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A method of combining three analytic techniques including regression rule induction, the k-nearest neighbors method and
time series forecasting by means of the ARIMA methodology is presented. A decrease in the forecasting error while solving
problems that concern natural hazards and machinery monitoring in coal mines was the main objective of the combined
application of these techniques. The M5 algorithm was applied as a basic method of developing prediction models. In spite
of an intensive development of regression rule induction algorithms and fuzzy-neural systems, the M5 algorithm is still
characterized by the generalization ability and unbeatable time of data model creation competitive with other systems. In
the paper, two solutions designed to decrease the mean square error of the obtained rules are presented. One consists in
introducing into a set of conditional variables the so-called meta-variable (an analogy to constructive induction) whose
values are determined by an autoregressive or the ARIMA model. The other shows that limitation of a data set on which
the M5 algorithm operates by the k-nearest neighbor method can also lead to error decreasing. Moreover, three application
examples of the presented solutions for data collected by systems of natural hazards and machinery monitoring in coal
mines are described. In Appendix, results of several benchmark data sets analyses are given as a supplement of the presented
results.
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1. Introduction

Systems of natural hazards and machinery monitoring in
coal mines visualize data and information acquired from
sensors which are placed in mine undergrounds. The pri-
mary objective of monitoring is continuous supervision
of a production process. Two fields of monitoring can be
distinguished: natural hazards monitoring and machinery
operation monitoring.

Natural hazards are one of the most frequent reasons
of accidents and disasters in the mining industry. This con-
cerns in particular underground mining, in which upset-
ting the stability of rock mass (the so-called microseismic
hazards) and risks connected with concentration of dange-
rous gases in mine undergrounds (Grychowski, 2008; Ka-

biesz, 2005; Sikora and Wróbel, 2010; Sikora and Siko-
ra, 2006) are the most serious and frequent hazards. Ba-
sed on information delivered by the system, a dispatcher,
if necessary, makes a decision concerning switching off
the power in a given area of the mine, evacuation of the
crew from endangered zones, temporary stoppage of mi-
ning and taking preventives that are meant to lower the de-
gree of hazard (for example, executing relieving shooting
or slowing down the mining process in order to decrease
the concentration of dangerous gases). The dispatchers de-
cisions are meant to minimize the risk of disaster dange-
rous for crew and mining machinery as well as to sustain
the production process.

To date, the main objective of machinery operation
monitoring has been supervision of its exploitation con-
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ditions. Recently, information gathered from monitoring
systems has been more and more often considered to be
diagnostic information about the actual condition of the
equipment (Jonak, 2002).

For a majority of natural hazards occurring in coal-
mines, no sufficiently accurate mathematical models for
hazard forecasting have been developed so far. Therefo-
re, new forecasting methods based on historical data col-
lected in databases of monitoring systems are still being
worked out. In the papers by Dixon (1992), Gale et al.
(2001), Kabiesz (2005), Sikora and Wróbel (2010), Si-
kora and Sikora (2006), or Sikora et al. (2011), proposi-
tions of application of machine learning methods to im-
prove the forecast of seismic and methane hazards are
presented.

The objective of the present paper is to propose a
combination of three techniques of data analysis and their
application to gaseous hazard forecasting and analysis of a
coal-cutting machine cutter operation. The basic analytic
technique applied is the M5 algorithm enabling induction
of rules with linear conclusions. To improve the accuracy
of generated rules, two complementary analytic techniqu-
es are used. Firstly, during the time series analysis, the M5
algorithm was combined with a popular method of time
series forecasting (ARIMA). Values of forecasts genera-
ted through the method define a new independent variable
then used by M5. Secondly, regardless of the data type, the
M5 algorithm was combined with the k-nearest neighbor
method inducing rules solely in some neighborhood of a
currently analyzed example.

The choice of data analysis methods was motivated
by their simplicity, a small number of parameters and the
possibility of full automation of the analysis process wi-
thout user intervention. These properties will have great
meaning for practical implementation of forecasting mo-
dules in monitoring systems.

The paper is organized as follows. In the next section,
a concise overview of regression and forecasting methods
is presented. All techniques and algorithms applied are
presented in Section 3. A proposition of technique fusion
into one stream of data processing is described in Section
4. Results of practical applications of the proposed me-
thodology to tasks pertaining to hazard monitoring in co-
al mines (prediction of methane concentration, prediction
of carbon dioxide concentration) and the efficiency of the
production process (rock cutting energy analysis depends
on the cutting blade alignment) are presented in Section 5.
Section 6 includes a summary and proposition for further
works. Additionally, applications of the proposed metho-
dology on several benchmark data sets (gas furnace, sun-
spot, housing, ozone, abalone, Mackey–Glass) are presen-
ted in Appendix.

2. Methods of forecasting the values
of a numerical variable

Among various methods applied to forecasting the values
of a numerical variable, the following ones can be listed:
soft computing methods (fuzzy logic, neural networks,
fuzzy-neural networks (Czogała and Łęski, 2000; Yager
and Filev, 1994)), kernel regression methods (Taylor
and Cristianini, 2004; Vapnik, 1995), regression trees
(Breiman et al., 1994) or model trees (Friedman et al.,
1996; Quinlan, 1993; 1992a; Torgo, 1997, Wang, 1997),
ensembles of rules (Dembczyński et al., 2010) or ensem-
bles of neural networks (Siwek et al., 2009), and finally
the classical approach using statistical methods (Box and
Jenkins, 1994; Brockwell and Davis, 2002; Tong, 1990).

Methods of soft computing are characterized by ve-
ry good generalization abilities. However, the methods
have disadvantages. First, they usually apply all inde-
pendent variables during forecasting. Secondly, they use
optimization strategies which need repeated input da-
ta set processing (gradient methods, least squares me-
thods, genetic algorithms (Czogała and Łęski, 2000; Gold-
berg, 1989; Yager and Filev, 1994)). In the case of soft
computing, it is necessary to set appropriate values of pa-
rameters which can have great influence on the quality of
these methods (the number of groups, the number of fuzzy
sets into which the domain of an independent variable is
divided, the defuzzification method, etc. (Czogała and Łę-
ski, 2000; Duch et al., 2000; Oh and Pedrycz, 2000; Yager
and Filev, 1994)).

Kernel methods are a group of pattern analysis algo-
rithms that are based on the assumption that finding pat-
terns is performed in a modified feature space. The modifi-
cation is described with the special mapping function cal-
led the kernel function (Taylor and Cristianini, 2004). The
usage of the kernel function substitutes the process of in-
creasing the number of feature space dimensions in such a
way that the value of the kernel function for two objects is
equal to their dot product in a higher dimensional feature
space. One of the most popular kernel method is support
vector machines, dedicated to classification tasks (Boser
et al., 1992). In this approach the separating margin width
is maximized with regard to a specified loss function. If
the solution is assumed to be nonlinear, an optimal sepa-
rating hyperplane is found in the kernel space with the
usage of the kernel function. It occurs that not all training
points are required to describe the hyperplane—the requ-
ired ones are called support vectors. This approach was
also applied to regression problems (Vapnik, 1995). The
modification is based on using different forms of the loss
function, and the regression tube takes the separating hy-
perplane place.

