fly pro-
cedure for modifying the multibody mechanical system
model definition applicable to kinematic trees, which
modifies system topology, geometry and state, expecting
minimal information from the user.

2. Background

In the classical approach to the problem of modeling and
solving the dynamics of multibody mechanical systems,
one needs to explicitly specify equations of motion in the
form of systems of differential equations. These equa-
tions are solved by appropriate algorithms for integration.
In the case of a system with bodies connected by multi-
ple joints of different types, multiple configurations of ex-
ternal constraints and interactions with the environment,
modeling a dynamical system can become difficult in the
sense that determining both model equations and their pa-
rameters may require considerable research and computa-
tional effort.

In the course of the development of computer meth-
ods for multibody dynamic problems, alternative ap-
proaches have been proposed, which utilize various dy-
namics algorithms to either compute first derivatives of
the state vector directly or to determine coefficients of
equations of motions efficiently. Parameters of a dynam-
ics algorithm are defined by the structure of the mechan-
ical model considered and properties of the rigid bodies
forming it. Thanks to such an approach, researchers can
develop systems for automatic analysis of multibody me-
chanical systems, applicable to certain classes of systems
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regardless of their exact structure. This methodology for
modeling the dynamics of multibody mechanical systems
will be called here the algorithmic or algorithm-based ap-
proach.

One of the earliest dynamic algorithms emerged
in the mid-1960s with solutions based on both Newto-
nian (Hooker and Margulies, 1965; Roberson and Witten-
burg, 1966) and Lagrangian (Uicker, 1965) mechanics. By
the mid-1970s, solutions utilizing Lagrangian multipliers
for joint constraints (Chace and Sheth, 1973; Orlandea
et al., 1977) appeared. What is more, Orlandea’s program
(ADAMS) exploited matrix sparsity (sparse tableaux for-
mulation) to improve performance. These early works are
well reviewed by Paul (1975). The Composite-Rigid-Body
Algorithm (CRBA), first proposed by Walker and Orin
(1982), harnessed the O(n) recursive Newton–Euler in-
verse dynamic algorithm (RNEA) as a means of calculat-
ing the joint-space inertia matrix of a kinematic tree much
faster than earlier methods. The CRBA is most commonly
presented as an O(n2) solution, but obviously once the en-
tries of the inertia matrix have been determined, a system
of linear equations needs to be solved, thus the dynamics
algorithms using the CRBA are collectively referred to as
O(n3) algorithms.

The earliest known forward dynamics algorithm hav-
ing linear time complexity was proposed by Vereshchagin
(1974), but it was not until Featherstone’s works on the
Articulated-Body Algorithm (ABA) (Featherstone, 1983;
1984; 1987) that propagation methods became widely ac-
knowledged. An alternative linear time solution is due
to Baraff (1996), who coupled an always sparse formu-
lation using Lagrangian multipliers with linear-time fac-
torization. This approach has been particularly popu-
lar within the computer graphics community, where rigid
body dynamics algorithms are used to build general pur-
pose physics engines and thus solutions based on La-
grangian multipliers, which provide natural means for
mixing articulation and contact constraints, are preferred.
A recent, thorough comparison of multibody dynamic al-
gorithms can be found in the work of Jain (2011).

3. Contribution

The algorithmic approach to the modeling of multibody
mechanical systems uses the topology of the system in
question as input data. Based upon the information pro-
vided in the particular system representation, the algo-
rithm traverses the hierarchy and applies equations gov-
erning the motion of its elements to eventually determine
system accelerations either one-by-one (e.g., ABA) or si-
multaneously (e.g., CRBA).

System topology is usually expressed using a graph
containing bodies interconnected by joints. The entire
system is (topologically) attached to a referential body
called a base or a carrier. The base is either immobile

or its motion is known as a function of time. If there are
no kinematic loops in the system, the graph becomes a
tree rooted at the base.

In the case of a kinematic tree, the attachment of the
system to a base can be used as a computationally cheap
and precise way to simulate systems having a single con-
tact point with the environment as long as we can ex-
press the nature of the contact with a bilateral constraint
(a joint). Apart from systems which are permanently at-
tached to the ground/environment, the bilateral contact
constraint is a reasonable approximation for a sticking
contact, e.g., a human/robot leg placed on a non-slippery
ground. However, expressing the single contact with the
environment by means of a joint attached to the base
makes this contact enter the model definition, and, when-
ever the location of the contact changes (or vanishes) dur-
ing the course of simulation, care must be taken to alter the
model definition. Presumably, changing the model must
be followed by an appropriate adjustment of its state to
achieve equivalent configuration.

This kinematic tree hierarchy modification paradigm
can entirely eliminate the need of equipping a general-
ized coordinate algorithm with the ability to handle con-
tact constraints if during the analyzed motion the system is
guaranteed to be in one contact with the external environ-
ment at most (e.g., simplified bipedal walking, human run-
ning). In other cases, it can still be useful to decrease the
total amount of contact constraints and thus the amount of
necessary computations.

