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Real life data sets often suffer from missing data. The neuro-rough-fuzzy systems proposed hitherto often cannot handle
such situations. The paper presents a neuro-fuzzy system for data sets with missing values. The proposed solution is a
complete neuro-fuzzy system. The system creates a rough fuzzy model from presented data (both full and with missing
values) and is able to elaborate the answer for full and missing data examples. The paper also describes the dedicated
clustering algorithm. The paper is accompanied by results of numerical experiments.
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1. Introduction

Real life data often lack some values. The reasons for
this are diverse: refusal to answer some questions in a
questionnaire, inapplicability of questions, irrelevant or
unknown attributes, errors in answer acquisition, random
noise, impossible values, impossibility to get data (e.g., a
patient has died). Missing data are a problem in medical
research for two main reasons. The first one is practical
impossibility of collecting all the data. The second prob-
lem appears when the data are used retrospectively, i.e.,
the data were gathered for other purposes than the research
needs. Renz et al. (2002) give an example where only 1
patient out of 55 had all blood tests done. Overall, 9.2%
of blood test results are missing. Lakshminarayan et al.
(1999) present a real life data set with more than 50% of
the values missing.

Acuña and Rodriguez (2004) describe the classifi-
cation of data sets with missing values. The data sets
with less than 1% of missing values are labelled as trivial,
1–5% as manageable. For data sets with 5–15% of miss-
ing values some sophisticated methods are required, and
finally more than 15% missing values “severely impact
any kind of interpretation”.

Generally, three approaches are used to handle the
problem of missing values:

1. Imputation: the unknown values are substituted with
estimated ones (Renz et al., 2002; Wagstaff and Lai-
dler, 2005; Dempster et al., 1977; Ghahramani and

Jordan, 1995; Zhang et al., 2007; Zhang, 2011).

2. Marginalisation (Whole Data Strategy, WDS): the
data tuples with missing values are removed from
the data set (Troyanskaya et al., 2001; Hathaway and
Bezdek, 2001) or the features (attributes) with miss-
ing values are ignored (Cooke et al., 2001), which
leads to the lowering of the task dimensionality.

3. Rough sets express imprecision caused by the lack of
data (Nowicki, 2006; Grzymala-Busse and Hu, 2001;
Grzymala-Busse, 2006).

The advantage of both data imputation and marginal-
isation is their simplicity. Imputation is more frequently
used than marginalisation (Himmelspach and Conrad,
2010). The results elaborated based on data sets with im-
puted values cannot be fully trusted (Troyanskaya et al.,
2001). The imputed values may have no physical mean-
ing in real life (Wagstaff and Laidler, 2005). The missing
values are commonly replaced with zeros, random num-
bers, a mean value over all data set, a mean value over the
class the example belongs to, deductive imputation (the
missing values are deduced from other information of the
pattern), regression-based imputation (Chan et al., 1976)
or a value based on real distribution (the missing val-
ues are replaced with random values with data set distri-
bution) (Wagstaff and Laidler, 2005). The Expectation–
Maximisation (EM) (Dempster et al., 1977) algorithm is
applied by Ghahramani and Jordan (1995). Imputation
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based on nearest neighbourhood is proposed by Zhang
et al. (2007) and Zhang (2011). To avoid imputation
of non-existing values, the hot-deck procedure has been
proposed (Rubin, 1987) with various distance measures
(Fuller and Kim, 2005; Farhangfar et al., 2007). The im-
pact of imputation of missing values on the classification
error is discussed by Farhangfar et al. (2008)

Not many neuro-fuzzy approaches for handling miss-
ing data have been proposed (Nowicki, 2006; 2008; 2009;
2010; Korytkowski et al., 2008). These systems are de-
signed for classification. In this paper we propose a sys-
tem for regression (continuous decision class).

The proposed system is in a certain sense an exten-
sion of that presented by Nowicki (2008) with the rough
set approach. Between that system and our approach there
are two essential differences. Our system is designed for
the regression modelling task, not for classification. In the
work of Nowicki (2008) the creation of rough fuzzy rules
is not described in detail. Ours is a complete system for
data sets with missing values. The system can create the
fuzzy model based on full or missing value data sets and
can elaborate the answer for both full tuples or tuples with
missing values. The values in the train data set can be
missing from all attributes. The only limitation is that at
least one data tuple should be complete with no missing
attributes.

Missing data are modelled with a rough fuzzy set
approach. In order to create a rough fuzzy model, both
marginalisation and imputation techniques are used. The
former is used to create the data subset containing data
tuples with sure values. The second data set contains the
data with imputed values. These two data sets are used
for clustering the data. The data are clustered into rough
fuzzy (type-2 fuzzy) sets. Based on these clusters, fuzzy
rules are extracted and the fuzzy rule base is created. The
system produces an answer both for full value data tuples
and for tuples with missing values. The answer consists
of two values: upper and lower approximation. A general
overview of creation of the fuzzy model is presented in
Fig. 1.

The paper is organised as follows. Section 2
describes neuro-fuzzy systems, Section 4 presents our
proposition (model creation and elaboration of answers).
The experiments are described in Section 5. Finally, Sec-
tion 6 presents the conclusions.

In the paper, the empty characters (A) are used to
denote the sets, bolds (a): matrices and vectors, uppercase
italics (A): the cardinality of sets, lowercase italics (a):
scalars and set elements, bold italics (a): relations. A
detailed list of symbols is gathered in Table 1.

Input: X—array of tuples
Input: R—number of rules
Output:M—fuzzy model
// preprocessing of data, Sec. 4.1.1:
X← marginalisation (X);1

X← imputation (X);2

// creation of model:[
m
˜

, m̃
]← clustering (X, X, R) ; // Sec. 4.1.23

[L,U ]← extraction (m
˜

, m̃, X, X) ; // Sec. 4.1.34

[L,U ]← tuning (L,U , X, X) ; // Sec. 4.1.45

M← [L,U ];6

returnM;7

Fig. 1. Creation of the fuzzy model.

