
Int. J. Appl. Math. Comput. Sci., 2012, Vol. 22, No. 2, 269–280
DOI: 10.2478/v10006-012-0020-y

TOPOLOGY OPTIMIZATION OF QUASISTATIC CONTACT PROBLEMS
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This paper deals with the formulation of a necessary optimality condition for a topology optimization problem for an elastic
contact problem with Tresca friction. In the paper a quasistatic contact model is considered, rather than a stationary one
used in the literature. The functional approximating the normal contact stress is chosen as the shape functional. The aim of
the topology optimization problem considered is to find the optimal material distribution inside a design domain occupied
by the body in unilateral contact with the rigid foundation to obtain the optimally shaped domain for which the normal
contact stress along the contact boundary is minimized. The volume of the body is assumed to be bounded. Using the
material derivative and asymptotic expansion methods as well as the results concerning the differentiability of solutions to
quasistatic variational inequalities, the topological derivative of the shape functional is calculated and a necessary optimality
condition is formulated.
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1. Introduction

Consider a domain Ω ⊂ R
2 occupied by a body or a struc-

ture and the solution u = u(Ω) of a system of partial dif-
ferential equations defined in Ω and describing the state
of the body. The aim of topology optimization is to find
an optimal distribution of the body material within the ge-
ometrical domain Ω resulting in its optimal shape in the
sense of some shape functional (Allaire et al., 2004; Am-
stuz et al., 2008; Garreau et al., 2001; Sokołowski et al.,
1999; 2004). Unlike in the case of classical shape opti-
mization (Haslinger and Mäkinen, 2003; Jarušek et al.,
2003; Myśliński, 2006; Sokołowski and Zolesio, 1992)
based on domain boundary perturbations only, the topol-
ogy of the domain Ω occupied by the body may change
through the nucleation of small holes or the inclusion of
weak material.

A classical approach to topology optimization prob-
lems is based on relaxed formulations and the homog-
enization method (Allaire, 2002). The obtained opti-
mal solution is a quasi-uniform distribution of composite
materials, rather than a classical design (Garreau et al.,
2001). The density approach, also called the SIMP (Solid
Isotropic Material with Penalization) method (Bendsoe et
al., 2003), is another currently used topology optimization
method. It consists in using a fictitious isotropic material

whose elasticity tensor is assumed to be a function of pe-
nalized material density, represented by an exponent pa-
rameter. The SIMP method has been used by Strömberg
and Klabring (2010) to solve numerically a topology op-
timization problem for an elastic structure with unilateral
boundary conditions.

In recent years the topological derivative method
(Garreau et al., 2001; Kowalewski et al., 2010; Nazarov
and Sokołowski, 2003; Novotny et al., 2005; Sokołowski
and Żochowski, 1999; 2004) has emerged as an attractive
alternative to analyze and solve numerically topology op-
timization problems, especially of elastic structures, with-
out employing the homogenization approach. The topo-
logical derivative gives an indication on the sensitivity of
the shape functional with respect to the nucleation of a
small hole or a cavity, or more generally a small defect in
a geometrical domain Ω around a given point. This con-
cept of topological sensitivity analysis was introduced in
the field of shape optimization by Eschenauer et al. (1994)
and was first mathematically justified by Garreau et al.
(2001) as well as Sokołowski and Żochowski (1999). The
modern mathematical background for evaluation of topo-
logical derivatives by asymptotic analysis techniques of
boundary value problems is established by Nazarov and
Sokołowski (2003).

In the literature, most papers (see Chambolle, 2003;
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Denkowski and Migórski, 1998; Eschenauer et al., 1994;
Fulmański et al., 2007; Garreau et al., 2001; Myśliński,
2008; 2010; Nazarov and Sokołowski, 2003; Novotny et
al., 2005; Sokołowski and Zolesio, 1999; Sokołowski and
Żochowski 2004; 2005; 2008; Strömberg and Klabring,
2010) are devoted to asymptotic and topology sensitiv-
ity analysis for elliptic boundary value problems. A few
papers only (e.g., Amstuz et al., 2008; Kowalewski et
al., 2010) address this issue for the shape functionals de-
pending on a solution to time-dependent boundary value
problems. One of the reasons is that the approaches useful
for stationary boundary value problems fail for evolution
problems (Kowalewski et al., 2010).

The approach of Amstuz et al. (2008) extends the
ideas of Garreau et al. (2001). Material occupying the
integration domain is assumed to consist of the strong ma-
terial and the weak material occupying the holes. A polar-
ization matrix is used to calculate the topological deriva-
tives of the different shape functionals depending on solu-
tions to heat or wave equations. The paper by Kowalewski
et al. (2010) deals with the sensitivity analysis of the op-
timal control problem for the wave equation with respect
to the small hole or cavity in the geometrical domain us-
ing the “hidden regularity” argument for boundary traces
as well as the expansion of the elliptic Steklov–Poincaré
operator. Evolution boundary value problems may be also
considered as the eigenvalue problem. Using the single
layer potential technique and the polarization matrix ap-
proach, in the monograph by Ammari et al. (2009) asymp-
totic expansions to solutions of eigenvalue problems have
been provided.