In this paper we describe a low-overhead, scalable,
on-the-fly procedure for modifying kinematic tree hierar-
chy applicable to the algorithm-based approach for simu-
lations of multibody mechanical systems. The model def-
inition which we are concerned with is tightly based upon
Featherstone’s works on rigid body dynamics (Feather-
stone, 2008; 1987) and includes a connectivity graph and
system geometry described in introductory sections. The
rigid bodies themselves are defined by their masses and
the moment of inertia tensors. All of these elements need
to be redefined in order to properly modify the system hi-
erarchy. The on-the-fly property of our procedure means
that it can be applied without interrupting the simulation.
Its scalability is due to favorable time complexity, which
is linear in the number of bodies in the worst case.

Although the procedure was designed to be compat-
ible with the model definition based on Featherstone’s
works which enforces a number of conventions, the gen-
eral idea is applicable to any dynamics algorithm which is
explicitly using system topology to traverse the tree. Such
realizations will most naturally use recurrence relations
and have state and geometry variables referred to link co-
ordinates. Applying the proposed procedure to algorithms
based on redundant set coordinates which constrain the
motion of the bodies with reaction forces does not seem
sensible since the role of explicit topological information
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is such cases is only supplementary or none.
When designing the hierarchy switching algorithm

we have made several assumptions as to what qualities it
should possess:

• A1: The operation should be revertible (i.e. ,
op(op(model))= model).

• A2: The operation should result in a geometrically
equivalent representation (system looks the same).

• A3: The operation should result in a representation
physically equivalent at the instant of applying it.

These assumptions will be referred to throughout the text.
The following three sections provide a brief overview

of the algebraic prerequisites and model elements but are
not intended as a comprehensive discourse. For a more
thorough and complete description, please refer to Feath-
erstone (2008).

4. Spatial algebra

Spatial algebra for multibody mechanical systems is ex-
haustively discussed in prior publications (Featherstone,
2008; 1987; Rodriguez, 1991). We use the algebraic ap-
proach shown there. Some notational conventions and ba-
sic prerequisites, which will enable the reader to under-
stand our ideas, are presented below.

Thanks to spatial algebra, the traditional separate
treatment of the linear and angular aspects of dynamics
are merged into a uniform notational form consisting of
both. Instead of a pair of 3D Euclidean vectors we can
use a single 6D spatial motion vector (from M6 space) or
a 6D spatial force vector (from F 6 space):

• linear and angular velocities → spatial velocity,

• linear and angular accelerations → spatial accelera-
tion,

• momentum and angular momentum → spatial mo-
mentum,

• force and moment of force (couple) → spatial force.

Furthermore, the spatial inertia tensor of a rigid body
relates its spatial velocity and momentum, therefore it
needs to bear information about the body’s rotational iner-
tia along with its mass. It is represented by a 6× 6 matrix
(called a matrix of inertia throughout the text).

Coordinate transforms are also expressed using 6×6
matrices (which we will generally denote by X) compris-
ing both rotation and translation. The vector spaces M6

and F 6 are dual, so there is a scalar product defined be-
tween them which implies the following relation:

X∗ = X−T , (1)

where both X and X∗ perform the same coordinate trans-
formation but on vectors from M6 and F 6, respectively.

For convenience and brevity we shall assume that we
have several auxiliary procedures at hand:

• rot(E): returns a spatial transform built from the in-
put 3 × 3 rotation matrix E;

• trn(t): returns a spatial transform built from the in-
put 3 × 1 translation vector t;

• ori(X): returns a 3 × 3 rotation matrix implicit in
the spatial transform X ;

• pos(X): returns a 3×1 translation vector implicit in
the spatial transform X .

If we ever need a position of the origin of the coordinate
frame represented by spatial transform X , we will call
pos(X), and if we happen to need this frame’s orienta-
tion, we call ori(X). Here rot and trn perform inverse
operations. Thus,

X = rot(ori(X)) trn(pos(X)). (2)

These functions can either launch apt computations each
time they are called or refer to a precalculated matrices
and vectors set/cache.

5. System model

The system model is provided by descriptions of its con-
nectivity and geometry, the former providing us with
information about the hierarchy and nature of inter-
body connections within the multibody system while the
latter—about locations of these connections.

5.1. Connectivity. We shall be using a representation
proposed by Featherstone (2008), but it should be noted
that equivalent alternatives can be found in the literature
(Wittenburg, 2007). The connectivity (or topology) of the
system is defined by a connectivity graph, which is

• undirected (i.e., the relation defined by the graph
edge is symmetric) and

• connected (i.e., there exists a path between any two
vertices).

Vertices in the graph represent bodies comprising the sys-
tem, while edges—joints (inter-body connections). The
notion of a graph is used to allow expressing kinematic
loops in the system by cycles in the graph. However, the
analysis provided in this paper does not consider kine-
matic loops so we can restrict the graph to be a topo-
logical tree (called simply a tree). Moreover, for a sys-
tem with kinematic loops it is reasonable to set off with
its spanning tree and then apply additional loop-closure
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Fig. 1. Sample connectivity graph. Two of the joints are labeled
to show where they are in the graph and how they are
numbered. There are no cycles in the graph so it is a
topological tree.

constraints so restraining the analysis to a tree is justified
(Wittenburg, 2007; Featherstone, 2008). The tree is rooted
at the fixed base, which will normally have only one child
(we will refer to it as the top or the oldest vertex/node),
since the base can be regarded as having infinite mass,
which means that subtrees rooted at its direct successors
will not have influence on each other (unless a collision
between them occurs).