2. Fuzzy inference system with
parametrised consequences

The neuro-fuzzy system with parametrised consequences
(Czogała and Łȩski, 2000; Łȩski and Czogała, 1999) is
a system combining the Mamdani–Assilan (Mamdani and
Assilian, 1975) and the Takagi–Sugeno–Kang (Takagi and
Sugeno, 1985; Sugeno and Kang, 1988) approach. The
fuzzy sets in consequences are isosceles triangles (as in
the Mamdami–Assilan system), but are not fixed—their
location is calculated as a linear combination of attribute
values as the localisation of singletons in Takagi–Sugeno–
Kang system.

The idea of the system with parametrised conse-
quences is presented in Fig. 2. The figure is taken after
Czogała and Łȩski (2000) with modifications.

The system with parametrised consequences is a
MISO system. The rule base R contains fuzzy rules r in
form of fuzzy implications

r : x is a � y is b, (1)

where x = [x1, x2, . . . , xA]T and y are linguistic vari-
ables, a and b are fuzzy linguistic terms (values).

The linguistic variable a (in the rule premise) is
represented in the system as a fuzzy set A in an A-
dimensional space. In each dimension the set A is de-
scribed with the Gaussian membership function:

μa (xa) = exp
(
− (xa − ca)2

2s2
a

)
, (2)

where ca is the core location for the a-th attribute and sa

is this attribute Gaussian bell deviation. The membership
of the variable x to the fuzzy set A

(r) in the r-th rule is
defined as a T-norm:

μA(r)(x) = μ
a
(r)
1

(x1) � · · · �μ
a
(r)
A

(xA)

= �
a∈A

μa(r)(xa), (3)
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Table 1. Symbols and abbreviations
R set of rules, rule base
r rule, r ∈ R

R number of rules, R = ‖R‖; number of clusters
a, b fuzzy linguistic terms
X set of tuples, data examples
x tuple, data example, x ∈ X

xi i-th tuple
x descriptor of tuple, x = [x1, . . . , xA]T

X number of tuples, X = ‖X‖
Xu number of tuples in upper set, Xu =

∥
∥X
∥
∥

Xl number of tuples in lower set, Xl = ‖X‖
A set of attributes
a attribute, a ∈ A

A number of attributes in tuple, A = ‖A‖
At threshold number of attributes
m partition matrix

m̃ru membership value of u-th tuple to
r-th “upper” cluster

m
˜

rl membership value of l-th tuple to
r-th “lower” cluster

μA(a) membership value of element a to set A

drj distance between r-th cluster’s centre and
j-th tuple

ηu weight of u-th tuple in upper set
vr centre of r-th cluster
f fuzzification parameter, here f = 2
U model based on X data set
L model based on X data set
B triangle set in consequence
B
′ fuzzy set of rule implication

q relation
� fuzzy implication
� T-norm

where � denotes the T-norm and A stands for the set of
attributes. The membership to the r-th fuzzy set A

(r) (the
premise of the r-th fuzzy rule) is simultaneously the firing
strength F (r) of the r-th rule,

F (r)(x) = μA(r)(x). (4)

The term b (in the rule consequence) is represented
by an isosceles triangle fuzzy set B with the base width w,
the altitude of the triangle equal to 1. The localisation of
the core of the triangle membership function is determined
by linear combination of input attribute values:

y(r)(x) = pT · [1,xT
]T

=
[
p
(r)
0 , p

(r)
1 , . . . , p

(r)
A

]
· [1, x1, . . . , xA]T , (5)

where p is the parameter vector of the consequence.

The output of the rule is the fuzzy value of the fuzzy
implication,

μB′(r)(x) = μA(r) (x) � μB(r) (x) , (6)

where the squiggle arrow (�) stands for the fuzzy impli-
cation. The shape of the fuzzy set B

′(r) depends on the
fuzzy implication used (Czogała and Łȩski, 2000). The
answers μB′(r) of all R rules are then aggregated into one
fuzzy answer of the system,

μB′(x) =
R⊕

r=1

μB′(r)(x). (7)

In order to get a crisp answer y0, the fuzzy set B
′ is de-

fuzzified with the MICOG method (Czogała and Łȩski,
2000). This approach removes the non-informative parts
of the aggregated fuzzy sets and takes into account only
the informative ones. The aggregation and defuzzyfication
may be quite expensive, but it has been proved (Czogała
and Łȩski, 2000) that the crisp system output can be ex-
pressed as

y0 =

R∑

r=1
g(r) (x) y(r)(x)

R∑

r=1
g(r) (x)

. (8)

The function g depends on the fuzzy implication; in the
system the Reichenbach one is used, so for the r-th rule
the function g is

g(r) (x) =
w(r)

2
F (r) (x) . (9)

The forms of the g function for various implications can
be found in the original work introducing the ANNBFIS
system (Czogała and Łȩski, 2000). Some inaccuracies are
discussed by Nowicki (2006) and Łȩski (2008).

Creation of the fuzzy model M is done in three
steps: clustering of the input domain, extraction of rules’
premises and tuning of the rules (this step is also respon-
sible for creation of rules consequences) (Czogała and
Łȩski, 2000).

3. Rough sets

Rough sets were proposed by Pawlak (1982). The equiv-
alence relation q splits the universe set U into disjoint
subsets—equivalence classes. The set A can be approx-
imated with equivalence classes by means of lower qA

and upper qA approximations defined respectively as

qA = {x ∈ U : [x]q ⊆ A} (10)

and

qA = {x ∈ U : [x]q ∩ A �= ∅}, (11)
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Fig. 2. Schema of the neuro-fuzzy system with parametrised consequences. The input has two attributes and the rule base is composed
of two fuzzy rules. The premises of the rules are responsible for determining the firing strength of the rules. The firing strength is
the left operand of the fuzzy implication. The right hand operand is the B fuzzy triangle set, the location of which is determined
with the formula (5). The result of the r-th fuzzy implication is the fuzzy set B

′(r). The fuzzy results of the implications are
then aggregated. The non-informative part (grey rectangular in the picture) is thrown away in aggregation. The informative part
(white mountain-like part of the B

′ set) is then defuzzyfied with the centre of gravity method. The answer of the system is the
crisp number y0.

where [x]q is an equivalence class defined as

[x]q = {a ∈ U : x q a}. (12)

The lower and upper approximations build up the rough
set 〈qA, qA〉. The lower approximation qA of the set A is
a set of subsets that without doubt belong to the set A. The
upper approximation qA is a set of subsets that have some
nonempty element common with the set A. It is worth
mentioning that

qA ⊆ A ⊆ qA. (13)

The rough set is a good instrument for handling un-
certainty. The following statements are true:

a ∈ qA⇒ a ∈ A (14)

and

a /∈ qA⇒ a /∈ A. (15)

When a ∈ qA ∧ a /∈ qA, we cannot say for sure that the
element a belongs or does not belong to set A.