Since the 1990s a lot of modifications of this algori-
thm have been proposed. In the work of Scholkopf et al.
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(2000), a model called v-SVM is presented, where v me-
ans the fraction of total data points that become the sup-
port vectors. Increasing v gives a more complicated mo-
del but of better quality. As both models (standard and
v-SVM) are based on the assumption that the level of no-
ise is uniform in the whole data domain, the model cal-
led par-v-SVM (Hao, 2010) removes this limitation. The
regression tube is defined by two functions: a regression
function f and some boundary function g. The regression
tube is defined as the space between f − g and f + g. The
symmetry of this solution is generalized with flexible SVR
(Chen et al., 2011). In this case, the regression tube is de-
fined with three functions: regression function f and two
boundary functions h and l. The regression tube is the spa-
ce between f − l and f +h. Through all the years, support
vector machines have been successfully applied for time
series prediction (Cao and Tay, 2003; Michalak, 2011; Tay
and Cao, 2002).

Methods of regression tree or model tree induction
are characterized by a considerably smaller computatio-
nal complexity; all these systems perform a top-down in-
duction by recursively partitioning the training set. Mo-
del trees generalize the concept of regression trees in the
sense that they approximate g(x) = y by a piecewise li-
near function, that is, they associate leaves with multiple
linear models (Quinlan, 1993; 1992a; Torgo, 1997; Wang
and Witten, 1997). A further generalization is obtained in
the SMOTI (Stepwise MOdel Trees Induction) algorithm
(Malerba et al., 2005), which constructs model trees ste-
pwise by adding, at each step, either a regression node or a
splitting node. Regression nodes perform straight-line re-
gression, while splitting nodes partition the feature space.
Recently, attempts at adapting sequential covering rule in-
duction algorithms to regression rule induction have been
undertaken (Janssen and Fürnkranz, 2010b). Regression
rules induction is carried out very similarly to the case
of classification rules, but the usage of different measures
evaluating the quality of the generated rule is the main dif-
ference. For regression rules, measures that evaluate both
the rule generality and the accuracy of a regression model
occurring in the conclusion of a rule are used. In the paper
by Janssen and Fürnkranz (2010b), this is achieved by me-
ans of a properly adapted relative cost measure (Janssen
and Fürnkranz, 2010a).

For solving regression problems, a lazy learning ap-
proach can be also applied. In particular, the lazy decision
tree induction algorithm (Friedman et al., 1996) can be
used there. In lazy decision tree induction, a tree is defined
for each example which is to be classified. The process of
building the tree (in principle, its one branch) is controlled
so that a node covering a classified example and training
examples from one decision class is obtained. The exam-
ple put to classification is added to this class. This appro-
ach can also be applied for solving regression problems.
In the case of regression trees, the criterion deciding abo-

ut the node quality should be changed so that it minimizes
the dependent variable variance (like in the case of the M5
algorithm) or maximizes the value of the quality measure
used by separate-and-conquer regression. To recapitulate,
as the M5 algorithm is a regressive version of the C4.5 al-
gorithm, the lazy decision trees induction algorithm with
the criteria of node quality evaluation changed is a regres-
sive version of the lazy classification tree induction algo-
rithm.

Due to unusual efficiency of regression trees and mo-
del trees (both computational and in the prediction error
aspect), attempts to combine the methods with soft com-
puting were made. Jang (1994) fuzzifies a regression tree
obtained by the CART algorithm (Breiman et al., 1994);
sharp division limits are replaced with fuzzy ones (sig-
moidal or logistic membership functions). Another appro-
ach can be observed in the work of Nelles et al. (2000),
where a feature space is divided into two parts iterative-
ly (two Gaussian membership functions are used to divide
the currently considered subset of the domain of each fe-
ature). Multidimensional rule premises, in conclusions of
which multidimensional linear models are determined by
the least squares method, are obtained in this way.

In machine learning, very popular are multistrategy
methods joining two or more methodologies in order to
improve the quality of the obtained classifiers or regres-
sion systems (Duch et al., 2000; Oh and Pedrycz, 2000).
An additional improvement of classification and predic-
tion abilities can be obtained by the so-called constructi-
ve induction (Bloedorn and Michalski, 2002; Wnek and
Michalski, 1994). The method consists in introducing to
the vector of independent variables a new variable whose
values depend functionally (data driven constructive in-
duction) or logically (hypothesis driven constructive in-
duction) on values of the existing variables (Wnek and
Michalski, 1994). In hypothesis driven constructive in-
duction, the new variable introduced can be treated as a
meta-variable whose values depend on the decision made
by a simpler model (model which takes no feedback in-
to consideration). The feedback frequently allows an im-
provement in the prediction accuracy in neuro-fuzzy ne-
tworks used for time series forecasting (Chunshien and
Kuo-Hsiang, 2007).

Statistical analysis of time series provides also go-
od methods for developing forecasting models. Autore-
gressive and ARIMA models are designed for time series
analysis. The Box and Jenkins guidelines (Box and Jen-
kins, 1994) pertaining to the possibility of model applica-
tion, determination of their structure and a procedure of
estimating values of their parameters turn out to be effec-
tive in many applications. The Box and Jenkins paper is
so far the basic source of information about one- and two-
dimensional time series forecasting methods. In newer pa-
pers (Brockwell and Davis, 2002), generalizations of the
methods presented by Box and Jenkins that consider mul-
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tidimensional time series analysis are also discussed. Mo-
reover, new propositions concerning, among others, auto-
mation of the selection of the number of model parameters
or application of nonlinear forecasting models are presen-
ted (Tong, 1990).

3. Basic notions and definitions

In the paper, the terminology and notations applied in the
machine learning community are used. A derogation con-
sists in naming conditional attributes independent varia-
bles, and a decision attribute—a dependent variable.

Let us assume that a finite set Tr of training exam-
ples is given. Each example is described by means of in-
dependent variables belonging to a set A. Each example is
also characterized by a value of the dependent variable y.
Independent features can be of symbolic (discrete-valued)
or of numeric (real-valued) type. The dependent variable
is of numeric type. In other words, each example x ∈ Tr
is characterized by a vector of values of independent va-
riables (x1, x2, . . . , xm), where xi = ai(x), and by the
dependent variable value y(x).