Each vertex in the tree has a unique index number
assigned to it. The index of the oldest/top vertex in the
hierarchy is denoted by itop. Edges are numbered so that
edge i connects vertex i with its direct predecessor (par-
ent) (Fig. 1).

Featherstone suggested the use of a parent array, λ,
to store the connectivity information, which also implies
a specific numbering of the bodies (Featherstone, 2008).
The parent array is constructed in such a way that its i-
th entry holds the index of the parent of body indexed
with i. However, we have found an object-oriented ap-
proach by far more scalable and easy to manage, espe-
cially when switching between different hierarchies. By
‘object-oriented’ we mean holding separately for each
joint the indices of

• its parent,

• its first child,

• its next sibling,

and in the algorithms using recursion rather than loops.
Nevertheless, we shall use the symbol λ(i) to denote an
index of the parent of body i, but bear in mind that it is
not an actual array any more (Fig. 2).

5.2. Joint models. A joint is a linking point between
a parent and child body in the tree and it defines their
relative motion freedom. In each such relationship, we
shall call the parent body a joint owner, and the child
body a joint user. Each body can own zero or more joints
and must use exactly one. Note that, due to the edge
and vertex numbering scheme described in the previous

Fig. 2. Sample hierarchy. Each node’s children and siblings are
pointed to by accordingly labeled arrows, while the par-
enting goes as follows: λ(h) = −1, λ(i) = h, λ(k) =
h, λ(j) = i.

section, each joint bears the same index as its user.

The joints are described by

• motion subspace S (given by a matrix S such that
range(S) = S) to which the relative motion of the
successor is constrained, and

• state variables expressing joints’ configuration and
velocity in allowable motion subspace at the current
instant (relative to the parent).

The more intuitive (and more often met in the literature
(Craig, 2005)) single-DOF, Euclidean equivalent of the
motion subspace matrix is the joint axis.

From the definition of the motion subspace matrix S,
one can write

vi = Si q̇i, (3)

where q̇i is the joint space velocity vector for body i,
while vi is its spatial velocity. The matrix S will dif-
fer depending on the joint type—for a revolute joint (also
known as a hinge or pin joint), it is simply

S =
[

0 0 1 0 0 0
]T

, (4)

which means that it allows only one degree of free-
dom associated with rotation about the body-local z-
axis. Representing matrices S in body-local coordi-
nates results in their simple form, which for a major-
ity of joint types remains constant during the simulation
(Featherstone, 2008).

For brevity, we adopt Featherstone’s idea of the jcalc
procedure defined for every joint type/model. The main
purpose of calling jcalc is to convert joint state variables
(specific to a joint model) to a general 6 × 6 spatial
transformation matrix describing the transformation intro-
duced by this joint (see the next section).
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Fig. 3. Tree transforms for a sample system setting (2D for clar-
ity). Origins of the bodies frames Fj and Fk are given
relative to their parent (body i) by transforms XTj and
XTk , respectively.

5.3. Geometry. Having established the order and na-
ture of connections between bodies comprising the sys-
tem, we need to state where the joints are located and what
geometric transformations they imply on bodies at the cur-
rent instant. For the sake of clarity we now introduce the
notion of a pivot point—the location of the joint that the
i-th body stems out from. We shall use pi to denote the
pivot point for body i.

Body i has a coordinate frame Fi rigidly attached to
it. We assume that Fi originates at pi. This is very impor-
tant since it unifies each joint location with the origin of
the frame of its user—a fact heavily exploited in Feather-
stone’s dynamics algorithms. Although the efficiency and
notational gains seem to promote this tight bound between
a joint and its user, one cannot forget that each joint needs
two bodies to ever exist.

The location of the pivot point relative to the body’s
Center Of Mass (COM) affects this body’s moment of in-
ertia tensor, which is expected to express the rotational in-
ertia of the body when rotating about its pivot point. This
COM to a pivot vector for the i-th body will be denoted
by ri.

A body stems out from the joint used on the one
hand, but can be a starting point for a number of subtrees
rooted at child joints it is the owner of, on the other. The
origin and orientation of the i-th child frame relative to the
parent body’s coordinate frame is given by the so-called
tree transform denoted by XTi (Fig. 3):

XTi = rot(Ei) trn(ti), (5)

where Ei and ti are the i-th body orientation and transla-
tion relative to its parent, respectively, when the system is
in the bind pose.

Tree transforms are enough to represent the tree con-
figuration when all joint position variables are zero, which

makes them an intuitive equivalent of the well-known
computer animation notion—a bind pose, i.e., the start-
ing/default configuration of the system. However, when
joints’ position variables differ from zero, we need a way
to incorporate them into the geometric configuration. This
is achieved by one more transformation, namely, joint
transformation, which is denoted by XJi for the i-th joint.
The method of converting joint-space position variables
of a specific joint to a spatial transform XJi depends on
the joint model, and we assume that it is provided by the
aforementioned procedure jcalc available for each joint
type.