The concept of joining rough and fuzzy sets comes
from Dubois and Prade (1990). Two ways of combin-
ing two kinds of sets were proposed: rough fuzzy sets

(lower and upper approximations of fuzzy sets are de-
fined) and fuzzy rough sets (lower and upper approxima-
tions of fuzzy sets are fuzzy). In our approach we use
rough fuzzy sets.

For simpler notation the relation q will be omitted
and instead of qA and qA we will use A and A, respec-
tively.

4. Our approach

The drawback of the methods for handling missing values
mentioned in Introduction is no distinction between origi-
nal untouched data and imputed values (Himmelspach and
Conrad, 2010). Further, the imputed values may have no
medical/physical meaning (Wagstaff and Laidler, 2005),
thus the models based on imputed data cannot be fully
trusted (Troyanskaya et al., 2001). The method proposed
by Wagstaff (2004) as well as Wagstaff and Laidler (2005)
divides the feature set F into features Fo with no lacking
values and partially observed features Fm. Thus the algo-
rithm cannot be used when the values are missing from all
attributes (Fo = ∅).

In our solution both approaches are used: marginal-
isation and imputation. The former removes the tuples
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with missing values. The remaining tuples contain only
original data. This data set X is used to create the lower
rough set cluster—the core cluster. The latter is used to
handle data with missing values. All data augmented with
imputed data stand for the upper data set X and are used to
elaborate the upper rough set cluster—the “cloud” cluster
containing the core cluster. The lower data set is a sub-
set of the upper data set: X ⊆ X. This approach maintains
the distinction between original and imputed values. If the
data set lacks no values, the upper and lower data sets are
the same: X = X = X.

4.1. Model creation. The creation of the model com-
prises four steps: preprocessing of data, clustering, ex-
traction of rules and tuning. The following subsections
describe these.

4.1.1. Preprocessing of data. Preprocessing of data
leads to creation of data sets X and X. The former is cre-
ated with marginalisation, the latter with imputation.

Marginalisation. The tuples with missing values are
excluded from the data set X. This set contains only tuples
x ∈ X that lack no values. Marginalisation excludes the
tuples, not the attributes, thus there is no dimensionality
reduction. This approach is similar to one used by Troy-
anskaya et al. (2001), as well as Hathaway and Bezdek
(2001).

Imputation into the upper data set. The tuples with
missing values are substituted with new tuples with im-
puted values. If the tuple lacks n values, it is substituted
with kn tuples with all combinations of imputed values
(these are the mean values m of the missing attribute cal-
culated from values existing in other tuples, m+σ, where
σ is the standard deviation of the attribute, m − σ, thus
k = 3). The maximum and minimum values are not used
here, because the extreme values may be outliers and one
extreme bias value can substantially influence the cluster-
ing process.

Unfortunately, the number of new tuples grows very
fast with the number n of missing values from the origi-
nal tuple. This explosion in the number of tuples can have
disadvantageous influence on the efficacy of calculations.
Thus when the tuple lacks more a At values, not all possi-
ble combinations are imputed, but for each missing value
v, k tuples are imputed and other missing attributes q �= v
are imputed with means of the respective attributes. So
only kn new tuples are added.

Figure 3 presents an example of a data set with miss-
ing values denoted with question marks. If At ≥ 2, the
tuple x1 will be substituted with kn = 32 = 9 tuples
(Fig. 4). If At ≥ 2, the tuple in question will be imputed
with kn = 3 ·2 = 6 tuples (Fig. 5). The twofold approach

a1 a2 a3 a4

x1 2 ? ? 1
x2 5 2 8 4
x3 1 2 9 2
x4 4 5 7 2
x5 2 5 6 1
x6 3 0 5 3

average 2.80 7.00
st. dev. 2.17 1.58

Fig. 3. Example of a data set with missing values (denoted with
exclamation marks). The last two rows show the average
values and standard deviation of attributes a2 and a3.

a1 a2 a3 a4

x1 2 ? ? 1

x7 2 0.63 5.42 1
x8 2 0.63 7.00 1
x9 2 0.63 8.58 1
x10 2 2.80 5.42 1
x11 2 2.80 7.00 1
x12 2 2.80 8.58 1
x13 2 4.97 5.42 1
x14 2 4.97 7.00 1
x15 2 4.97 8.58 1

Fig. 4. Tuples nos. 7–15 are imputed in the data set from Fig. 3
in place of tuple x1 when At ≥ n = 2.

is used because in a real-life data set the tuple may lack 8
or more values.

If the tuple with missing values is substituted with t
imputed tuples, each of these imputed tuples is assigned
the weight η = 1/t. The weight is treated as a condition
in conditional FCM clustering.

4.1.2. Clustering. Both data sets X and X are used in
clustering. The clustering divides the input domain into
regions that are then converted into rule premises.

For clustering, the hybrid FCM algorithm is used.
For the data set X, the standard FCM algorithm (Dunn,
1973) is employed. For the data set X, the conditional
FCM proposed by Pedrycz (1998) is applied. One more
modification is used. The “upper” and “lower” clusters
are gathered into pairs with common cluster centres. The
“lower” data set is created upon only original complete
data values (set X). This data set is more reliable than
the “upper” data set with imputed values. Thus the cluster
centres are elaborated based only on lower data set mem-
bership functions. The clustering is based on minimising
the criterion function J (for the description of symbols,
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a1 a2 a3 a4

x1 2 ? ? 1
x16 2 2.80 5.42 1
x17 2 2.80 7.00 1
x18 2 2.80 8.58 1
x19 2 0.63 7.00 1
x20 2 2.80 7.00 1
x21 2 4.97 7.00 1

Fig. 5. Tuples no. 16–21 are imputed in the data set from Fig. 3
in place of tuple x1 when At < n = 2.

see Table 1):

J =
R∑

r=1

[
Xu∑

u=1

m̃f
rud2

ru +
Xl∑

l=1

m
˜

f
rld

2
rl

]