The frictional contact phenomenon between de-
formable bodies occurs frequently in industry or every-
day life. It happens, among others, between the surfaces
of braking pads and wheels, the tire and the road, the
piston and the shirt or a shoe and the floor. Since the
frictional contact leads to softening and possible damage
of the contacting surfaces, the prediction and control of
the evolution of frictional contact processes is the sub-
ject of intensive research. The mathematical or engineer-
ing literature concerning this topic is rather extensive (see
the references in the monographs of Eck et al. (2005) as
well as Han and Sofonea (2002)). Asymptotic and topol-
ogy sensitivity analysis of solutions to unilateral station-
ary boundary value problems in elasticity is performed by
Fulmański et al. (2007), Myśliński (2010) and Sokołowski
et al. (2005; 2008). Simultaneous shape and topology op-
timization of elastic structures where both the boundary
perturbation and the nucleation of holes inside the domain
occur is considered, among others, by Myśliński (2008) as
well as Sokołowski and Żochowski (2004). The main dif-
ficulty in topology sensitivity analysis of contact problems
is associated with the nonlinearity of the non-penetration
condition over the contact zone, which makes this bound-
ary value problem non-smooth.

This paper is concerned with the application of a
topological derivative approach to formulate a necessary
optimality condition for a structural optimization problem
for elliptic contact problems with Tresca friction. Unlike
in the previous works of Myśliński (2008; 2010), where
the stationary contact model is used, here the quasistatic
contact problem is considered. Quasistatic processes arise
when the external forces applied to a system vary slowly
in time. This means that the system is observed over a
long-time scale and the acceleration is negligible. The
key difference between static and quasistatic contact prob-
lems is the dependence of the friction on the sliding ve-
locity, rather than on the displacement. The quasistatic
contact problem in elasticity is governed by the elliptic
variational inequality where displacement and stress fields
are time-dependent. The existence of solutions to differ-
ent quasistatic or dynamic hemivariational inequalities is
shown by Ayyad et al. (2007), Duvaut and Lions (1972),
Denkowski and Migórski (1998), Eck et al. (2005), Han
and Sofonea (2002) as well as Rocca and Cocu (2001).
Numerical methods for solving contact problems are dis-
cussed by Haslinger and Mäkinen (2003) as well as Hüber
et al. (2008).

The paper is organized as follows. Section 2 deals
with the formulation of the quasistatic contact problem as
well as the structural optimization problem. The goal of
this optimization problem is to find a distribution of the
body material within the geometrical domain occupied by
the body in unilateral contact with the rigid foundation
which would ensure the minimum value of the shape func-
tional describing the normal contact stress. The volume
of the body is bounded. The paper is confined to topology
optimization only, i.e., the domain occupied by the body
is subject to topology variation only while the external
boundary of this domain is assumed not to be perturbed.
A topological derivative formula of the domain functional
is calculated using the shape derivative (Sokołowski and
Zolesio, 1992; Sokołowski and Żochowski, 2004) and
asymptotic expansion (Sokołowski and Żochowski, 1999)
methods. The calculated topological derivative is em-
ployed to formulate in Section 3 the necessary optimality
condition.

We shall use the following notation: Ω ⊂ R
2 will

denote a bounded domain with a Lipschitz continuous
boundary Γ. The time variable will be denoted by t and
the time interval by I = (0, T ), 0 < T < ∞. By
Hk(Ω), k ∈ (0,∞), we will denote the Sobolev space
of functions defined on Ω and having derivatives in all
directions of the order k and belonging to L2(Ω) (Han
and Sofonea, 2002). For an interval I and a Banach space
Bsp, Lp(I; Bsp), p ∈ (1,∞) denotes the usual Bochner
space (Eck et al., 2005). u̇ = du/dt will denote the first
order derivative of the function u with respect to t. u̇N

and u̇T will denote normal and tangential components of
the function u̇, respectively. S2 denotes the space of the
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Fig. 1. Initial domain Ω.

second order symmetric tensors (Han and Sofonea, 2002).
The dot product of two vectors w, z ∈ R

d is defined as

w · z =
d∑

i=1

wizi.

2. Problem formulation

Consider deformations of an elastic body occupying a do-
main Ω ⊂ R

2 with a Lipschitz continuous boundary Γ
(see Fig. 1). Let S ⊂ R

2 and D ⊂ R
2 denote given

bounded domains. The so-called hold-all domain D is as-
sumed to possess a piecewise smooth boundary. Domain
Ω is assumed to belong to the set Ol defined as follows:

Ol = {Ω ⊂ R
2 : Ω is open,

S ⊂ Ω ⊂ D, #Ωc ≤ l}, (1)

where #Ωc denotes the number of connected components
of the complement Ωc of Ω with respect to D and l ≥ 1
is a given integer. Moreover, all perturbations δΩ of Ω are
assumed to satisfy δΩ ∈ Ol.