We shall now show what jcalc does using a revolute
joint. Since this kind of joint has only one degree of free-
dom (rotational about a fixed axis), it will hold only one
internal state position variable, q0, expressing the rotation
across this joint. Let us assume that the rotation axis for
this joint is Z . Thus, the coordinate transformation asso-
ciated with this joint can be expressed by a 3 × 3 rotation
matrix:

E =

⎡

⎣
cos(q0) sin(q0) 0
− sin(q0) cos(q0) 0

0 0 1

⎤

⎦ , (6)

therefore the spatial joint transform for the i-th revolute
joint is

XJi = rot(E), (7)

and this is what the jcalc for this type of joint would re-
turn.

Now, using the tree transform (the bind pose, if you
will) and the joints’ state information, we can describe the
geometry of the entire system in the absolute coordinate
frame (base frame). Let Xabs

i be the coordinate transfor-
mation from the absolute frame to the i-th body’s frame.
Then

Xabs
i = XJi XTi Xabs

λ(i), (8)

which means that for body i we first apply the absolute
transformation of the parent, Xabs

λ(i), then the transforma-
tion from the parent (λ(i)) frame to the child (i) frame and
finally the state local transformation.

This concludes the model description part of this
work. In the following sections, a procedure which co-
herently alters system connectivity and geometry is in-
troduced along with a number of notions and definitions
which emerged when designing it.

6. Algorithm

6.1. Modifying the connectivity. The connectivity in-
formation alone can be modified pretty easily, especially
when the aforementioned object-oriented approach is used
to represent the hierarchy. The procedure expects a single
parameter—the index of the new top vertex in the tree,
nitop. Once it is specified, we move along the path from
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Fig. 4. Illustration of a simple multibody system. Left: sys-
tem geometry (gray circles represent joints), right: cor-
responding connectivity tree.

the new oldest vertex to the previous one, inverting what
one may call the polarity of connections.

For an unbranched system (chain) there is only
one sensible way this can be done—every predecessor–
successor relationship gets inverted. A choice needs to be
made, however, on how to reinterpret ramification if the
system in question is an actual tree. In such a case the
chain of vertices connecting the new top body to the old
one is isolated first. We shall call this chain a chain of in-
version, χ. The parent–child relation along χ is subject to
the same simple inversion rule as an unbranched system.

What about the siblings of a vertex laying along the
chain of inversion, vχ? We have considered two possibil-
ities:

(i) the past siblings of vχ remain its siblings in the new
hierarchy (i.e., they change their parent to the new
parent of vχ);

(ii) the past siblings of vχ keep their parent from the old
hierarchy, thus becoming vχ’s grand-children.

If the first approach is applied to a system where the
new top vertex has one or more siblings, we get several
separate hierarchies attached at the base. This may not
seem a great problem when considering the topological in-
formation itself, but one needs to remember that, as men-
tioned in Section 5.1, during simulation the base isolates
its direct children from each other, which results in several
sub-models functioning separately. The second approach
is free from this problem since it generates topologies with
a single child of the base (single top vertex), and this is
why we chose it.

6.2. Modifying the geometry. Once we have defined
what the new hierarchy is, we need to modify the geomet-
ric model so that the destination system has the same bind
pose as the source one (A2). Since all the transformations

kept are relative to the parent coordinate frame, they are
no longer valid once the connectivity is changed. What
persists is the absolute transformations, Xabs

i .
However, in order not to violate A1, we need a way to

isolate the geometric model from the state of the system
so that on reverting the switching operation we get the
original model and state. This cannot be achieved using
absolute transformations only, which blend the state and
the bind pose indistinguishably.

6.2.1. Bind pose. To reconstruct the bind pose alone,
we need to calculate absolute tree transforms, Xabs

Ti
, as

follows:
Xabs

Ti
= XTi Xabs

Tλ(i)
, (9)

which is Eqn. (8) after removing joint transforms. The
orientations and origins/positions of body frames repre-
senting the system in its bind pose will be preceded by a
bind- prefix (e.g., bind-orientation).

Now, we need to answer the question what exactly
we need to find in order to reconstruct the bind pose. It is
defined by tree transforms, XTi , which in turn are defined
by i-th joint’s translation ti and rotation Ei relative to its
parent’s frame (Eqn. 5). So for each joint we need to find
the new ti and Ei, namely, nti and nEi.

Having found the building blocks of our new bind
pose, we need to remember that bodies in the system
have their rotational inertias expressed about pivot points,
which have just been relocated. Thus, for each body we
also need to find new pivot location relative to its COM,
nri, and use it to recompute their inertial properties.

The procedures for tree transforms meant for the new
top body and the remaining bodies are different, so they
will be discussed separately in the following two sections.

Tree transforms: Non-top bodies. We have based
this part of our algorithm on the observation that every
inverted body–child relation in the connectivity model
switches the owner–user roles around the linking joint.
So, each joint remains at the same spot and preserves its
properties, but it is used by a different body—its former
owner. The former user, on the other hand now becomes
the owner (Fig. 5).

Recall that we have assumed a convention in which
a joint shares an index with its user. Since rearranging
the connectivity tree changes joint users, it makes the in-
dexing outdated, so we need an additional step to fix this.
The effect that this correcting step has in terms of our no-
tation is simply making the indices match again. What it
actually means in terms of the underlying code depends
entirely on implementation details.