(16)

with the conditional boundary

∀
u∈X

R∑

r=1

m̃ru = ηu, (17)

where ηu is a tuple’s weight (cf. Section 4.1.1). Owing
to this boundary, the tuples with imputed values (as being
less reliable) have lesser influence on the results of cluster-
ing. For lower clustering, the standard FCM boundary is
applied because only full tuples (with no imputed values)
are clustered:

∀
l∈X

R∑

r=1

m
˜

rl = 1. (18)

The cluster centres are elaborated based only on “lower”
(more reliable) membership values:

vr =

Xl∑

l=1

m
˜

rlxl

Xl∑

l=1

m
˜

rl

. (19)

For elaborating formulae for modification of mem-
bership values, it is common to use Lagrange multipliers.
The function L is defined as

L(m̃,m
˜

, λ1, λ2)

=
Xu∑

u=1

R∑

r−1

m̃f
rud2

ru +
Xl∑

l=1

R∑

r−1

m
˜

f
rld

2
rl

− λ1

(
R∑

r−1

m̃ru − ηu

)

− λ2

(
R∑

r−1

m
˜

rl − 1

)

, (20)

where m̃ and m
˜

are “upper” and “lower” partition ma-
trices, respectively. It should be clearly stated that these
symbols do not represent upper and lower rough approxi-
mations. These are the partition matrices used to calculate

the rough approximation of cluster fuzziness parameters
s and s. To express this difference, a tilde is used as a
diacritic instead of a bar.

The symbols λ1 and λ2 stand for Lagrange multipli-
ers and drq is a distance between the q-th datum from the
q-th cluster centre,

d2
rj = (vr − xq)

T A (vr − xq) , (21)

where A is positive-defined matrix. The derivatives of L
(Eqn. 20) are

∀
1≤u≤Xu

∀
1≤s≤R

∂L

∂m̃su
= fm̃f−1

su d2
su − λ1 = 0, (22)

fm̃f−1
su d2

su − λ1 = 0,

fm̃f−1
su d2

su = λ1,

m̃f−1
su d2

su =
λ1

f
,

m̃f−1
su =

λ1

f
d−2

su ,

m̃su =
(

λ1

f

) 1
f−1

d
2

1−f
su . (23)

Substituting Eqn. (23) into Eqn. (17) we get

R∑

r−1

(
λ1

f

) 1
f−1

d
2

1−f
ru = ηu,

(
λ1

f

) 1
f−1 ∑

Rr−1d
2

1−f
ru = ηu. (24)

Combining Eqns. (23) and (24) we obtain

m̃su =
ηud

2
1−f
su

R∑

r−1
d

2
1−f
ru

. (25)

Analogously, from

∀
1≤l≤Xl

∀
1≤s≤I

∂L

∂m̃sl
= fm

˜
f−1
sl d2

sl − λ2 = 0 (26)

we get

m
˜

sl =
(

λ2

f

) 1
f−1

d
2

1−f

sl . (27)

Substituting Eqn. (27) in Eqn. (18),

(
λ2

f

) 1
f−1 R∑

r−1

d
2

1−f

rl = 1, (28)

and combining Eqns. (27) and (28), we obtain

m
˜

sl =
d

2
1−f

sl
R∑

r−1
d

2
1−f

rl

. (29)
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This clustering algorithm creates clusters that type-
2 fuzzy sets. Type-2 fuzzy clustering is not widely used.
Hwang and Rhee (2004) propose a clustering algorithm
that is a modification of the FCM algorithm. The two
membership functions are achieved by applying various
values of the f parameter. The values of the f parame-
ters are selected manually by the user and are not tuned
nor modified during the clustering procedure. In our ap-
proach, the f parameters for both fuzzy sets are constant
(f = 2) and the fuzzy sets differ by the parameter s. The
gap between “upper” and “lower” fuzzy sets is fitted au-
tomatically and does not have to be set manually. The
cluster represented by a pair of fuzzy sets can also be re-
garded as a rough fuzzy set. The examples of clusters are
presented in Fig. 6

4.1.3. Extraction of clusters from partition matri-
ces. When the clustering is finished, the clusters are
transformed into rule premises with the method described
by Czogała and Łȩski (2000), as well as Łȩski (2008).
Based on partition matrices m

˜
and m̃, the parameters

c, s (cf. Eqn. (2)) are calculated. The cluster centre c =
[c1, c2, . . . , cA] is calculated with Eqn. (19) for both upper
and lower fuzzy sets, thus c = c = c = v. The cluster
centres become cores of the Gaussian function (Eqn. (2)).
The parameter s for the r-th rule is elaborated with the
formula

sr =

√√
√
√
√√
√
√

Xu∑

u=1
m̃f

ru (xu − vr)
2

Xu∑

u=1
m̃f

ru

(30)

for upper clusters and

sr =

√√
√
√√
√
√
√

Xl∑

l=1

m
˜

f
rl (xl − vr)

2

Xl∑

l=1

m
˜

f
rl

(31)

for lower ones. The above formulae approximate the
standard deviation of the Gauss function expressed by
Eqn. (2). An example of interpretation of s and s is pre-
sented in Fig. 6.

The elaborated values of s = [s1, . . . , sA], s =
[s1, . . . , sA] and c = [c1, . . . , cA] enable the calculation
of memberships μ, μ to the rough fuzzy set representing
the attribute in the rule premise with the formula (2). For
each attribute a and for each data tuple x, the following
relation is true:

∀
a∈A

∀
x∈X

μ
a(r)(x) ≤ μa(r)(x). (32)

4.1.4. Tuning. The above stages lead to elaboration of
rule premises. The next procedure is tuning. It has two

Fig. 6. Example of membership functions of one-dimensional
clusters extracted with rough clustering. The parameters
of the cluster pairs are denoted as cs

s = 3.833.22
0.18 (solid)

and cs
s = 2.213.08

0.54 (dashed).

aims. The first one is better fitting of the model to the
presented data. The values of c, s and s extracted from
the clustering of the input domain are tuned to fit the pre-
sented data. The second aim of tuning is the elaboration
of linear parameters p in the conclusion (cf. Eqn. (5)).

The models U (created from X) and L (created from
X) are then tuned with two methods:

1. The premises of the rules and the width w(r) of bases
of triangle fuzzy sets B

(r) in consequences are tuned
with the gradient method.