The boundary Γ is partitioned into three open mea-
surable disjoint parts Γ0, Γ1, Γ2 such that meas(Γ0) > 0
and Γi ∩ Γj = ∅, i 	= j, i, j = 0, 1, 2, as well as Γ =
Γ̄0 ∪ Γ̄1 ∪ Γ̄2. Let 0 < T < ∞ and let I = (0, T ) denote
the time interval of interest. Assume the body is loaded
in Ω × I by the body force f(x, t) = (f1(x, t), f2(x, t)),
(x, t) ∈ Ω×I . Moreover, on Γ1×I acts a surface traction
p(x, t) = (p1(x, t), p2(x, t)), (x, t) ∈ Γ1×I . The body is
clamped on Γ0 × I . The contact between the bodies may
occur on Γ2×I . Denote by u(x, t) = (u1(x, t), u2(x, t)),
(x, t) ∈ Ω×I a displacement of the body and by σ(x, t) =
{σij(u(x, t))}, i, j = 1, 2, the stress field in the body.
Moreover, the notation u(t) = u(x, t) will be used to em-
phasize the dependence of u on t.

We shall consider elastic bodies obeying Hooke’s law
(Ayyad et al., 2007; Eck et al., 2005; Han and Sofonea,

2002):

σij(u(x, t)) = cijkl(x)ekl(u(x, t)),
i, j, k, l = 1, 2, (x, t) ∈ Ω × I. (2)

It is assumed that components cijkl(x), i, j, k, l = 1, 2,
of the elasticity tensor satisfy (Duvaut and Lions, 1972;
Eck et al., 2005; Han and Sofonea, 2002) usual symmetry,
boundedness and ellipticity conditions, i.e.,

cijkl(x) ∈ L∞(Ω), cijkl = cjikl = cklij , (3)

∃α1 > 0, α0 > 0 :
α0tijtij ≤ cijkl(x)tijtkl ≤ α1tijtkl, (4)

for almost all x ∈ Ω, for all symmetric 2 × 2 matrices
tij ∈ S2, i, j = 1, 2, with constants 0 < α0 ≤ α1. We use
here and throughout the paper the summation convention
over repeated indices (Duvaut and Lions, 1972; Eck et al.,
2005; Han and Sofonea, 2002; Haslinger and Mäkinen,
2003).

We shall also assume that in the neighbourhoodN of
the boundary Γ2 the components cijkl(x), i, j, k, l = 1, 2,
are more regular, i.e.,

cijkl(x) ∈ C0,β(N ), 0 < β <
1
2
. (5)

The strain ekl(u(x, t)), k, l = 1, 2, is defined by

ekl(u(x, t)) =
1
2
(uk,l(x, t) + ul,k(x, t)),

uk,l(x, t) =
∂uk(x, t)

∂xl
. (6)

Consider a quasistatic evolution contact process. Under
the previous assumptions the formulation of the contact
problem is the following: Find a displacement u : Ω×Ī →
R

2 and a stress field σ : Ω × Ī → S2 such that (Duvaut
and Lions, 1972; Han and Sofonea, 2002)

− σij(u),j = fi(x, t) in Ω × I, i, j = 1, 2, (7)

where

σij(u),j = σij(u(x, t)),j =
∂σij(u(x, t))

∂xj
,

i, j = 1, 2.

The following initial condition is imposed:

ui(0, x) = u0i, i = 1, 2, in Ω, (8)

where u0i are given functions. The boundary conditions
have the form

ui(x, t) = 0 on Γ0 × I , i = 1, 2, (9)

σij(u)nj = pi(x, t) on Γ1 × I , i, j = 2, (10)
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uN ≤ 0, σN ≤ 0, uNσN = 0, on Γ2 × I , (11)

|σT | < F|σN | ⇒ u̇T = 0 on Γ2 × I , (12)

|σT | = F|σN | ⇒
∃λ ≥ 0 : u̇T = −λσT on Γ2 × I , (13)

where n = (n1, n2) is the outward unit normal vector to
the boundary Γ. Here uN = uini and σN = σijninj ,
i, j = 1, 2, represent the normal components of displace-
ment u and stress σ on the boundary Γ, respectively. The
tangential components of displacement u and stress σ on
the boundary Γ are given by (uT )i = ui − uNni and
(σT )i = σijnj − σNni, i, j = 1, 2, respectively. The
notation | · | signifies the absolute value when applied to a
scalar and the Euclidean norm when applied to an element
of R

d, d ≥ 2.
Recall from the work of Han and Sofonea (2002) that

the non-penetration condition (11) means that if uN = 0,
the surface of the body is in contact with the surface of the
rigid foundation which exerts a normal compression force
σN < 0 on the body. If uN < 0, there is no contact be-
tween the body and the foundation and consequently the
foundation does not produce a reaction force towards the
body, i.e., σN = 0. The conditions (12) and (13) describe
the Coulomb friction law. At any moment the contact
boundary is divided by these conditions into two zones:
the stick zone and the slip zone. F ≥ 0 denotes a friction
coefficient. Note that the contact problem (7)–(13) is time
dependent due to the dependence of the body forces and
the surface tractions on time as well as to the formulation
of the Coulomb friction law (12)–(13) in terms of sliding
velocity.