Summarizing, what we need to do is, for the joints
along χ,

(i) calculate absolute bind transforms for the old hierar-
chy, Xabs

Ti
;
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Fig. 5. Switching the user–owner relation around the joint. This
is what happens along the chain of inversion as a result
of changing the connectivity. As we can see, the joint
is unaffected, it is just used/owned by a different body
now.

(ii) change the connectivity;

(iii) update the joint-user correspondence to follow the
connectivity change.

Now, we will express absolute tree transform frames
of the bodies in the new hierarchy, nXabs

Ti
. The absolute

bind-orientation remains obviously the same since it ex-
presses how the body is oriented and it does not change.
As for the frame absolute bind-origin, it is given by the
position of a joint used by each body and this has just
changed. As stated before, bodies will now use a joint
they formerly owned. Although each body can own many
joints, this still identifies the new joint uniquely since we
are constrained to the chain of inversion. Summarizing,
after the switch, bodies use joints that were previously
used by their current parents (Fig. 6). Thus

nXabs
Ti

= rot(ori(Xabs
Ti

)) trn(pos(Xabs
Tnλ(i)

)). (10)

What we have is the absolute origin and orientation of i-th
body frame, nFi, but what we really need is nti and nEi.
Let us start with nEi:

nEi = ori(nXabs
Ti

) ori(nXabs
Tnλ(i)

)T , (11)

which means that we calculate the new relative orientation
of each body by reducing it by its new parent absolute
orientation (this is why the transpose/inversion appears).

To position the frame origin relatively to its new par-
ent frame, we apply

nti = nE
nλ(i) (pos(nXabs

Ti
) − pos(nXabs

Tnλ(i)
)). (12)

First, the relative bind-position is found in absolute coor-
dinates and then transformed to nF

nλ(i): the new frame of
the i-th body’s new parent.

This procedure needs to be applied to all bodies along
the chain of inversion (apart from nitop) and their imme-
diate successors that are not part of χ.

An additional note needs to be made here: Eqn. (12)
will not yield correct results for the direct children of the

Fig. 6. Illustration of how the joint ownership changes along χ
when the hierarchy is switched—bodies use joints that
were previously used by their current parents. Solid,
white arrows coming out of each joint indicate its po-
larity and point toward the body which stems out from
it.

new top body. The reason behind this is the fact that, in
order for the system to be properly positioned with respect
to the base, the translational part of nXabs

Tnλ(i)
needs to

include both the tree and joint transforms, since the new
top joint is now fixed and we cannot arrange it to translate
into to the desired position as a result of applying its joint
transform later on. At the same time, we need to relate
nti to the bind-pose position of body λ(i). This problem
is solved by introducing an auxiliary vector variable, gT ,
presented in the next section.

Tree transforms: New top-body. The new top body is
the one that has come in contact with the base. This con-
nection is entirely new in our system so we have no means
of deducing anything about its nature. What we need from
the user is to specify

• the nature of the new connection (i.e., joint type), and

• location of the new connection (let us denote it by g).

The joint type does not influence our algorithm in
any way since we assume that it is already designed to
cope with different joint models. As for the location—it
seemed reasonable to us that it would be specified by the
absolute position. It is an intuitive algorithm parameter
and should be easier to use with, e.g., third-party collision
detection libraries/engines.

As previously, the absolute bind-orientation of this
body remains the same. It is more difficult to get the new
absolute bind-origin. We know the absolute location of
the new top joint, g, which includes both the bind pose
and the current state of the system, but what we need is
the absolute location of the new top joint when the system
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is in the bind pose. Let us denote this point by gT . The
procedure of determining gT can be visualized as rigidly
attaching a virtual marker to the new top body at g when
the system is in its actual pose and then reconfiguring it
into the bind pose. The final location of the virtual marker
is the sought gT . It is achieved in the following way:

1. Find the translation vector (absolute coordinates)
from the old hierarchy origin of this body’s frame to
the new origin, specified by the input parameter:

(∗) = g − pos(Xabs
nitop

) (13)

2. Transform the translation vector (∗) from abso-
lute coordinates to body coordinates—this vector is
rigidly attached to the body frame so we will be able
to rotate them together once expressed in body coor-
dinates:

(∗∗) = ori(Xabs
nitop

) (∗). (14)

3. Transform the translation vector (∗∗) from body co-
ordinates back to absolute coordinates, but using the
tree transform this time:

(∗∗∗) = ori(Xabs
Tnitop

)T (∗∗) (15)

4. Move the old hierarchy body frame absolute bind-
origin by the absolute coordinates translation vector
(∗∗∗):

gT = pos(Xabs
Tnitop

) + (∗∗∗). (16)

Equation (12) will use nXabs
T

n itop
given by

rot(ori(Xabs
Ti

)) trn(gT ), (17)

but the final model definition for the system should be
based upon its proper form:

rot(ori(Xabs
Ti

)) trn(g). (18)

The meaning of this is that in order to determine the tree
transforms, we temporarily position the system at a virtual
location, gT , which is uniquely defined by the bind-pose
and the location of the old hierarchy top joint. Once the
new tree transforms for all the bodies are found, we place
the system at the correct location, g, by providing a proper
form of nXabs

T
n itop

.
The work in this section is complete, because the new

top vertex has no parent, which means that we can use
its freshly calculated absolute bind-orientation and bind-
translation directly when defining the new tree transform
for it.