3.1. Induction of regression rules. The idea of the M5
algorithm was taken from the so-called regression and
classification trees (CART) (Breiman et al., 1994) and
from the C4.5, algorithm (Quinlan, 1992b) that enables
decision tree induction. M5 analyzes the training set Tr
and makes it possible to generate rules of the form

IF w1 ∧ w2 ∧ . . . ∧ wk THEN y = f(x), (1)

where wi is the so-called elementary condition which
for discrete-valued variables has the form ai ∈ Rai for
Rai ⊂ Vai (e.g., pressure ∈ {small, average}), and for
real-valued attributes it takes the form ai ∈ 〈v1, v2〉 (e.g.,
gas_concentration ∈ 〈0.4, 1.3〉 or gas_concentration ≥
2). The function f is a linear function of the form s +
si1ai1 +si2ai2 + · · ·+sitait, where s, si1, si2, . . . , sit are
real numbers (coefficients) and {ai1, ai2, . . . , ait} ⊂ A.
Independent variables belonging to a rule conclusion sho-
uld be real-valued variables.

The M5 algorithm builds a tree which is then trans-
formed into a rule set (nodes that are not leaves create
rule premises, and the function f which is the rule conc-
lusion is found in a leaf). The tree is built based on the
divide-and-conquer principle. At each stage of tree cre-
ation (in each node that is not a leaf), a procedure of chec-
king which attribute a ∈ A and cut-off point q ∈ R will
divide an example set P connected with the given node
into two subsets P<q and P>q in order to minimize the
expected variance of dependent variable is invoked. Thus
the objective is to maximize the value of

�V = V (P )−
( |P<q|

|P | V (P<q)+
|P>q|
|P | V (P>q)

)
, (2)

where V (P ) is the variance of the dependent variable in
the example set P . In the case of discrete attributes, an
exhaustive procedure that consists in searching a power
set of given attribute values is used. If the next partition
no longer decreases the expected variance, the procedure
of extending the tree stops (a node becomes a leaf).

In similar works focused on model trees or fuz-
zy tree building, a criterion minimizing the mean squ-
are error calculated on sets P<q and P>q (Chunshien
and Kuo-Hsiang, 2007; Dembczyński et al., 2010; Nelles
et al., 2000) is frequently used as the optimality criterion.

To limit the number of parameters in rule conclu-
sions, M5 applies the exhaustive approach that consists
in finding a linear model for all possible subsets of condi-
tional attributes which are real attributes. An average ab-
solute error calculated for a set of examples assigned to
a given leaf is the optimality criterion. The average abso-
lute error is exploited during the tree pruning procedure,
too. The error is multiplied by (n + v)/(n − v), where
n = |Tr|, and v is the number of variables appearing in
the linear model whose error we evaluate.

To improve prediction abilities of the obtained set of
rules, M5 applies also the smoothing procedure. During
the tree building, the order of creating successive nodes is
remembered, and hence conditions appearing in rule pre-
mise generation. Before adding a next condition, the func-
tion fi enabling us to calculate the value of the dependent
variable is defined. Thus we have the sequence of rules
< r, r−1, r−2, . . . , rroot >, in which r is the output ru-
le, r−1 is the rule r without one premise added as the last
one, etc. The rule rroot includes no premise but the line-
ar model determined for the whole training set. For rules
r−i and r−i−1, the dependent variable value is transmitted
from the rule r−i to the rule r−i−1 and determined by the
expression

PV (r−i−1) =
n−iPV (r−i) + SM(r−i−1)

n−i + s
, (3)

where n−i is the number of objects from Tr that sa-
tisfy the conditional part of the rule r−i, s being a fi-
xed constant (usually s ∼= 10), M(r−i−1) is the value
of the dependent variable expected by the partial rule
r−i−1, PV (r−i), and PV (r−i−1) are the values of the
dependent variable transferred to partial rules r−i, r−i−1.
Finally, the value of the dependent variable predicted by
the rule r is the value taken back by the partial rule rroot.

A more detailed description of the M5 algorithm can
be found in the works of Quinlan (1993; 1992a) or Wang
and Witten (1997). A commercial implementation of M5
is included in the Cubist program. A noncommercial one
with certain modifications in relation to the original ver-
sion can be found in the Weka environment (Witten and
Frank, 2005). In experiments described in the farther part
of the paper, the Cubist program and the C language libra-
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ry enabling us to invoke the program from other applica-
tions are applied.

3.2. Univariate time series forecasting. During ti-
me series analysis we frequently encounter a situation
in which the structure of the series built is unclear, and
the variance of the random component is considerable.
To facilitate generation of forecasts for such series, the
ARIMA methodology has been developed (Box and Jen-
kins, 1994). Many time series consist of mutually depen-
dent observations. In this case, consecutive elements of
the series can be determined based on previous elements
delayed in time

yt = ξ+φ1 ·y(t−1)+φ2 ·y(t−2)+φ3 ·y(t−3)+· · ·+ε, (4)

where ξ is the free term, and φ1, φ2, φ3 are parameters of
the so-called autoregressive model.

Therefore the value of the time series is the sum of
the random component and a linear combination of pre-
vious observations. Regardless of the autoregressive pro-
cess, each element of the series may stay under the influ-
ence of past random component realizations. This impact
cannot be explained by the autoregressive component, so
we have

yt = μ+εt−θ1 ·ε(t−1)−θ2 ·ε(t−2)−θ3 ·ε(t−3)−. . . , (5)

where μ is a constant, and θ1, θ2, θ3 are parameters of the
so-called moving average model. In this case, each value
of the time series consists of the random component (ε)
and a linear combination of the random components from
the past.

The ARIMA model introduced by Box and Jenkins
contains both autoregressive and moving average parame-
ters. Moreover, the model introduces a differentiation ope-
rator that is used in order to make the time series stable
(the series should have the mean, variance and autocorre-
lation constant in time). Detailed information about deter-
mination of the number of autoregressive parameters (p)
and moving average (q) based on autocorrelations and par-
tial autocorrelations can be found in the work of Box and
Jenkins (1994). In practical applications the number of pa-
rameters is usually limited to at most two. Estimation of
coefficient values is made by mean square minimization
algorithms (most frequently by the quasi-Newton method
(Broyden, 1969)). Evaluation of the obtained model quali-
ty is based on residues (specifically, the residue correlo-
gram should show no statistically relevant dependencies,
and the residue distribution should be normal). The so-
ftware package Statistica 8.0 by Statsoft c© was used in
conducted experiments.

3.3. Instance-based prediction. Instance-based lear-
ning algorithms apply a training set and a similarity con-
cept for specific local data model generation. The value

of the dependent variable in a test example is establi-
shed based on the values of the dependent variable in tra-
ining examples which is the most similar to the test one.
In the simplest case, the decision is made based on the
nearest example (metric distance minimization). The ge-
neralization of that approach is the method of k-nearest-
neighbors (k-nn), in which k-nearest neighbors to the test
example training examples are found (Wilson and Marti-
nez, 2000). In the case of prediction tasks, the dependent
variable is established as an average value of the value of
the dependent variable in examples selected from the tra-
ining set. Generalization of the k-nn method are distance-
weighted (Macleod et al., 1987) and feature-weighted
(Wettschereck et al., 1997) nearest neighbor methods. In
a distance-weighted method the distance between already
selected training examples and the test example is cal-
culated. In the feature-weighted method, additional we-
ights reflecting the significance of independent variables
for classification or the regression process are assigned to
the variables.