2.1. Variational formulation. Consider the contact
problem (7)–(13) in the variational form. Let us introduce
the space of virtual displacements,

F = {z ∈ H1(Ω; R2) :
zi = 0 a.e. on Γ0, i = 1, 2}, (14)

W = H1(I; F ), (15)

and the set of kinematically admissible displacements,

K = {z ∈ F : zN ≤ 0 a.e. on Γ2 }, (16)

as well as the bilinear form: a(·, ·) : F × F → R, given
by

a(u, v) =
∫

Ω

cijkleij(u)ekl(v) dx. (17)

The space L2(Ω; R2) and the Sobolev spaces
H1(Ω; R2), H1(I; (L2(Ω; R2)) as well as L2(Γ1; R2),
H−1/2(Γ1; R2) are defined by Allaire (2002), Duvaut and
Lions (1972) as well as Eck et al. (2005). The conditions

(4) and (9) imply that the bilinear form (17) is continuous
and coercive (Eck et al., 2005), i.e.,

∃M̃ > 0 : |a(u, v)|
≤ M̃ ‖ u ‖H1(Ω;R2)‖ v ‖H1(Ω;R2), (18)

∀(u, v) ∈ H1(Ω; R2) × H1(Ω; R2),

∃m̃ > 0 : a(v, v) ≥ m̃ ‖ v ‖2
H1(Ω;R2), ∀v ∈ F. (19)

Let us assume that

f ∈ H1(I; L2(Ω; R2)), (20)

p ∈ H1(I; L2(Γ1; R2)), (21)

F ≥ 0, F ∈ C1(Γ2; R), (22)

‖ F ‖L∞(Γ2) ≤
√

α0

2M̃
, (23)

‖ F ‖H1/2(Γ2) ≤
m̃

M̃ ‖ γ ‖0‖ γ̃ ‖1

(24)

are given. ‖ γ ‖0 and ‖ γ̃ ‖1 denote the norms (Eck et
al., 2005; Han and Sofonea, 2002; Rocca and Cocu, 2001)
of the trace mapping γ : H1(Ω) → H1/2(Γ) and the lin-
ear bounded extension mapping γ̃ : H1/2(Γ) → H1(Ω),
respectively. Moreover, we assume, that the initial dis-
placement u(0) = u0 = {u0i}2

i=1 belongs to K and sat-
isfies the compatibility condition

a(u0, v − u0) +
∫

Γ2

F|σN |(|vT | − |u0T |) ds (25)

≥
∫

Ω

f(v − u0)dx +
∫

Γ1

p(v − u0) ds, ∀v ∈ K.

The problem (7)–(13) is equivalent to the following
variational problem (Duvaut and Lions, 1972; Eck et al.,
2005): Find u ∈ W such that u(0) = u0 in Ω and u(t) ∈
K for almost all t ∈ I and satisfying the following system:

a(u, v − u̇) +
∫

Γ2

F|σN |(|vT | − |u̇T |) ds

≥
∫

Ω

f · (v− u̇) dx +
∫

Γ1

p · (v− u̇) ds, ∀v ∈ K.

(26)

The existence of solutions to the system (26) is shown by
Rocca and Cocu (2001),

Theorem 1. Assume the following:

(i) the data are smooth enough, i.e., the conditions
(3)–(5), (20), (22) and (25) are satisfied;

(ii) the boundary Γ2 is C1,β , 0 < β < 1/2;

(iii) the friction coefficient F is small enough, i.e., it sat-
isfies (24).
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Then there exists at least one solution u ∈ W to the prob-
lem (26).

Proof. It is based on the discretization of the varia-
tional inequality (26) with respect to time using an im-
plicit scheme as well as the backward finite difference ap-
proximation of the time derivative u̇. Moreover, the fric-
tion functional is regularized using a convex differentiable
function. The existence of the solution to the discretized
problem is shown introducing an auxiliary contact prob-
lem with a given friction as well as using Schauder’s fixed
point theorem. Taking the limit of the sequence of solu-
tions to discretized contact problems as the friction regu-
larization parameter as well as the time discretization pa-
rameter tend to zero, the existence of a solution to the orig-
inal quasistatic problem (26) is shown. For details of the
proof, see the work of Rocca and Cocu (2001). �

Note that, from Theorem 1 as well as from (7),
(20), (21), (25) we also deduce the existence of the stress
field σ(u(t)) given by (2) and corresponding to the so-
lution u ∈ W of the system (26). This stress field
σ ∈ H1(I;H), where H = {τij ∈ L2(Ω; R4) : τij =
τji, τij,j ∈ L2(Ω; R4), i, j = 1, 2}.

In order to ensure the uniqueness of the solution to
the variational inequality (26), we confine ourselves to
considering the quasistatic contact problem with a pre-
scribed friction (of the Tresca type), i.e.,

|σT | ≤ g, (27)

where g ≥ 0, g ∈ L∞(Γ2), represents the friction bound,
i.e., the magnitude of the limiting friction traction at which
slip begins. From now on, without loss of generality, we
assume g = 1. The conditions (12)–(13) are replaced
by the following (Han and Sofonea, 2002; Haslinger and
Mäkinen, 2003):

u̇T σT + |u̇T | = 0, |σT | ≤ 1 on Γ2×I. (28)

Introducing the sets

Λ = {λ ∈ L2(Γ2; R2) : |λ| ≤ 1 a.e. on Γ2 }, (29)

Λ̃ = H1(I; Λ), (30)

and taking into account (28), the system (26) takes the fol-
lowing form: Find (u, λ) ∈ W × Λ̃ such that (u(t), λ(t))
∈ K × Λ, u(0) satisfies (25) with the Tresca friction law
(27), rather than the Coulomb law (12)–(13), λ(0) ∈ Λ
and

a(u, v − u̇) +
∫

Γ2

λ · (vT − u̇T ) dx

≥
∫

Ω

f · (v − u̇) dx +
∫

Γ1

p · (v − u̇) dx, ∀v ∈ K,

(31)

∫

Γ2

λ · u̇T ds ≤
∫

Γ2

ζ · u̇T ds ∀ζ ∈ Λ. (32)

From Theorem 1 and the works of Han and Sofonea
(2002), Haslinger and Mäkinen (2003) as well as Hüber
et al. (2008), it follows that the problem (31)–(32) has a
unique solution (u(t), λ(t)) ∈ K × Λ such that λ(t) =
σT (u(t)).