2. The parameters p for calculation of localisations of
consequences are elaborated with the linear regres-
sion, least mean square method.

Similarly as during clustering, the centres of clusters
are tuned based on the “lower” modelL. Other parameters
of L are tuned with X and the parameters of U are tuned
respectively with X data sets.

The tuning procedure finishes the elaboration of the
models.

4.2. Elaboration of the answer. The models can be
created with a full data set or a data set with missing val-
ues. The tuple for which we want the system to answer
may also be full and complete or with missing values.

If the train data set contains incomplete data tuples,
the two models are created and for each complete data tu-
ple two answers are elaborated. The rules in U have more
fuzzy premises, so the membership value for the same tu-
ples is higher in the U model than in L, because of the
feature expressed by the formula (32). The model U is
responsible for calculating μa(r)(x) and L for μ

a(r)(x).
But the values of the answer elaborated by the model are
based both on rule premises and consequences, and we
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cannot say that the answer of U is y and the answer of L
is y. Our aim is to calculate the upper and lower bound-
aries so we take the larger value for y and the smaller one
for y:

y(x) = max (L(x),U(x)) , (33)

y(x) = min (L(x),U(x)) . (34)

When the data set lacks no values, then

y(x) = y(x). (35)

The elaboration of the system answer for the pre-
sented data tuple with missing values requires calculation
of values of both rule premise and consequence.

4.2.1. Calculation of the rule premise. The value of
the rule premise is also its firing strength. To elaborate the
value of the firing strength F (r)(x) = μA(r)(x) of the r-th

rule, the membership to each a-th attribute A
(r)
a (xa) has

to be estimated (cf. Eqn. (3)). If the value of the attribute
is missing, it is impossible to apply the formulae (2) and
(3) directly. Thus the following procedure is used. The
set of attributes is split into the set of present attributes Ap

and absent ones Aa. This division may be different for
each tuple. The missing value of membership is substi-
tuted with minimal and maximal values of membership:

μ(r)
a = max

x∈X

μa(r) (xa) , (36)

μ(r)
a

= min
x∈X

μ
a(r) (xa) . (37)

Thus the formula for calculating the firing strength
(Eqn. (3)) is replaced with

μ
A(r)(x) =

(

�
ap∈Ap

μ
a
(r)
p

(
xap

)
)

�

(
�

aa∈Aa

μ
a
(r)
a

)
(38)

and

μ
A(r)(x) =

(

�
ap∈Ap

μ
a
(r)
p

(
xap

)
)

�

(
�

aa∈Aa

μ
a
(r)
a

)
.

(39)

If the tuple lacks no values, the set Aa is empty and
Eqns. (38) and (39) reduce into Eqn. (3). For the data tu-
ple with missing values, Eqn. (4) splits into two formulae:

F
(r)

(x) = μA(r)(x) (40)

and

F (r)(x) = μ
A(r)(x). (41)

The next step is to calculate the upper y0(x) and
lower y

0
(x) answers of the system for the x tuple. The

crisp output of the system is calculated with Eqn. (8). Let
us rewrite this equation to explicitly denote that the func-
tion g is the function of the firing strength (cf. Eqn. (9)):

y0 =

R∑

r=1
g(r)

(
F (r) (x)

)
y(r)(x)

R∑

r=1
g(r)

(
F (r) (x)

)
. (42)

From the equation above it is obvious that for calculating
y0 the upper values y(r) should be used. But the question

is which value, F
(r)

(x) or F (r)(x), should be chosen.
Calculation of maximum and minimum of the func-

tion expressed with the formula (42) with respect to firing
strength values F (r) is difficult. Thus the approach pro-
posed by Nowicki (2008) will be further developed here.

For choosing which value, F
(r)

(x) or F (r)(x),
should be used we assume that for a certain value of F
the function achieves the suboptimal value. In search for
y0, if the value of the derivative ∂y0/∂F (r)(x) with re-
spect to F (r) is positive, the higher value of the parameter

should be used. Thus the upper value F
(r)

is used. Other-
wise, the lower value F (r) is chosen. A similar situation
is when y

0
is to be calculated. If the derivative of y0 with

respect to F (r) is positive, the lower value F (r) is used;

otherwise, the upper one F
(r)

is employed.
The calculation of the derivative ∂y0/∂F (r)(x), for

the dimensions of formulae, is presented in Eqn. (43).
One of the features of the g function is

∂g
(
F (r)(x)

)

∂F (r)(x)
≥ 0, (44)

and the value of g
(
F (q)(x)

) ≥ 0 for the Reichenbach im-
plication1 used in our system thus the sign of the derivative
(43) depends on the sign of the sum

∑

q

(
y(r) − y(q)

)
. (45)

Let Φ denote the above sum. Then

sgn
∂y0

∂F (r)(x)
= sgn

∑

q

(
y(r) − y(q)

)

= sgnΦ(r). (46)

To calculate y0 for each rule r, the factor Φ(r) is calculated
and, if Φ(r) ≥ 0, then for this rule in Eqn. (42) the value

F
(r)

is used. Otherwise, F (r) is applied. To calculate y
0
,

if Φ(r) ≥ 0, then F (r) is used, otherwise F
(r)

.
A remark should be now expressed. In calculation of

the Φ value for ∂y0/∂F (r)(x) the difference y(r) − y(q)

1This is also true for the Łukasiewicz, Fodor, Kleene–Dienes, Zadeh,
Goguen, Gödel and Rescher implications (Łȩski, 2008).
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∂y0

∂F (r)(x)
=

1
[∑

q
g
(
F (q)(x)

) ]2 ·
[

y(q) ∂g
(
F (r)(x)

)

∂F (r)(x)

∑

q

g
(
F (q)(x)

)
− ∂g

(
F (r)(x)

)

∂F (r)(x)

∑

q

y(q)g
(
F (q)(x)

)]

=

∂g(F (r)(x))
∂F (r)(x)

[∑

q
g
(
F (q)(x)

) ]2 ·
[

y(r)
∑

q

g
(
F (q)(x)

)
−
∑

q

y(q)g
(
F (j)(x)

)
]

=

∂g(F (r)(x))
∂F (r)(x)

[∑

q
g
(
F (q)(x)

) ]2 ·
∑

q

(
y(r) − y(q)

)
g
(
F (q)(x)

)
(43)

Table 2. Comparison of two approaches for classification. The

symbols D̃Ar and D̃Ar are defined in the same way
as F and F , respectively.