In the paper, to specify the similarity of examples xi

and xj with respect to the independent variable a, the nor-
malized Manhattan distance measure

δa(xi, xj) =
|a(xi) − a(xj)|
maxa −mina (6)

was used in the case of real-valued variables, and the
Hamming measure

δa(xi, xj) =
{

0, a(xi) = a(xj),
1, a(xi) �= a(xj)

(7)

was applied for discrete-valued variables.
In the formula (6) maxa, mina denote maximal and

minimal values of the variable a recorded in the training
set, respectively. Finally, the similarity of vectors xi and
xj is measured as ρ(xi, xj) =

∑
a∈A δa(xi, xj).

4. Combination of time series prediction
techniques and the k-nearest neighbors
method with the M5 algorithm

The idea of improving the quality of regression rules ge-
nerated by the M5 algorithm, by using two additional ana-
lytic techniques, is presented in this section. The first con-
sists in introducing into a set of variables based on which
M5 makes rule induction a new meta-variable. The values
of the meta-variable are established by the autoregressive
model (in the case of data in the form of a time series)
or the ARIMA model. Incentives of such procedures are
twofold. One, from conducted research (Sikora and Krzy-
kawski, 2005; Sikora et al., 2011) it follows that for ga-
seous hazards the greater influence on future values of a
dependent variable have their past values. Hence, it is re-
asonable to introduce the earlier values (so-called delayed
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values) of the dependent variable into the vector of inde-
pendent variables used by M5. On the other hand, research
carried out by the authors (Sikora and Wróbel, 2010; Si-
kora and Krzykawski, 2005; Sikora et al., 2011) shows
that using too many delays leads to obtaining models un-
duly matched to training data, which are burdened with a
big error on new unknown data. This observation is the se-
cond reason for introducing the meta-variable represented
by values returned by the autoregressive or ARIMA mo-
dels. In practice the models use two parameters for both
autoregression and the moving average, which enable us
to get a simple and intelligible model of time series. The-
refore, the model task is to pre-forecast the of values the
dependent variable. This preliminary forecast can then be
used by the M5 algorithm in order to improve it.

The second idea is a combination of the k-nearest
neighbor method with the M5 algorithm. It assumes that
during establishing the value of the dependent variable of
a test example x, k-nearest neighbors of the example are
selected from the training set. On the example set limited
in such a manner, the M5 algorithm is initialized, and the
obtained model is used for determining the value of the
dependent variable of the example x. It is necessary to de-
termine the most suitable value of k in order to use the me-
thod. In the present paper, the training set and leave-one-
out testing are applied for establishing the optimal value
of k. The presented proposition exploits experience with
RISE and RIONA classification systems (Góra and Woj-
na, 2002), which join the idea of instance based learning
with that of rule induction. The proposition presented in
this paper is some kind of lazy learning approach, becau-
se it limits the space of examples on which rule induction
is made by M5. In contrast to lazy regression trees, in-
duction is made always on the same specific number of
training examples being the nearest neighborhood of the
analyzed test example. An optimal number of examples is
denoted as k-opty.

Contrary to lazy regression trees, during rule induc-
tion information about the values of independent variables
of the test example is not considered. The information is
used solely for defining the dependent variable value after
determining a tree.

It is obvious that the proposed combination of the
above-mentioned methods will not always lead to an im-
provement in the forecast results. Therefore, the proposi-
tion for combining time series prediction techniques, the
k-nn method and the M5 algorithm consists in sequential
invoking and tuning of each of the methods. Obviously,
time series prediction techniques can be used for data in
the form of a time series only. A scheme of the analysis is
presented in Fig. 1.

If data have the form of a time series, the ARI-
MA methodology is used. If the time series can be led
to stationarity (by differentiation), parameters of the es-
timated model are statistically significant (pval < 0.05),

the residue distribution is normal and the residues are
not correlated, then the forecasting model is recognized
as satisfactory. In such a case a new independent varia-
ble (meta-variable) that represents the forecasted values
is added to the training data set. This means that in each
row of the time series which describes the time moment
t a new independent variable yARIMA is added. Its va-
lue means a forecast of the ARIMA model calculated ba-
sed on earlier values of the dependent variable y (i.e.,
yt−k, yt−(l−1), . . . , yt−1, yt, where l is implied from the
form of the determined statistical model).

The next stage of the analysis is establishing the va-
lue of k-opty for the method combining the k-nn method
with the M5 algorithm. Determining k-opty runs based on
the training data set according to the algorithm presented
below. In the algorithm description, nn(e, T r−{e}, k) de-
notes the set of examples from the set Tr−{e}, which are
k-nearest to the example e, RRM5(S) stands for a set of
regression rules determined by the M5 algorithm based on
the set of examples S, ey denotes the value of the depen-
dent variable in the example e; eyM5 stands for the value
of the dependent variable in the example e which is pre-
dicted by the model get by M5.

Algorithm Find k-opty

input: Tr, kmax

output: k-opty
begin
k-opty=−1; RMS=+∞;

For k = 1 to kmax

error=0;
For each e ∈ Tr

Find nn(e, T r − {e}, k);
Determine RRM5(NN(e, T r − {e}, k));

error=error+(ey − eyM5)2;
RMS(k):=sqrt(error/|Tr|);
If RMS(k)<RMS then k-opty:=k;

end.

As can be seen, for each training example e and each
value 1 ≤ k ≤ kmax, k-nearest neighbors of the exam-
ple are found in the training set (from which the curren-
tly considered example has been removed), and the set of
examples obtained in such a manner is transferred to the
M5 algorithm. Based on the set of examples, M5 gene-
rates a rule set which is then applied for determining the
value of the dependent variable of e. In this way the whole
set of examples is analyzed for each k. After the analysis,
the RMS error is calculated. The value of k that led to the
smallest error is recognized as k-opty.

Figure 1 shows that three analysis paths are realized
simultaneously: ARIMA+k-nn+M5, k-nn+M5 and M5
only. Therefore we obtain three (if the analyzed data set
has the form of a time series) or two (if the statistical
model is wrong or data do not have the form of a time
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Analyze the time series
of dependent variable
by the ARIMA method

Induce rules by the M5
algorithm

Tuning set

Time series data?