2.2. Topology optimization problem. Before formu-
lating a structural optimization problem for the quasistatic
contact system (31)–(32), let us introduce a set Uad of ad-
missible domains. Denote by Vol(Ω) the volume of the
domain Ω equal to

Vol(Ω) =
∫

Ω

dx. (33)

The domain Ω is assumed to satisfy the volume constraint
of the form

Vol(Ω) − const0 ≤ 0, (34)

where the constant const0 > 0 is given. This constant is
usually assumed to be the volume of the initial domain Ω
and (34) is satisfied (Myśliński, 2008) in the form

Vol(Ω) = rfr const0 with rfr ∈ (0, 1). (35)

The set Uad of admissible domains has the following
form:

Uad = {Ω ⊂ Ol : Ω satisfies (34),

PD(Ω) ≤ const1}. (36)

The perimeter PD(Ω) of a domain Ω in D is defined
(Sokołowski and Zolesio, 1992, p. 126) by PD(Ω) =∫
Γ

dx. The constant const1 > 0 is given. The set Uad

is assumed to be nonempty.
In order to formulate an optimization problem for the

contact system (31)–(32), let us define the shape func-
tional approximating the normal contact stress on the con-
tact boundary. This functional has the form (Myśliński,
2006; 2008):

Jφ(u(Ω)) =
∫

Γ2

σN (u(t))φN (x) ds. (37)

This cost functional depends on the solution u = u(t) to
(31)–(32) in domain Ω for almost all t ∈ I and on the
given auxiliary bounded function φ(x) ∈ M st. The set
M st of auxiliary functions is

M st = {φ ∈ H1(D; R2) : φi ≤ 0 on D, i = 1, 2,

‖ φ ‖H1(D;R2)≤ 1 }, (38)

where the norm ‖ φ ‖H1(D;R2)= (
∑2

i=1 ‖ φi ‖2
H1(D))

1/2

(Myśliński, 2006). σN and φN are the normal compo-
nents of the stress field σ corresponding to a solution u
satisfying (31)–(32) and the function φ, respectively.
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We shall consider the following topology optimiza-
tion problem: For a given function φ ∈ M st, find a do-
main Ω� ∈ Uad such that

Jφ(u(Ω�)) = min
Ω∈Uad

Jφ(u(Ω)). (39)

The aim of the topological optimization problem (39)
is to find such a material distribution inside the domain Ω
occupied by the elastic body so as to minimize its normal
contact stress. For the sake of clarity, let us remark that
the paper is confined to considering topology perturba-
tions of the domain Ω only. These topology perturbations
consist in nucleation or merging holes or weaker mate-
rials inside domain Ω (Amstuz et al., 2008; Eschenauer
et al., 1994; Nazarov and Sokołowski, 2003; Novotny
et al., 2005; Sokołowski and Żochowski, 1999; 2004)
and are performed without any a priori assumption about
the domain’s topology. We do not consider a case of si-
multaneous boundary perturbations of the domain Ω as
in the classical shape optimization (see Sokołowski and
Żochowski, 2004) and topology perturbations. These
boundary perturbations, consisting in moving the domain
boundary in the direction of a suitable velocity field, are
performed under the assumption that the initial and fi-
nal shape domains have the same topology (Garreau et
al., 2001; Sokołowski and Żochowski, 2004).

Recall after Chambolle (2003) that the class of do-
mains Ol determined by (1) is endowed with the comple-
mentary Hausdorff topology that guarantees the class it-
self to be compact. The admissibility condition #Ωc ≤ l
is crucial to provide the necessary compactness property
of Uad (Chambolle, 2003). The existence of an optimal
domain Ω� ∈ Uad to the topology optimization problem
(39) follows from the Šverák theorem and arguments pro-
vided by Chambolle (2003, Theorem 2).

3. Topological sensitivity analysis

Consider minimization of the the domain functional (39)
and topology variations of the domain Ω. Topology varia-
tions of geometrical domains are based on the creation of
a small hole or a void

B(x, ρ) = {z ∈ R
2 : |x − z| < ρ} ⊂ Ω (40)

with radius ρ, such that 0 < ρ < R, R > 0, given at
a point x ∈ Ω in the interior of the domain Ω (see Fig.
2). For simplicity it is assumed that 0 ∈ Ω and we shall
consider the case x = 0. The closure and the measure of
the hole B(x, ρ) are denoted by B(x, ρ) and |B(x, ρ)|, re-
spectively. The domain Ω perturbed by the hole B(x, ρ) is
denoted by Ωρ = Ω \ B(x, ρ). Moreover, Γρ = ∂B(x, ρ)
denotes the inner boundary of the domain Ωρ. Remark
that the hole may also be considered (Allaire et al., 2004)
as filled with a weaker material than the material of the
domain Ω. This weaker material is characterized by a
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Fig. 2. Perturbed domain Ωρ.