Using nEi, nti and applying Eqn. (5), we can now
calculate the new spatial joint transform, nXTi , for each
joint.

Pivots with respect to body COMs. To determine the
new moment of the inertia tensor of each body, we will
need the new coordinates of the vector connecting its
COM with the point about which this body pivots, nri.
This vector is expressed in the i-th body’s frame. Note,
however, that we know nothing about the COM location
apart from the old vector ri. Here is how it can be used:

nri = ri + nEi (pos(nXabs
Ti

) − pos(Xabs
Ti

)), (19)

which means translating the old pivot location in accor-
dance to how the joint was relocated after having ex-
pressed the relocation vector in the i-th body’s coordinate
frame.

Once again, a separate procedure is needed for the
new hierarchy top joint. Since we have assumed a com-
fortable and intuitive parameter to be the new absolute top
joint position, g, we will have to work with the actual con-
figuration of the tree rather than its bind-pose, but the for-
mula is similar:

nr
nitop = r

nitop + ori(Xabs
nitop

) (g − pos(Xabs
nitop

)).
(20)

6.2.2. Current configuration. The bind pose is al-
ready suited for the new connectivity, but the relative joint
position variables represent the configuration of a differ-
ent model, which in most cases will resultantly violate A2.
This part can be done particularly conveniently and effi-
ciently for non-top joints. The parent–child relations have
been inverted and so have the relative transformations. In-
version of joint state variables is, of course, joint model-
specific. We provide here an example of inverting the state
(and acceleration) for three joint types:

• revolute joint → change sign of the angle,

• prismatic joint → change sign of the distance,

• spherical joint → invert the quaternion.

It is not as simple for the nitop joint. Using the
absolute-to-local approach again, however, we can find its
joint-transform and then use it to perform an operation in-
verse to what jcalc does, i.e., derive this joint’s local posi-
tion state variables from the new spatial transform across
it, nXJi .

First, we need to find nXJk
, for k = nitop. By look-

ing at Eqn. (8) simplified by the fact that we are consid-
ering the top joint (i.e., there is no parent transform to be
concerned with), we can write

Xabs
k = nXJk nXTk

, (21)

from which it follows that

nXJk
= Xabs

k nXTk

−1. (22)
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Getting the raw joint position information from the
spatial joint transformation matrix is (again) joint-type-
specific. Below are some examples of what information
must be extracted from nXJi for certain joint models:

• revolute joint → angle of rotation about the joint lo-
cal rotation axis,

• prismatic joint → amount of translation along the
joint local translation axis,

• spherical joint → angles of rotation about the joint
local axes.

7. Joint velocity and acceleration

The system whose hierarchy is being switched may have
certain velocities and accelerations across its joints. What
we do about them is very much task-specific and we will
not provide a single, working approach since it does not
seem to exist. In this section we shall present two sample
scenarios and a way we handled velocity and acceleration
when dealing with them.

7.1. Adapting motion capture data for ID. It is com-
mon to use different motion acquisition techniques to cap-
ture motion data and then provide it as an input to Inverse
Dynamics (ID) algorithms in order to estimate the mo-
ments and forces governing the captured motion.

Standard humanoid motion capture data use a skele-
ton rooted somewhere at the hips/pelvis. While this is
convenient and capable of creating a plausible motion, it
is not really physically correct if we perceive the skeleton
hierarchy as an order of physical support, so it cannot be
used directly by ID.

What we can do is to apply the hierarchy switching
algorithm frame-by-frame to alter the captured skeleton
and motion sequence to make the actual support be the
hierarchy root. A multi-support problem arises here, but it
is beyond the scope of this article—let us assume we are
dealing with single-support cases only.

Apart from the altered connectivity, bind pose and
configuration, ID will obviously need joints’ velocity and
acceleration in each frame. We can, of course, numeri-
cally differentiate the position data after the hierarchy has
been switched, but assuming that we already have high-
quality derivatives (e.g., provided by the motion capture
machinery), we can adapt them to the new hierarchy.

As usual, the procedure is different for non-top joints
for which it is enough to invert the velocity and accel-
eration, which is a joint-type-specific task. Here are our
standard examples:

• revolute joint → change the sign of angular velocity
and acceleration,

• prismatic joint → change the sign of linear velocity
and acceleration,

• spherical joint → change the sense of angular veloc-
ity and acceleration vectors,

and for the hierarchy top joint:

(i) total spatial velocity is found by accumulating the ve-
locities of its old-hierarchy ancestors;

(ii) this total spatial velocity is then used to calculate the
spatial velocity of the location chosen for the new top
joint;

(iii) finally, the joint-specific velocity information is ex-
tracted from the obtained spatial velocity.

The procedure is exactly the same for the acceleration.
Notice that A3 is not violated here since the procedure ap-
plied simply reevaluates the velocities and accelerations
for the new hierarchy.

7.2. Hierarchy switch as a result of a collision. The
second scenario is actually our use case. When a multi-
body system comes into contact with the environment, its
support order changes, which must be reflected in the hier-
archy. Multi-support can be an issue here, too, and again
we have to assume that it is not (which is not an absurd
assumption if you refer to the use case section). The pro-
posed approach for this scenario is to detect collisions be-
tween the system and the environment (e.g., ground) while
conducting a forward dynamics simulation. When a colli-
sion is detected, the hierarchy switch procedure is run with
the collision point designated as the new support location.