Is the model
acceptable?
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set

Based on the training set
determine k-opty for

the k-nn method

Training set

Based on the training set
determine k-opty for

the k-nn method

Obtained models evaluation based on training and tuning data sets

Apply the 
selected model

Testing set

Yes

No

No

Apply the M5+ARIMA+
k-nn model to tuning data

Apply the M5+k-nn model
to tuning data

Apply the M5 model
to tuning data

Yes

Fig. 1. Combination of k-nn and time series prediction with M5—data flow and analysis scheme.

series) forecasting models. A suitable model can be veri-
fied and selected on one of two data sets: the tuning one
(which can be a training set in particular) and testing one.
Obviously, to define a fully automatic method of model
selection, verification cannot be the on the testing set. Ho-
wever, in the domain literature authors often present re-
sults of the same algorithm in various parameter configu-
rations obtained on a training and a testing data set, while
no unambiguous methodology exists for optimal values of
parameters. Especially in the literature concerning neural-
fuzzy systems such a situation is frequently met (due to
a great number of fuzzy implications, values of learning
parameters, fuzzification, defuzzification methods, etc.)
(Czogała and Łęski, 2000; Oh and Pedrycz, 2000; Rut-

kowski, 2004).
In the present paper the model is selected automa-

tically. In the case of data in the form of a time series a
model which minimized the error obtained on the training
set was selected as the best one. In the case of other data
an independent tuning set was excluded from the training
set and the quality of k-nn+M5 and M5 models was com-
pared on this set.

5. Examples of practical applications of the
methodology

5.1. Data analysis. The presented methodology was
applied in three implementations of the M5 algorithm for
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analysis of data coming from safety monitoring systems
and technological processes in coal mines. Now we brie-
fly present prediction problems and data sets pertaining to
them.

The first problem concerns intermediate prediction
(forecast horizon equal to ten minutes) of methane con-
centration in a mine excavation. The task is important
from the perspective of foiling automatic, preventive cur-
rent cut-offs which cause breaks in the mining process.
A safety system turns off the current in mine tunnels if
methane concentration exceeds a certain, fixed threshold
value. The function of the forecasting system is to predict
future methane concentration, and, if the forecast values
approach threshold values, to inform a dispatcher about
necessity of taking actions aimed at changing the manner
of excavation ventilation or mining process. Both func-
tions usually lead to reduction of methane concentration
in the excavation.

The analyzed data set has the form of a time series.
In the case considered here concentrations registered by
the methanemeter M32 placed in the most troublesome
area of the excavation (at the longwall face end) were the
prediction subject. Aggregated data from ten-minute time
periods were put to analysis. The forecast horizon equal to
ten minutes is the next value of the dependent variable in
a time series. Data from two methanemeters M32, M31
(the methanemeter at the longwall face end) and anemo-
meter AN31 (the sensor of air flow speed) were used for
the prediction. Information about output intensity on the
wall (the Output variable) was also applied for the foreca-
sting. Maximal values of the variables M32, M31, AN21
and Output registered at the actual and previous aggrega-
tion time t and t − 10, t− 9, . . . , t − 1 were used as a fe-
atures vector. Moreover, the difference between the actual
and previous aggregated values (e.g., M32t − M32t−1)
was also calculated for each independent variable in or-
der to convey the dynamism of changes of the measured
quantities.

The dependent variable M32Pred contained the va-
lue of methane concentration registered by the sensor
M32 at the time t + 1. By “the time t” we mean the
ten-minute period. Training and testing data sets conta-
ined 679 and 286 examples, respectively. A detailed de-
scription of that application and the whole infrastructure
of prediction system are presented by Sikora and Sikora
(2006) as well as Sikora et al. (2011). However, in the pa-
pers no approach exploiting the k-nn algorithm is applied.

The second application concerns prediction of car-
bon dioxide concentration on the operating platform in a
mine dewater station. Carbon dioxide is drawn out from
the mine tunnels by the water column, in which dewa-
ter pumps are immersed, and emits into the atmosphe-
re. Measurement of carbon dioxide concentration within
the operating platform is notably significant, especially
during maintaining or repairing works. The measurement

system in one-minute gaps measures the following quan-
tities: atmospheric pressure Ps, environmental humidity
RHOs, humidity on the platform RHPs, environmen-
tal temperature TOs, temperature on the platform TPs.
During the forecasting, ΣCO2, ΣPs, ΣRHOs, ΣRHPs,
ΣTOs, ΣTPs were also applied as independent variables.
The notation ΣV denoted the sum of the recent ten values
of V (i.e., ΣV = Vt−9 +Vt−8 + . . . +Vt). The dependent
variable CO2Pred included the value of carbon dioxide
concentration at the time t+6. Training and testing exam-
ple sets contained 1828 and 914 examples, respectively. A
system of data acquisition and results of statistical analy-
sis (manifold regression) are described in detail by Siko-
ra and Krzykawski (2005). The analyzed data set had the
form of a time series.

The third application concerns the process of rock
cutting by conical rotary blades. The aim of the research
was to determine such technological and geometrical pa-
rameters (settings) of blade that a unite cutting energy is
minimal. The set of independent variables consisted of va-
riables describing technological parameters of the blade
work (t: cutting scale [mm], g: cutting depth [mm], m:
mass of the cut material [g]) and geometrical parameters
of the blade (β: blade’s angle [◦], δ: setting’s angle [◦], ρ:
rotation angle [◦]). A new independent variable that is the
quotient of the scale (t) and the cutting depth (g) was also
introduced. The dependent variable contains information
about the value of the unit cutting energy Ec [MJ/m3].
The analyzed data set does not have the form of a time se-
ries. The data set included 717 examples, and the 10-fold
cross validation method was used as a testing methodo-
logy. Moreover, a tuning set which accounted for 10% of
each training set was applied in the analysis, too. The set
was found before the k-opty searching process.

Results of the data analysis are presented in Tables 1
and 2. The method ultimately recognized as the best one,
based on which the error on a testing set was then sear-
ched, is in bold. In the case of time series it was the me-
thod minimizing the error on a training set, in the case of
cross-validation—the method minimizing the error on a
tuning set.

For the first data set (Methane), introducing a new
variable including predicted values of methane concen-
tration generated by the autoregressive model resulted in
error decreasing and simplification of the forms of ru-
les used for the forecasting. The statistical model of the
forecasting consisted of one autoregressive component
(ξ = 0, φ1 = −0.2307), and the series had to be put
to single differentiation. An attempt at improving the fo-
recast quality by adding the k-nn method to the analysis
did not succeed, because an optimal value of k-opty was
got during the tuning for the whole analyzed data set (k-
opty=|Tr|−1). A difference of the error between models
ARIMA+M5 and ARIMA+k-nn+M5 for k-opty=|Tr|−1
appeared only on the fourth decimal place. Results of sear-
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Table 1. RMS error obtained on training data sets.
ARIMA M5 ARIMA+M5 ARIMA+k-nn+M5

∨
k-nn+M5

Methane 0.093 0.087 0.083 0.083
CO2 0.238 0.237 0.237 0.059
Ec – 3.71 ± 0.26 – 2.86±0.18

Table 2. RMS error obtained on testing data sets.
ARIMA M5 ARIMA+M5 ARIMA+k-nn+M5

∨
k-nn+M5

Methane 0.063 0.061 0.056 0.056
CO2 0.368 0.220 0.220 0.102
Ec – 3.84 ± 0.32 – 3.66±0.21 (p = 0.049)

Table 3. Comparison of the RMS error for constrained (k-opty
≤ 200) and complete (k-opty ≤ |Tr| − 1) spaces of
an optimal number of nearest neighbor searches: the
training set.

k-opty ≤ 200 k-opty< |Tr|
Methane 0.096 (200) 0.083 (677)

CO2 0.051 (2) 0.051 (2)
Ec 2.86 (82) 2.86 (82)

Table 4. Comparison of the RMS error for constrained (k-opty
≤ 200) and complete (k-opty ≤ |Tr| − 1) spaces of
an optimal number of nearest neighbors searches: the
testing set.

k-opty ≤ 200 k-opty< |Tr|
Methane 0.103 0.056

CO2 0.102 0.102
Ec 3.66 3.66

ching for an optimal value of k-opty for a limited (≤ 200)
and whole (|Tr|−1) set of nearest neighbors are presented
in Tables 3 and 4. It can be noticed that of the restriction
k-opty searching space would lead to the worst results in
the case of the Methane set.