lower value of the Young modulus. Denote by Wρ, Fρ and
Kρ the spaces and the set of kinematically admissible dis-
placements defined by (14)–(16) in domain Ωρ rather than
Ω. The contact problem (31)–(32) reformulated in domain
Ωρ × I has the following form: Find (uρ, λρ) ∈ Wρ × Λ̃
such that (uρ(t), λρ(t)) ∈ Kρ × Λ satisfies

a(uρ, v − u̇ρ) +
∫

Γ2

λρ · (vT − u̇ρT ) ds

≥
∫

Ωρ

f · (v − u̇ρ) dx +
∫

Γ1

p · (v − u̇ρ) ds,

∀v ∈ Kρ, (41)

∫

Γ2

λ · u̇ρT ds ≤
∫

Γ2

ζ · u̇ρT ds, ∀ζ ∈ Λ, (42)

with (uρ(0), λρ(0)) ∈ Kρ × Λ satisfying (25) and (29),
respectively, in the domain Ωρ, rather than Ω. The re-
striction of the test function ϕ to Ωρ is also denoted by
ϕ. The displacement uρ satisfies the homogeneous Neu-
mann boundary condition on the inner boundary Γρ. The
topology variations of geometrical domains may be de-
fined as functions of a small parameter ρ. Recall af-
ter Garreau et al. (2001) as well as Sokołowski and
Żochowski (1999; 2004; 2005) the definition of the topo-
logical derivative of the domain functional.

Definition 1. The topological derivative TJφ(Ω, x) of
the domain functional Jφ(Ω) at Ω ⊂ R

2 is a function de-
pending on a centre x of the small hole and is defined by

TJφ(Ω, x) = lim
ρ→0+

Jφ(Ω \ B(x, ρ)) − Jφ(Ω)
|B(x, ρ)|

. (43)

Since in the paper we confine ourselves to consider-
ing the creation of small holes of a circular shape only, in
this case the measure of the hole equals its volume, i.e.,
|B(x, ρ)| = πρ2.
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Using the methodology of Sokołowski and
Żochowski (1999; 2004) as well as the results of
differentiability of solutions to variational inequalities
(Sokołowski and Zolesio, 1992), let us calculate directly
from the definition (43) the formulae of the topological
derivative TJφ(Ω; x0) of the cost functional (37) at a
point x0 ∈ Ω.

Write Jφ(Ωρ) = Jφ(ρ). Assuming that the following
expansion holds for Ω ⊂ R

2:

Jφ(ρ) = Jφ(0) +
ρ2

2
J ′′

φ (0+) + o(ρ2), (44)

where J ′′
φ (ρ) denotes the second order derivative of Jφ(ρ)

with respect to ρ, the topological derivative TJφ(Ω, x)
equals (Sokołowski and Żochowski, 2004)

TJφ(Ω, x) =
1
2π

J ′′
φ (0+). (45)

3.1. Topological derivative form.

Lemma 1. Let Assumptions (i)–(iii) of Theorem 1 be
satisfied. The topological derivative TJφ(Ω, x0) of the
domain functional (37) at a point x0 ∈ Ω for almost all
t ∈ I has the form

TJφ(Ω, x0)

= −[f(t) · (φ + r(t)) +
1
E

(au(t)ar(t)+φ

+ 2bu(t)br(t)+φ cos 2δ)]|x=x0 , (46)

where E denotes the Young modulus and

au(t)
def=σI(u(t)) + σII(u(t)), (47)

bu(t)
def=σI(u(t)) − σII(u(t)). (48)

σI(u(t)) and σII(u(t)) denote the principal stresses cor-
responding to the displacement u(t) ∈ K satisfying the
system (41)–(42) and stress tensor elements σij(u(t)),
i, j = 1, 2. They are equal to

σI(u(t)) =
σ11 + σ22

2
+

√
(
σ11 − σ22

2
)2 + σ2

12,

(49)

σII(u(t)) =
σ11 + σ22

2
−

√
(
σ11 − σ22

2
)2 + σ2

12. (50)

Here δ is the angle between principal stresses directions
determined by

tan 2δ =
2σ12

σ11 − σ22
. (51)

The adjoint state (rρ, qρ) ∈ Wρ × Λ̃ satisfies in
the domain Ωρ the following system: Find (rρ(t), qρ(t))

∈ Kρ1 × Λ1 such that

a(rρ(t) + φ, ϕ) +
∫

Γ2

qρ(t) · ϕ̇T ds = 0,

∀ϕ ∈ Wρ s.t. ϕ(t) ∈ Kρ1, (52)∫

Γ2

(φT + rρT (t)) · ζ ds = 0, ∀ζ ∈ Λ1, (53)

with (rρ(T ), qρ(T )) ∈ Kρ1 × Λ1. Moreover, we have
rρ(x, t)|ρ=0 = r(x0, t). The sets Kρ1 and Λ1 are given
by

Kρ1 = {ξ ∈ Fρ : ξN = 0 on Ast}, (54)

Λ1 = {ζ ∈ Λ : ζ(x) = 0 on B1 ∪ B2 ∪ B+
1 ∪ B+

2 },
(55)

while the coincidence set Ast = {x ∈ Γ2 : uN = 0}.
Moreover, B1 = {x ∈ Γ2 : λ(x) = −1}, B2 = {x ∈ Γ2 :
λ(x) = +1}, B̃i = {x ∈ Bi : uN (x) = 0}, i = 1, 2,
B+

i = Bi \ B̃i, i = 1, 2.