The impact from the environment influences the ve-
locities, and thus we need to derive and apply impact
equations in order to step-change the velocities. There are
several ways this can be approached, e.g., Mirtich (1996)
integrated impact dynamics with Featherstone’s AB algo-
rithm. Another method, based on the conservation of an-
gular momentum, is presented in the use case section of
this article.

There is no need to track accelerations through the
hierarchy switch/collision in this scenario.

It is hard to say whether A3 is kept here since the
impact will most probably step-change the system veloci-
ties and thus modify its physical state. On the other hand,
resolving the impact in a physically justified way cannot
be perceived to violate the assumption of physical equiv-
alence.

8. Sample use case

8.1. Passive dynamic walking. Passive dynamic
walking is aimed at creating walking machines function-
ing without any actuation. McGeer, who is one of the
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Fig. 7. Compass biped.

pioneers in this field, proved that it is possible to construct
a simplified, planar model of human legs which is able to
walk stably down a gentle slope driven only by the con-
stant gravitational field (McGeer, 1990).

A wide range of research groups are studying this
kind of machines/robots analyzing systems of various lev-
els of complexity—a straight-legged point-feet walker in
2D (Coleman, 1998; Garcia, 1999) and 3D (Coleman,
1998), a straight-legged curved-feet walker in 2D and
3D, curved-feet kneed walker in 2D (McGeer, 1990; Gar-
cia, 1999), and more. One of the simplest cases among
these is a planar compass-like biped (Fig. 7) which

• has no knees,

• has point feet.

We have decided to describe how one can simulate
such a compass-like, planar walker using any of Feath-
erstone’s forward dynamics algorithms coupled with our
base-switching algorithm and certain methodology to deal
with feet-ground collisions.

8.2. Assumptions. The following assumptions about
the model and its motion are made:

• B1: Leg-ground collisions are slipless plastic (no
bounce, no slip).

• B2: Leg-ground collisions during the forward swing
phase (scuffing) are ignored.

• B3: Leg-ground resting contact is slipless.

• B4: Stance and swing leg exchange roles instanta-
neously at the collision.

• B5: Joints are ideal (there is no friction or damping).

These assumptions are common for this kind of research.

Fig. 8. Compass biped expressed in Featherstone’s model
terms. Both joints are of the revolute/hinge type.

8.3. Model. The standard model of a compass planar
biped is depicted in Fig. 7. To express it using the terms
described in the first part of this paper, we first identify
its bodies and joints. From B5 we know that we can use
ideal joints without introducing additional passive or ac-
tive elements. B3 makes it possible to use a fixed base
system with a revolute joint linking the ground with the
support leg. B4 reassures us that no loops will be formed
within the system (i.e., no double-support phase). There-
fore, there are two bodies (two knee-less legs), and two
joints (hip joint and support joint). The state of this sys-
tem is fully given by the stance and swing leg angles, qst

and qsw, respectively (defined as in Fig. 8), and their rates.
The convention for defining stance and swing angles de-
picted in Fig. 7 is much more common and we are using a
different set of symbols for the purpose of distinction (θst

and θsw as opposed to qst and qsw).
Now, we need to find spatial inertia tensors for the

bodies. Since masses in the system are lumped in three
points while there are two bodies only, we have decided
to make one of the legs consist of a single point mass
placed somewhere along it, while the other is created by
two point masses—one at its hip-end and the other at some
distance along the leg. The resultant spatial inertia for the
latter leg is constructed by adding matrices of inertia for
the two point masses after having expressed the respec-
tive tensors in the common coordinate frame (latter body’s
frame).

The length of the legs is represented by mass-less
rods joined at the hip and bearing the aforementioned
masses lumped at certain points. These rods can collide
with the ground but have no other physical meaning. The
resultant model is depicted in Fig. 8.

The exact values of parameters used in the simulation
are listed in Table 1.

8.4. Motion. The motion of this kind of systems is hy-
brid in the sense that it is characterized by continuous dy-
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Fig. 9. System at the moment of the swing leg colliding with the
ground.

namics interleaved by discrete events (ground collisions)
(Hiskens, 2001). Thus, in the interval between two con-
secutive ground collisions we apply forward dynamics al-
gorithm to the model described in the previous subsection
subject to a constant gravitational field, which is equiva-
lent to a double pendulum simulation.

When a collision occurs, a special treatment is
needed that takes into account the impulsive nature of this
event. This special treatment provides us with new, post-
impact velocities that can be used as an initial condition
for the upcoming continuous dynamics phase.

8.5. Collision resolution. Collisions are resolved
based on B1 and the principle of conservation of the an-
gular momentum. The system configuration is preserved
throughout the collision. Moreover, by looking at the sys-
tem during a collision (Fig. 9), we can see that no im-
pulsive torque is applied to the entire system about the
new contact point and to the sub-system comprising the
pre-impact swing leg about the hip. Therefore, angular
momenta about the contact point and the hip will be con-
served through the collision for the entire system and the
former swing leg, respectively. The conservation of the
angular momentum leads to a step change of system an-
gular velocities.