The rules to determine the methane concentration fo-
recast (without the ARIMA model usage) are as follows:
(i) If M32t ≤ 0.9, then M32t+1 = 0.06 + 0.93M32t.
(ii) If M32t > 0.9 and Outputt = 0, then

M32t+1 = 0.47 + 0.8M32t + 0.05M32t−1

− 0.3AN31t + 0.2AN31t−2 − 0.04AN32t

− 0.12AN32t−1 − 0.12(AN32t − AN32t−1).
(iii) If M32t > 0.9 and Outputt > 0, then

M32t+1 = 0.51 + 0.33M32t + 0.18M32t−1

+0.21M32t−4 + 0.0013Outputt − 9.36AN31t−1

+9.05AN31t − 9.22(AN31t − AN31t−1)
+0.56AN32t − 0.53(AN32t − AN32t−1)
−0.52AN32t−1.

The rules to determine the methane concentration forecast
(with the ARIMA model used as an additional indepen-
dent variable) are as follows:

(iv) If ARIMAt+1 ≤ 0.9, then
M32t+1 = 0.06 + 0.93M32t.

(v) If ARIMAt+1 > 0.9711 and Outputt = 0, then
M32t+1 = 0.44 + 0.86M32t − 0.27AN31t

− 0.17AN32t + 0.2AN31t−2.
(vi) If ARIMAt+1 > 0.9711 and Outputt > 0, then

M32t+1 = 0.74 + 0.39M32t + 0.15M32t−4

+0.12M32t−5+0.00156Outputt−0.25AN31t−2

− 0.17AN31t.

The usage of the values predicted by the ARIMA mo-
del (which boils down to the autoregressive model) as a
new independent variable allowed us to simplify consi-
derably input rules, and because of that the analysis of
the rules (iv)–(vi) is simpler than that of (i)–(iii). Valuable
for practical application of the methane forecasting system
are the forecast maximal errors. In the analyzed time se-
ries the maximal rate of change of methane concentration
during prediction period (for the testing data set) equaled
0.39, the maximal value of the error made by the predictor
was equal to 0.22 for this set (and was registered in a dif-
ferent place than in the case of the maximal rate of change
of CH4 concentration). It is unusual that the RMS error
on the testing set is smaller than the error on the training
set. This results solely from selection of the training and
testing sets in the case considered. The testing set descri-
bes the last two days of a week. In particular, the last part
of the testing set describes the so-called maintenance shift
when no mining works are conducted. Thereby a stabiliza-
tion of methane concentration occurs, which can be seen
in Fig.2. The figure also shows that the forecasting model
makes utmost errors during sudden and dynamic changes
of methane concentration.

The forecasting system has been implemented as an
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Fig. 2. Graphs of real and predicted methane concentrations.
The vertical line separates the training set from the te-
sting one.

additional module of the methane-fire disposal system
SMP-NT developed at the Institute of Innovative Tech-
nologies EMAG (see Section 5.2). Detailed analysis of
results for methane concentration forecasting in various
mine excavations made by the M5 algorithms is presented
by Sikora et al. (2011).

In the case of the second data set, application of the
ARIMA methodology did not give better results. Though
the obtained model parameters were statistically signifi-
cant, the ARIMA variable occurred neither in the premi-
se nor in the conclusion of any rule determined by M5.
The noted decreasing of the error was obtained by com-
bining k-nn with the M5 algorithm; k-opty=2 turned out
to be the optimal value for the whole data set. The maxi-
mal error made during the prediction by the model apply-
ing M5 rules equaled only 2.86 for the testing set. The
combination of k-nn and M5 allowed us to reduce the
RMS error by half, but decreased the maximal error to
1.95 (Fig. 3) at the same time. It is worth noticing that the
maximal change of CO2 concentration in a six-minute fo-
recast horizon was equal to 4.19. Establishing the value
of k-opty as equal to 2 made M5 create one rule conta-
ining no premises with a multi-dimensional linear model
in a conclusion (in this case the algorithm just realized
the multiple regression algorithm). For examples descri-
bing a low concentration of carbon dioxide, in a predo-
minant majority of examples, the regression model ap-
plied the variables CO2, TOs (environmental temperatu-
re) and ΣCO2, ΣTOs only. For examples describing a hi-
gher concentration, the variables Ps (atmospheric pressu-
re) and ΣPs were also applied, while the others were not
used. Without the combination with k-nn, the M5 algori-
thm generated 21 rules which were created based on all
independent variables.

The third data set does not have the form of a ti-
me series. Therefore the M5 algorithm and combined k-
nn and M5 methods were possible to be applied for the
analysis only. Average results with standard deviation are
presented in Tables 1 and 2. The difference between M5
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Fig. 3. Graphs of CO2 concentration (testing set) and the error
made by the model obtained by combined k-nn and M5
algorithms.

and the k-nn+M5 methods is equal to 0.18 on the ave-
rage. In order to estimate the significance of differences
made during each of the 10 experiments, the Wilcoxon
signed-rank test was carried out. The statistically signifi-
cant difference was obtained for the 95% level of signi-
ficance (pvalue = 0.041). The discovered rules show that
low values of Ec, desired in terms of the analysis aim, we-
re dependent on the cutting depth. If g > 6, then the cut-
ting energy was low and belonged to the interval 〈2, 33〉
MJ/m3. The conclusion of the rule below decided about
the precise value of the energy.

If g > 6, then
EC=−44.177− 0.0037m− 0.64g + 0.18t− 2.1t/g

− 0.23ρ + 0.68β + 0.4δ.

It shows that the higher the values of blade parame-
ters β, δ, the higher the cutting energy. In turn, the higher
the cutting scale and depth, the lower the energy. For the
blade’s angle of rotation ρ, higher (but positive) angles of
rotation contribute to the decreasing of the cutting energy,
negative angles of rotation increase the energy. For the
highest cutting energy values (rule’s range: 〈33, 66〉
MJ/m3) the most typical was the following rule:

If g ≤ 6 and t > 10, and ρ ≤ −10, then
EC= 55.97 − 0.0155m− 0.66 − 0.23t.