Note that using the arguments similar to those in the
proof of Theorem 1 we can show the existence of the solu-
tion to the system (52)–(53). This variational system has
the following operator form:

σij(rρ + φ),j = 0 in Ωρ × I, i, j = 1, 2, (56)

σN (rρ + φ) = 0 on Γ1 × I, (57)

φT + rρT = 0, σT (rρ + φ) − q̇ρ = 0 on Γ2 × I.
(58)

Proof. It follows the ideas of shape sensitivity analy-
sis (Sokołowski and Żochowski, 2004) and is based on
direct application of (43), a shape derivative approach
(Sokołowski and Żochowski, 2004) and asymptotic ex-
pansion methods (Sokołowski and Żochowski, 1999).
Here we provide the main steps only.

Consider a time discretization of the state system
(41)–(42). For a sequence of increasing integers m ≥ 1
let us define the stepsize Δt = T /m and the grid points
tk = k · Δt, k = 0, . . . , m. Write uk = u(x, tk), uk =
uk(x), fk = f(x, tk), pk = p(x, tk), λk = λ(x, tk). Us-
ing an implicit scheme as well as approximating the time
derivative u̇k+1

ρ by the finite difference

u̇k+1
ρ ≈

uk+1
ρ − uk

ρ

Δt
,

multiplying (41) by Δt and setting v := uk
ρ + Δtv, we

obtain the discretized system of variational inequalities
(41)–(42): Find (uk+1

ρ , λk+1
ρ ) ∈ Kρ × Λ, k = 0, . . . , m,

satisfying

a(uk+1
ρ , v − uk+1

ρ ) +
∫

Γ2

λk+1
ρ · (vT − uk+1

ρT ) ds

≥
∫

Ωρ

fk+1 · (v − uk+1
ρ ) dx

+
∫

Γ1

pk+1 · (v − uk+1
ρ ) ds, ∀v ∈ Kρ,

(59)
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∫

Γ2

λk+1 · (uk+1
ρT − uk

ρT ) ds

≤
∫

Γ2

ζ · (uk+1
ρT − uk

ρT ) ds, ∀ζ ∈ Λ.

(60)

The problem (59)–(60) is nothing but a weak formu-
lation of the static contact problem with a given friction
(Duvaut and Lions, 1972; Eck et al., 2005; Han and So-
fonea, 2002; Myśliński, 2006). Here uk+1

ρ satisfies the
system (7)–(11) in domain Ωρ and the following friction
condition on Γ2 at time t = tk+1:

|σT (uk+1
ρ )| < 1 ⇒ uk+1

ρT = uk
ρT , (61)

|σT (uk+1
ρ )| = 1

⇒ ∃λ ≥ 0 s.t. (uk+1
ρT − uk

ρT ) = −λσT (uk+1
ρ ). (62)

From the Green formula (Duvaut and Lions, 1972;
Han and Sofonea, 2002) it follows that the domain func-
tional (37) is associated with the solutions to this state sys-
tem through the following relation:

Jφ(ρ)

def= Jφ(u(Ωρ)) =
∫

Γ2

σρNφN ds

=
∫

Ωρ

σij(uρ)εk̃l(φ) dx −
∫

Ωρ

fiφi dx (63)

−
∫

Γ1

piφi ds +
∫

Γ2

λρ · φT ds,

for i, j, k̃, l = 1, 2. At t = tk+1, this functional takes the
form

Jφ(uk+1
ρ )

=
∫

Ωρ

σij(uk+1
ρ )εk̃l(φ)dx −

∫

Ωρ

fk+1
i φidx

−
∫

Γ1

pk+1
i φids +

∫

Γ2

λk+1
ρ · φT ds,

i, j, k̃, l = 1, 2.

(64)

Using the formulae of domain functional deriva-
tives with respect to the ball radius ρ (Sokołowski and
Żochowski, 2004, (27)–(28), p. 63) considered to be a
particular case of shape derivatives and differentiating
(64) with respect to ρ, we get the shape derivative of
the domain functional (37) at time t = tk+1. Assuming
that neither the surface traction p nor the boundaries Γ1

and Γ2 are dependent on ρ, this derivative has the form
(Myśliński, 2006)

J ′
φ(uk+1

ρ )

=
∫

Ωρ

σij(uk+1′
ρ )εkl(φ) dx

+
∫

Γρ

σij(uk+1
ρ )εkl(φ) ds +

∫

Γρ

fk+1
i φi ds

+
∫

Γ2

(λk+1′
ρ · φT +

1
ρ
λk+1

ρ · φT ) ds,

i, j, k̃, l = 1, 2.