Nowicki our approach

y0 zr
j = 1 use D̃Ar y(r) = 1 ⇒ Φ(r)(x) ≥ 0 use F

zr
j = 0 use D̃Ar y(r) = 0 ⇒ Φ(r)(x) ≤ 0 use F

y
0

zr
j = 0 use D̃Ar y(r) = 0 ⇒ Φ(r)(x) ≤ 0 use F

zr
j = 1 use D̃Ar y(r) = 1 ⇒ Φ(r)(x) ≥ 0 use F

is used and the difference y(r) − y(q) for ∂y
0
/∂F (r)(x),

respectively.
The proposed solution is a generalisation of the ap-

proach described by Nowicki (2008; 2009) who depicted
a system for classification, so the answers of the rules can
be 0 or 1. A comparison of this approach with ours one is
presented in Tab. 2.

4.2.2. Calculation of the rule consequence. The are
two models U andL for each rule with consequences. The
missing values in the data tuple are imputed with maxi-
mum and minimum values. Two values are calculated:

yl(x) =
A∑

a=0

min
(
xap

a
, xap

a

)
, (47)

yu(x) =
A∑

a=0

max (xapa, xapa) , (48)

where x0 = 1, cf. Eqn. (5). Then for the r-th rule we get

y(r)(x) = max
(
y
(r)
l (x), y(r)

u (x)
)

, (49)

y(r)(x) = min
(
y
(r)
l (x), y(r)

u (x)
)

. (50)

4.3. Error measure. In the ANNBFIS system the
RMSE (Root Mean Square Error) is calculated with the

formula (Czogała and Łȩski, 2000)

E =

√
1
X

∑

x∈X

[y0(x)− y(x)]2, (51)

where y0(x) is the answer of the ANNBFIS system for the
tuple x, y(x) is the original expected value of the decision
attribute of the tuple.

For our system the above formula should be mod-
ified. The system elaborates two answers, y0(x) and
y
0
(x), for each tuple x. Instead of one value, our system

returns the interval
[
y
0
(x), y0(x)

]
. The deviation Δy(x)

of the original value from the returned interval is deter-
mined as

Δy(x) =

⎧
⎪⎪⎨

⎪⎪⎩

y(x)− y0(x), if y(x) > y0(x),

0, if y(x) ∈
[
y
0
(x), y0(x)

]
,

y
0
(x)− y(x), if y(x) < y

0
(x).

(52)

Such a definition of the deviation would promote
models that elaborate very wide intervals in the answer.
This is why the length of the interval is also taken into
account in measuring the system answer:

E =

√
1
X

∑

x∈X

(
[Δy(x)]2 +

[
y0(x)− y

0
(x)
]2)

. (53)

5. Experiments

The experiments were conducted on real life data.

5.1. Data sets. Two data sets were used in the experi-
ments. Gas Furnace is a popular real life data set depicting
the concentration of methane (x) and carbon dioxide (y)
in a gas furnace (Box and Jenkins, 1970). The data set
contains 290 tuples organised according to the template
[yn−1, . . . , yn−4, xn−1, . . . , xn−6, yn].
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Table 3. Comparison of ANNBFIS and our system for full data
sets without missing values.

data set RMSE
ANNBFIS our approach

Gas Furnace 0.2285 0.2373
Concrete 16.1127 16.1249

Concrete Compressive Strength is a real life data set
describing the parameters of a concrete sample and its
strength (Yeh, 1998). The attributes stand for the cement
ratio, the amount of blast furnace slag, fly ash, water, su-
perplasticizer, coarse aggregate, fine aggregate, age; the
last attribute is the concrete compressive strength. All at-
tributes are numerical.

The data sets were prepared in various manners. The
first data set collection comprises a data set with missing
1, 2, 5, 10, 20, 50, 75% of attribute values. In the second
collection there are 10% of values of one attribute missing.
For Gas Furnace the missing attribute in this collection is
the 1-st to 10-th, and for Concrete—1-st to 8-th.

To test the influence of At (cf. Section 4.1.1) on the
error of the system and time of model creation, one more
version of the Gas Furnace data set was prepared. The
original data set contains 10 attributes. The prepared data
set contains an equal number of tuples with missing 0 to
10 attributes.

The data sets are not normalised.

5.2. Results. The experiments were executed for
Knowledge Approximation (KA) where training and test
sets are the same. If not stated otherwise, the parameter
At (Section 4.1.1) is set to 3.

The first experiment was performed to show that
the proposed fuzzy rough system reduces to the original
ANNBFIS system in the case of a full data set with no
missing values. The theoretical analysis (cf. Eqns. (35),
(38) and (39)) clearly states that for full data sets the re-
sults elaborated by our system and ANNBFIS should be
the same. Table 3 presents comparisons of the RMSE of
results elaborated by ANNBFIS and by our system. The
results are not exactly the same due to probable numerical
imprecision. The Table 4 compares the results elaborated
for the first 10 tuples from the Gas Furnace data set with-
out missing values. A similar comparison for the last 10
items of the Concrete data set is gathered in Table 5 with-
out missing values.

The next step of experiments was executed for the
collection of data sets with missing 1, 2, 5, 10, 20, 50,
75% of values. The results are presented in Tables 6 and
7. The tables do not contain results for data sets with miss-
ing 50 and 75% of values. In these sets there are no full
tuples with all attributes and the “lower” data set is empty,
X = ∅. The results express the expected feature that the

Table 4. Comparison of answers elaborated by ANNBFIS and
our system for the Gas Furnace data set without miss-
ing values.
expected elaborated value

value ANNBFIS our approach

52.70 52.75 52.75
52.40 52.32 52.32
52.20 52.12 52.11
52.00 52.07 52.07
52.00 51.93 51.93
52.40 52.15 52.15
53.00 52.92 52.93
54.00 53.76 53.78
54.90 55.05 55.08
56.00 55.92 55.94

Table 5. Comparison of answers elaborated by ANNBFIS and
our system for the Concrete data set without missing
values.
expected elaborated value

value ANNBFIS our approach

42.14 36.16 36.10
31.87 27.86 27.81
41.54 34.56 34.52
39.45 35.75 35.72
37.91 34.45 34.42
44.28 40.06 40.04
31.17 33.59 33.54
23.69 26.14 26.12
32.76 28.53 28.51
32.40 32.11 32.09

interval width increases with the ratio of missing values in
the data set. For the Concrete data set the distance of the
expected values from the interval elaborated by the system
decreases with the increasing ratio of missing values.