Based upon these two observations, we can provide
two equations in two unknowns (post-impact velocities)
by simply equating the preserved angular momenta ex-
pressed in pre- and post-impact terms.

To keep things as general as possible, we have de-
cided to use an approach proposed by Garcia (1999), who
used the generalized inertia matrix of the system to build
the aforementioned set of equations and then solved it nu-
merically. Finding symbolic versions of these equations is
not particularly difficult in this case but would have to be
done separately for different models and probably offline.
Last but not least, if the forward dynamics algorithm ap-
plied happens to be CRBA-based (or equivalent), then the
generalized inertia matrix for the system is already avail-
able for free.

Table 1. Simulation parameters and initial conditions (see Fig. 8
for reference).

Parameter Value Unit

mh (hip mass) 2 kg
ml (leg mass) 1 kg

l 1 m
d 0.5 m
γ 0.0524 rad
qst -0.3236 rad
qsw 0.5424 rad
q̇st -1.4939 rad/s
q̇sw -0.3117 rad/s

The two equations in the matrix form are as follows:
[ −Ltot

−Lsw

]
= H

[
+q̇st
+q̇sw

]
, (23)

where the minus in the superscript stands for pre-impact,
the plus for post-impact, H is a 2 × 2 generalized inertia
matrix of the system, Ltot is the total angular momentum
of the system about the contact point, Lsw is the angu-
lar momentum of the pre-impact swing leg about the hip,
q̇st and q̇sw are the angular velocities of the post-impact
stance and swing legs, respectively. Angular momenta and
angular velocities are scalars since this is a planar case.

8.6. Initial conditions and system parameters. In or-
der to achieve a stable gait, beside proper simulation and
proper impact calculations, one also needs to specify ini-
tial conditions for specific model parameters and slope.
These conditions are the model pose (joints angles) and
angular velocities (hinge joints velocities) that we provide
the simulation with at launch.

We have decided to refer our simulation directly to
someone more adept in this type of research and used
initial velocities and angles provided by Hiskens (2001)
along with exact system parameters values. They are col-
lectively presented in Table 1 together with system param-
eters.

8.7. Results. Using the above-described methodology,
parameters, initial conditions and the 4-th order Runge–
Kutta integrator, we have managed to obtain a steady gait.
We have assessed it in most natural terms by observing
the rendered motion. To provide an additional illustra-
tion, we employ a phase portrait for the system, which is,
however, four-dimensional, making it hard to visualize di-
rectly. This problem is commonly solved by projecting
the entire phase portrait onto a plane representing one leg
(Fig. 10). Which leg we choose is unimportant since the
steady gait is symmetric.

Obviously, such a projection loses vital pieces of
information—non-cycles can appear as cycles and differ-
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ent trajectories may cross; nonetheless, this is a standard
procedure in this kind of research.

We will now briefly analyze the phase portrait de-
picted in Fig. 10. Two continuous parts can be distin-
guished, the support and the swing phase, separated by
discontinuities in the velocity. The continuous parts are
the effect of applying a general rigid body system simu-
lation procedure. When a collision condition is met, an
impact resolution technique is applied, which results in
a step change of the velocities and in switching of roles
that each leg plays in the system—the former support leg
becomes a stance leg and vice versa. This is why the con-
tact events (contact gain and loss) initiate the continuous
phases in the plot. There are no discontinuities of the po-
sition variable/angle since the system configuration is pre-
served through the collision.

As pointed out by Goswami (1996), a significant
amount of insight into the nature of the symmetric pas-
sive gait may be gained by plotting the potential energy
of a walking biped as a function of its kinetic energy. Fig-
ure 11 provides such a plot using the results of our simula-
tion. While steadily walking the biped will follow a path
given by ABAC—it will first gain potential energy (AB),
which will then be transformed into kinetic energy (AC,
building up velocities). In Fig. 11 these energy transfor-
mations happen along a fixed line since the total energy
of the system is constant. However, when a ground col-
lision occurs (C), a specific amount of system energy is
lost (CA′), which drives the system to a parallel line rep-
resenting a lower total energy. This scenario is repeated in
every step of a steady gait.

Fig. 10. Phase portrait projected onto the θθ̇ plane (θ is the an-
gle made by the analyzed leg with the vertical). We can
distinguish two continuous parts—the top one corre-
sponds to the period when the leg in question is swing-
ing, while the bottom one represents the period when it
is supporting.

Fig. 11. Biped potential energy plotted as a function of its ki-
netic energy for two consecutive steps. Points of in-
terest have been marked and labeled as follows: A—
starting point, B—maximum potential energy, C—
ground collision. Prime symbols indicate the second
step.

9. Conclusions

In this paper we provided an algorithm capable of rebuild-
ing the entire rigid body system definition, which will
work with arbitrarily configured kinematic trees expect-
ing minimal information from the user/caller. Apart from
the system configuration, we also proposed ways of mod-
ifying velocities and, if necessary, accelerations of bodies
forming the system, depending on the application.

The proposed algorithm, used along with an appro-
priate impact resolution technique, was successfully ap-
plied in the sample usage scenario the results of which
were verified in several ways. Our research also proved
that algorithm-based simulation along with auxiliary al-
gorithms, such as the one described in this paper, can lead
to development of powerful simulation tools.
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