The above rules are outcomes of the analysis of the
whole available data set. During cross-validation, the M5
algorithm generated 3 to 4 rules. In the case of the com-
bination of M5 and the k-nn method, the number of rules
was equal to 1 to 4.

In order to compare obtained results, those achieved
for the testing set by multiple regression, an artificial neu-
ral network, a neural-fuzzy network ANNBFIS (Czogała
and Łęski, 2000) are also presented in Table 5. The valu-
es of all parameters of the above-mentioned methods we-
re determined based on the training set. The regression
and training of neural networks were carried out in the
Statistica package. Especially for neural networks, those
with a different architecture and various functions of neu-
rons’ activation were tested. This is enabled by the Sta-
tistica environment. The choice of the best of the tested
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Table 5. Comparison of the obtained results with other foreca-
sting methods.

Test set: RMS error
Methane CO2 Ec

Our method 0.056 0.102 3.66
M5 0.061 0.220 3.84

Multiple regression 0.073 0.428 7.12
Neural network 0.072 0.223 3.72

ANNBFIS 0.068 0.197 3.82

networks was made in the same way as in the case of our
method (see Section 4). A source code available in the pa-
per by Czogała and Łęski (2000) was used for ANNBFIS
network implementation.

For the data sets our method produced the best results
each time. It is worth noticing that application of the sole
M5 algorithm does not guarantee good results anymore.

The level of methane concentration predicted by the
forecasting module together with information about chan-
ges in the concentration is used by a fuzzy reasoning sys-
tem to determine the so-called potential methane risk.

5.2. Implementation of the proposed methodology
in a methane concentration monitoring system. The
proposed method was implemented in a forecasting mo-
dule enabling medium-term prediction of methane con-
centration and methane risk estimation in hard-coal mines.
The module aggregates and stores automatically data in-
coming from a monitoring system. These data are the ba-
sis for producing forecasting models that are then used for
on-line forecasting methane hazards. During normal work
of the system, its forecasting efficiency is monitored cur-
rently. If the efficiency diminishes, the repeated tuning of
the system parameters takes place. The system efficiency
is calculated as the RMS error. The values of absolute er-
rors are also monitored. If the RMS error or the number of
absolute errors greater than 0.09 or 0.19 or 0.29 exceeded
within the last 24 hours (a moving time window) threshold
values established in the system configuration, forecasting
models are determined again.

The level of methane concentration predicted by the
forecasting module together with information about chan-
ges in the concentration is used by a fuzzy reasoning sys-
tem to determine the so-called potential methane risk.

A base of fuzzy rules has been developed by doma-
in experts (Grychowski, 2008). Fuzzy rules consist of two
premises: predicted methane concentration and the dyna-
mics of concentration changes that follows from the fo-
recast. Domains of both values were split into fuzzy sets
according to domain knowledge. Methane concentration
in atmosphere was split into four fuzzy sets (Fig. 4, mid-
dle chart). The dynamics of changes was reflected by me-
ans of three fuzzy sets (no changes, increasing, quickly
increasing). The fuzzy set “no changes” takes also into

account falls in the methane concentration (Fig. 4, left
chart). Domain knowledge enables us to determine eight
fuzzy rules that combine methane concentration and its
changes dynamism with a risk degree in an excavation
(Table 6).

Three risk states are distinguished (Fig. 4, right
chart): normal state (point value 1), warning (point value
2), hazard (point value 3). These states were described by
fuzzy sets with triangle membership functions that attain
their maxima at points 1, 2, 3, respectively.

The system applies constructive inference of the Lar-
sen type (Czogała and Łęski, 2000; Yager and Filev, 1994)
in which the PROD operator (t-norm=PROD) is used
for establishing the rule activation level. Rules aggrega-
tion consists in summing fuzzy sets derived by each rule
(union of fuzzy sets—MAX operator). The standard cen-
ter of gravity method (Yager and Filev, 1994) is applied
as a defuzzification method. Input values are not put to
fuzzification; they are treated as singletons.

The presented fuzzy reasoning system enables pre-
senting to a dispatcher messages about actual (based on
actual measured values) and predicted (based on predic-
ted values) risk state understandable for him/her.

6. Conclusions

The idea of improving prediction abilities of rules genera-
ted by M5 by using the meta-variable that contains foreca-
sts resulting from a one-dimensional statistical model and
generating rules solely in a neighborhood of an analyzed
testing example has been proposed.

The main motivation for our research was application
of the developed method in solving tasks pertaining to the
forecasting of natural hazards in coal mines and the moni-
toring of mine machinery. The presented method was ap-
plied for forecasting gaseous risks and analysis of a coal-
cutting machine cutter operation. Results of experiments
show that the presented proposition enables us to obtain
the forecast quality better than in the case of each of the
discussed method individually. Due to application of the
M5 algorithm as the basic forecasting method, the pre-
sented technique is characterized by good generalization
abilities and generates no models badly fitted to data.

It follows from experiments that the phase of partial
model assessment is very important for the efficiency of
the method, because the forecasting model combining all
the three methods ARIMA+k-nn+M5 does lead to the best
forecasts in each case. This claim is also supported by re-
sults obtained on benchmark data that are included in Ap-
pendix. In the present paper, models were selected based
on the forecast error on validation and training sets.

The presented forecasting method has been applied
in practice. It is used by the forecasting module that is a
component of a methane risks monitoring system (Sikora
et al., 2011).
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Fig. 4. Partition of CH4 concentration, CH4 evolution of changes and risk state domains for fuzzy sets.

Table 6. Rules connecting risk states with CH4 concentration and evolution of changes.
Rule CH4 concentration CH4 changes dynamism Risk state

1 normal no changes normal state
2 normal increasing normal state
3 normal quickly increasing warning
4 admissible no changes warning
5 admissible increasing warning
6 admissible quickly increasing hazard
7 boundary – hazard
8 exceeded – hazard

Our further research will focus on full automation of
the process of the ARIMA model constructing and shor-
tening the duration of searching values of the k-opty para-
meter.

Presently the process of tuning the parameters of the
statistical model (p, q, r values) is not fully automatic but
performed by an operator. However, one can attempt to
define an algorithm for automatic selection of these va-
lues according to suggestions of Box and Jenkins (1994).
The procedure of searching for an optimal value of the k-
opty parameter is the most time-consuming operation of
our methodology. Tables 9 and 10 (see Appendix) show
that bounding the number of the nearest neighbors consi-
dered above does not allow us to achieve satisfactory re-
sults. Better outcomes are guaranteed for a method testing
the whole possible range of the k parameters. Application
of k-d trees (Wess et al., 1994) or SR-trees in the case of
multi-dimensional data (Katayama and Satoh, 1997) may
decrease the cost of determining nearest neighbors. The
heuristic strategy that consists in searching for selected
values of k only or the approach that constrains the tra-
ining set (Wilson and Martinez, 2000) are also possible to
be applied here. However, the time necessary for establi-
shing the optimal k value is an unquestionable limitation
of the presented method.