In the case of data sets with missing values the origi-
nal data set is preprocessed and two data sets are obtained:
the lower X and upper X data sets. Tables 8 and 9 show
the numbers of tuples in both preprocessed data sets (Xu

for upper and for Xl lower) and execution time (creation
of models and elaboration of answers).

The lower set X is the result of marginalisation of tu-
ples with missing data. Based this data set the localisation
of the core of the cluster is calculated. Unfortunately, the
lack of some values may influence localisation precision.
If the data set has more missing values, the lower data set
has fewer tuples and the localisation of the cluster’s core
is less reliable. This feature is illustrated in Fig. 7.

In creation of set X the imputation method is used.
This process is described in Section 4.1.1. The crucial pa-
rameter is At. Table 10 presents the results elaborated for
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Table 6. Results elaborated for various percentages of missing
values from the Gas Furnace data set.

missing error for Gas Furnace
values RMSE deviation interval

full 0.2373 0.2373 0.0000
1% 1.7514 0.2903 1.7271
2% 2.3386 0.2158 2.3287
5% 3.4129 0.3708 3.3927
10% 5.3096 0.8010 5.2488
20% 10.3632 2.6002 10.0316

Table 7. Results elaborated for various percentages of missing
values from the Concrete data set.

missing error for Concrete
values RMSE deviation interval

full 16.1249 16.1249 0.0000
1% 15.4528 14.9117 4.0536
2% 14.2167 12.9833 5.7920
5% 15.0515 12.1604 8.8696
10% 15.7550 11.1346 11.1463
20% 21.0037 11.4106 17.6338

Fig. 7. Influence of missing values on the localisation of the
cluster core (‘lower’ part). The graph shows the fourth
attribute of the Gas Furnace data set for a full data set
(solid line), a data set with 1% (dashed line), 5% (dotted
line) and 20% (dotted and dashed line) missing values.

the Gas Furnace data set in the function of the At parame-
ter. Higher values of At lead to better values of the RMSE,
lower values of deviations and narrower intervals (so the
models are better). On the other hand, higher values of At

lead to larger upper sets X and longer time of execution.
The time needs grow quicker than linearly.

The influence of the absence of values in various at-
tributes was analysed with the collection of data sets de-
scribed in Section 5.1. The average of the squared interval
length for missing attributes is presented in Table 11. Dif-

Table 8. Number of tuples in lower (Xl) and upper (Xu) data
sets and execution time in seconds for the Gas Furnace
data set.

missing
values Xl Xu t

full 290 290 5
1% 265 323 8
2% 239 353 10
5% 166 472 13

10% 116 720 25
20% 31 1225 67

Table 9. Number of tuples in lower (Xl) and upper (Xu) data
sets and execution time in seconds for the Concrete
data set.

missing
values Xl Xu t

full 290 290 52
1% 952 1108 50
2% 878 1202 51
5% 708 1496 62
10% 438 2182 110
20% 153 3741 314

ferent behaviour for data sets used can be observed. The
averages of squared interval lengths differ highly for vari-
ous attributes of the Concrete data set. On the other hand,
this phenomenon is not so visible for the Gas Furnace data
set. This can be explained with the semantics of attributes.
The Gas Furnace data set is a time series data set. The sub-
sequent tuples are shifted. This means that the value of a
certain attribute a in the n-th tuple is equal to the values
of the (a + 1)-st attribute in the (n + 1)-st tuple. That
means that for the whole data set no attribute can be la-
belled with physical meaning. A different situation is in
the case of the Concrete data set. In this set each attribute
has certain physical meaning. The meanings of attributes
of these data sets are listed in Section 5.1. Perhaps this
phenomenon can be helpful for evaluation and selection
of attributes.

The Gas Furnace data set is a time series. Figure 8
presents the original values (black solid line) and the val-
ues elaborated by the system (grey line). The model was
prepared with a full data set and then tested with the same
data. Figures 9 and 10 illustrate the experiment when the
models were created with data sets with missing values
(10% and 20%, respectively). Both models were tested
with a full data set. The black solid line depicts the ex-
pected values, the gray regions in both figures is the upper-
lower interval for each data tuple. Figures 11 and 12 de-
pict the opposite paradigm: the model is prepared with a
full data set and tested with a data set with missing values
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Fig. 8. Results elaborated for the Gas Furnace data set, a model with c = 3 rules created with a full data set. The figure presents the
expected values (black solid line) and the elaborated results (grey solid line) for the full data set.

Fig. 9. Results elaborated for the Gas Furnace data set, a model with c = 3 rules created with a data set with missing 10% of values.
The figure presents the expected values (black solid line) and the elaborated results (grey region—intervals) for the full data
set.

Table 10. Influence of the At parameter on the precision of the
system and the time of model creation. The number
Xl of tuples in the lower data set is the same in all
situations, Xl = 29.

At RMSE deviations intervals Xu t

1 8.9016 0.8419 8.8617 2639 189
2 8.4191 0.8896 8.3720 2639 190
3 8.6620 0.8151 8.6236 2697 194
4 8.7093 0.8720 8.6656 2929 230
5 8.2022 0.7798 8.1650 3567 357
6 9.2521 0.6643 9.2282 5075 687
7 7.8133 0.5839 7.7914 8381 1924

(10% and 20%, respectively).
Figures 13 and 14 present the results elaborated for

the Gas Furnace data set with 1% and 10% missing values
respectively. The model was created and tested with the
same data set (data approximation paradigm). For a data
set with 10% missing values, the upper-lower region is

Table 11. Influence of the missing attribute on the interval
width. The given value is the average of a squared
interval length.

attr. Gas Furnace Concrete

1st 4.4391
2nd 0.0733 2.6458
3rd 0.0475 1.6867
4th 0.0689 1.8345
5th 0.0201 0.7512
6th 0.0662 0.4489
7th 0.0727 0.6355
8th 0.0587 9.7130
9th 0.0435 –

10th 0.0497 –

wider than for a 1% missing value data set.
The above mentioned figures show that the proposed

system better handles creating models based on missing
values and then elaborating the answer for full tuples. The
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Fig. 10. Results elaborated for the Gas Furnace data set, a model with c = 3 rules created with a data set with missing 20% of values.
The figure presents the expected values (black solid line) and the elaborated results (grey region—intervals) for the full data
set.

Fig. 11. Results elaborated for the Gas Furnace data set, a model with c = 3 rules created with a full data set. The figure presents
the expected values (black solid line) and the elaborated results (grey region—intervals) for the data set with missing 10% of
values.

opposite paradigm—creation of the model based on com-
plete data and then elaboration of answers for incomplete
tuples—results in poorer results. This can be easily seen
when comparing Figs. 9 and 11. The results reveal an im-
portant feature of the proposed system. The models cre-
ated on data sets with missing values elaborate the upper
and lower answer values that mostly embrace the expected
value. The more values miss from the train data set, the
wider the lower-upper interval of the answer. This is ex-
pected behaviour. Unfortunately, when the model (inde-
pendently, whether created with a full data set or a data
set with missing values) is tested with a data set with miss-
ing value, the results are less advantageous. The intervals
are not very wide, but as a whole they are often far from
expected values. Mostly the whole upper-lower interval
is shifted towards lower values, so the expected value ex-
ceeds the upper boundary of the interval elaborated by the
system.

In the work of Nowicki (2010) a system with rough

answers is applied for classification. The expected an-
swers are {0, 1}. If both upper and lower answers are
greater, then half the tuple is classified to the class labelled
with 1. If both answers are less than a half, the tuple is la-
belled with zero. If one answer is greater and the other less
than a half, the system gives no answer. Also in our sys-
tem the double answer for each given tuples is elaborated,
but we restrain from a decision whether the rough answer
is precise enough or not. This decision is left to the user
of the system. Sometimes the interval between upper and
lower answers is big, but maybe the user wishes to take
such an answer into account.

6. Conclusions

The paper presents a Neuro-Fuzzy System (NFS) based
on the ANNBFIS system for data sets with missing values.
The type of data is difficult to handle with the NFS. The
described system is a complete one. This means that is



474 K. Simiński

Fig. 12. Results elaborated for the Gas Furnace data set, a model with c = 3 rules created with a full data set. The figure presents
the expected values (black solid line) and the elaborated results (grey region—intervals) for the data set with missing 20% of
values.

Fig. 13. Results elaborated for the Gas Furnace data set, a model with c = 3 rules created with a data set with missing 1% of values.
The figure presents the expected values (black solid line) and the elaborated results (grey region—intervals) for the data set
with missing 1% of values.

able to create the fuzzy model (rule base) based on miss-
ing value data set and then elaborate answers for miss-
ing value tuples. The missing data are preprocessed with
two most often used methods for handling missing values
(marginalisation and imputation).

The system joins fuzzy and rough set theories. The
rules in the rule base are extracted with a special modified
clustering algorithm. This algorithm creates rough fuzzy
clusters.

The system can handle both full and missing value
tuples. If the system was created with full data and elabo-
rates answers for full values tuples, it is theoretically and
practically equal to its parent system ANNBFIS. The ex-
periments confirm this feature.

If the ratio of missing values in test tuples grows, the
deviation of the answer from the expected value remains
more or less the same. But the width of the returned in-
terval grows. This is an expected behaviour. The more

missing values in the data set, the more rough the answers.
The proposed system better handles the situation when the
model is created with a data set with missing values and
then elaborates the answers for full tuples. Creation of a
model on missing value data sets gives poorer results.
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Czogała, E. and Łȩski, J. (2000). Fuzzy and Neuro-Fuzzy In-
telligent Systems, Series in Fuzziness and Soft Computing,
Physica-Verlag, Heidelberg/New York, NY.

Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977). Maxi-
mum likelihood from incomplete data via the EM algo-
rithm, Journal of the Royal Statistical Society, Series B
39(1): 1–38.

Dubois, D. and Prade, H. (1990). Rough fuzzy sets and
fuzzy rough sets, International Journal of General Systems
17(2): 191–209.

Dunn, J. C. (1973). A fuzzy relative of the ISODATA process
and its use in detecting compact, well separated clusters,
Journal Cybernetics 3(3): 32–57.

Farhangfar, A., Kurgan, L. and Dy, J. (2008). Impact of impu-
tation of missing values on classification error for discrete
data, Pattern Recognition 41(12): 3692–3705.

Farhangfar, A., Kurgan, L. and Pedrycz, W. (2007). A novel
framework for imputation of missing values in databases,
IEEE Transactions on Systems, Man and Cybernetics, Part
A: Systems and Humans 37(5): 692–709.

Fuller, W.A. and Kim, J.K. (2005). Hot deck imputation for the
response model, Survey Methodology 31(2): 139–149.

Ghahramani, Z. and Jordan, M. (1995). Learning from incom-
plete data, Technical report, Lab Memo No. 1509, CBCL
Paper No. 108, MIT AI Lab, Cambridge, MA.

Grzymala-Busse, J. (2006). A rough set approach to data with
missing attribute values, in G. Wang, J. Peters, A. Skowron
and Y. Yao (Eds.), Rough Sets and Knowledge Technology,
Lecture Notes in Computer Science, Vol. 4062, Springer,
Berlin/Heidelberg, pp. 58–67.

Grzymala-Busse, J.W. and Hu, M. (2001). A comparison of sev-
eral approaches to missing attribute values in data mining,
in W. Ziarko and Y. Yao (Eds.), Rough Sets and Current
Trends in Computing, Lecture Notes in Computer Science,
Vol. 2005, Springer, Berlin/Heidelberg, pp. 378–385.

Hathaway, R. and Bezdek, J. (2001). Fuzzy c-means clustering
of incomplete data, IEEE Transactions on Systems, Man,
and Cybernetics, Part B: Cybernetics 31(5): 735–744.

Himmelspach, L. and Conrad, S. (2010). Fuzzy cluster-
ing of incomplete data based on cluster dispersion, in
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