A benefit of the presented methodology is undoubte-
dly the relatively small number of parameters and a short
time of learning for the fixed k-opty. It is also worth no-
ticing that if the statistical model (in spite of satisfying
conditions of parameters’ statistical significance) does not
contribute to the quality improvement of rules generated
by M5, then it does not occur in these rules. This fol-

lows from the fact that the M5 algorithm performs featu-
re selection during rule induction, which is rare in some
neuro-fuzzy systems (Czogała and Łęski, 2000; Oh and
Pedrycz, 2000; Rutkowski, 2004).
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Appendix

The presented method enabled us to achieve good results
in the application domain we are interested in. In this ap-
pendix, several commonly known benchmark data sets are
presented as analysis supplement.

The methodology presented in Section 4 was also ap-
plied to the analysis of commonly known benchmark data.
As data in the form of a time series, the following data sets
were selected: gas furnace (Box and Jenkins, 1994) (in-
dependent variables ut−6, . . . , ut−1, yt−4, . . . , yt−1, the
dependent variable y), sunspots (Weigend et al., 1990)
(independent variables xt−12, . . . , xt−1, the dependent
variable xt) and a chaotic time series obtained on the
basis of the solution to the Mackey–Glass differential
delay equation (Schuster, 1998) (independent variables
xt−18, xt−12, xt−6, x, the dependent variable xt+6). The
sizes of training and testing data sets equal |Tr| =
100, |Ts| = 189 for gas furnace; |Tr| = 100, |Ts| = 180
for sunspots; |Tr| = 500, |Ts| = 500 for Mackey–Glass.

As data which do not have the form of a time series,
the Boston housing, ozone and abalone sets from UCI Re-
pository were selected. For the Boston housing and ozone
sets the 10 fold cross validation methodology was applied
as the testing method. For the abalone set, which contains
more than 1000 examples, train and test was employed.

The error values for the ANNBIFS fuzzy-neural ne-
twork (Czogała and Łęski, 2000) were also given for com-
parison. The results of ANNBIFS presented in Tables 7
and 8 are the best ones obtained after the testing of several
networks composed of two to ten fuzzy rules. RMS errors
for the data sets obtained by other forecasting methods
can be found, among others, in the papers by Czogała and
Łęski (2000) as well as Rutkowski (2004).

In the case of time series, application of the ARIMA
methodology combined next with the k-nn method allo-
wed us to decrease the forecast error for gas furnace and
sunspots data. For Mackey–Glass, the set on which rule
induction is conducted did not succeed insomuch that the
best results were obtained for the whole training set. This
result is not surprising since the Mackey–Glass data set
is generated in accordance with a mathematical equation.
Therefore, the bigger the number of examples, the smaller
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Table 7. RMS error obtained on training data sets.
ARIMA M5 ARIMA+M5 ARIMA+k-nn+M5 ANNBFIS

∨
k-nn+M5

Gas furnace 0.376 0.134 0.134 0.121 0.087
Sunspots 0.093 0.075 0.063 0.060 0.050

Mackey–Glass 0.007 0.008 0.003 0.003 0.002
Boston – 2.47 ± 0.14 – 2.10 ± 0.08 1.96±0.16

Ozone – 3.69 ± 0.27 – 3.14 ± 0.23 2.80±0.27

Abalone – 2.17 – 2.17 2.32

Table 8. RMS error obtained on testing data sets. The symbol ‘+′ means that the result is statistically better on the level p = 0.05,
‘−′ means that the result is statistically worse on the level p = 0.05. The Wilcoxon test was used for testing.

ARIMA M5 ARIMA+M5 ARIMA+k-nn+M5 ANNBFIS
∨

k-nn+M5

Gas furnace 0.446 0.413 0.413 0.375 0.366
Sunspots 0.110 0.088 0.079 0.074 0.093

Mackey–Glass 0.008 0.012 0.004 0.004 0.002
Boston – 3.19 ± 0.25 – 3.01±0.32+ 3.35 ± 0.47

Ozone – 4.01±0.74 – 4.43 ± 1.22− 4.45 ± 0.85

Abalone – 1.95 – 1.95 2.00

Table 9. Comparison of the RMS error for constrained k-opty≤
200 and complete k-opty≤ |Tr| − 1 space of an opti-
mal number of nearest neighbors searching: the tra-
ining set.

k-opty≤ 200 k-opty≤ |Tr| − 1

Gas furnace 0.121 (92) 0.121 (92)
Sunspots 0.060 (91) 0.060 (91)

Mackey–Glass 0.006 (200) 0.003 (499)
Boston 2.10 (104) 2.10 (104)
Ozone 3.14 (102) 3.14 (102)

Abalone 2.49 (200) 2.17 (2799)

Table 10. Comparison of the RMS error for constrained (k-
opty≤ 200) and complete (k-opty≤ |Tr| − 1) space
of an optimal number of nearest neighbors searching:
the testing set.

k-opty≤ 200 k-opty≤ |Tr| − 1

Gas furnace 0.375 0.375
Sunspots 0.074 0.074

Mackey–Glass 0.008 0.004
Boston 3.07 3.07
Ozone 4.43 4.43

Abalone 2.26 1.95

error obtained by the established analytic method. The de-
creasing trend of the error during establishing an optimal
value of the parameter k proves this.

Results for data tested in cross validation mode are
ambiguous. In one case, for combined M5 and k-nn me-

thods, a statistically significant decrease in the error was
obtained (the Boston housing data set) while in another ca-
se the combined methods led to statistically worse results
(the ozone data set). While establishing the k-opty value
for the abalone data set, along with the increasing parame-
ter k, the error value decreased systematically (with small
departures) and finally k-opty= |Tr| − 1. In this case,
for the M5+k-nn method we obtained, like for the Ec set,
the same error as for the sole M5 algorithm running on
the whole training set (without one example removing).
Tables 7 and 8 show that, in the case of the ozone data
set, M5 was selected yet as the output method, thus giving
better results than M5+k-nn. This case illustrates how the
validation set can protect against selection of a model un-
duly matched to data (over-fitted model). An obvious ob-
servation is that the number of rules increases along with
the growth in the parameter k. For k < 10, the M5 algo-
rithm generated one rule in a majority of cases. Hence it
generated a model of multiple regression.

For the data sets considered, the methodology we
present proved better than the ANNBFIS network in four
out of six cases. This concerns results obtained on testing
sets; on training sets, ANNBFIS definitely wins (in five
out of six cases). This means that the ANNBFIS network
has no mechanisms protecting against unduly matching to
training data. Such mechanisms are included in the M5 al-
gorithm, which applies rules pruning. Because of that our
method achieves better generalization results.
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