(65)

The cost functional derivative (65) depends on
the shape derivative (uk+1′

ρ , λk+1′
ρ ) of the solution

(uk+1
ρ , λk+1

ρ ) ∈ Kρ × Λ to the contact problem (59)–
(60). Using the results concerning the regularity of solu-
tions to the state system (41)–(42) (Myśliński, 2006) and
the differentiability of solutions to variational inequalities
(Sokołowski and Zolesio, 1992, Theorem 4.3.3, p. 213),
one can show that the shape derivative (uk+1′

ρ , λk+1′
ρ ) ∈

Kρ1 × Λ1 of the solution (uk+1
ρ , λk+1

ρ ) ∈ Kρ × Λ to the
contact problem (59)–(60) satisfies the following system:
∫

Ωρ

σij(uk+1′
ρ )ekl(ϕ) dx

+
∫

Γρ

(σij(uk+1
ρ )ekl(ϕ) − fk+1

i ϕi) ds

+
∫

Γ2

(λk+1′
ρ ϕT +

1
ρ
λk+1

ρ ϕT )ds ≥ 0, ∀ϕ ∈ Kρ1,

(66)
∫

Γ2

uk+1′
ρT · ζ ds = 0, ∀ζ ∈ Λ1. (67)

Let us define an adjoint system at time t = tk+1. The
adjoint state (rk+1

ρ , qk+1
ρ ) ∈ Kρ1×Λ1 satisfies in domain

Ωρ the following system:

a(rk+1
ρ + φ, ϕk+1) +

∫

Γ2

qk+1
ρ · ϕ̇k+1

T ds = 0,

∀ϕk+1 ∈ Wρ ∩ Kρ1, (68)∫

Γ2

(φT + rk+1
ρT ) · ηk+1 ds = 0, ∀ηk+1 ∈ Λ1. (69)

Setting ϕ = rk+1
ρ and ζ = qk+1

ρ in the shape deriva-
tive system (66)–(67), as well as ϕk+1 = uk+1′

ρ and
ηk+1 = λk+1′

ρ in the adjoint system (68)–(69), the domain
functional derivative (65) takes the form

J ′
φ(ρ) = −

∫

Γρ

[σij(uk+1
ρ )ekl(φ + rk+1

ρ )

−fk+1 · (φ + rk+1
ρ )] ds. (70)

Consider the shape derivative (70) for ρ → 0+. To
calculate the derivative (46), we use asymptotic expan-
sions of solutions to elasticity systems in R

2 in a polar
coordinates system (Sokołowski and Żochowski, 2004).
Consider the coordinate system aligned with the direction
of principal stresses σI and σII . We introduce the polar
coordinate system (r, θ) with the coordinate axis still de-
noted by (r, θ).
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The displacement uk+1
ρ = (uk+1

ρr , uk+1
ρθ ) is a function

of r and θ in polar coordinates. The following asymp-
totic expansions of uk+1

ρ in the ring ρ ≤ r ≤ 2ρ hold
(Sokołowski and Żochowski, 2004):

uk+1
ρr = uk+1

r (0) +
auk+1

8Gr

[
(κ2 − 1)r2 + 2ρ2

]

+
buk+1

4Gr

[
(κ + 1)ρ2 + r2 − ρ4

r2

]

× cos(2θ) + O(ρ2−ε),

(71)

uk+1
ρθ = uk+1

θ (0) − buk+1

4Gr

[
(κ − 1)ρ2

+ r2 +
ρ4

r2

]
sin(2θ) + O(ρ2−ε),

(72)

where for ε > 0 the reminder O(ρ2−ε) → 0 as ρ → 0+,
as well as

G =
E

2(1 + ν)
, κ =

(3 − ν)
(1 + ν)

, (73)

and

lim
r→0

uk+1
r (r, θ) = uk+1

r (0),

lim
r→0

uk+1
θ (r, θ) = uk+1

θ (0).
(74)

Using the asymptotic expansions (71)–(72) as well
as the strain expressions and Hook’s law in the polar
coordinate system (Sokołowski and Żochowski, 2004,
p. 92–93), the asymptotic expansions for elements of a
stress tensor have the following form (Sokołowski and
Żochowski, 2004):

σrr(uk+1
ρ )

=
1
2

[
auk+1(1 − ρ2

r2
) + buk+1(1 − 4

ρ2

r2

+ 3
ρ4

r4
cos(2θ))

]
+ O(ρ1−ε),

(75)

σθθ(uk+1
ρ )

=
1
2

[
auk+1(1 +

ρ2

r2
) − buk+1(1 + 3

ρ4

r4
cos(2θ))

]

+ O(ρ1−ε),

(76)

σrθ(uk+1
ρ )

= −1
2

[
buk+1(1 + 2

ρ2

r2
− 3

ρ4

r4
) sin(2θ)

]
+ O(ρ1−ε).

(77)

The free edge condition on the boundary Γρ of the
hole results in σrr(uk+1

ρ ) = σrθ(uk+1
ρ ) = 0. Using it,

along with the relation between the stress tensor compo-
nents in the Cartesian and polar coordinate systems, the
derivative (70) takes the form

J ′
φ(uk+1

ρ ) = −
∫

Γρ

[ 1
E

σθθ(rk+1
ρ + φ)σθθ(uk+1

ρ )

+fk+1 · (φ + rk+1
ρ )

]
ds. (78)

From (20), (38) and the asymptotic expansions (75)–(77),
it follows that all integrands in (78) are bounded. There-
fore, we have that

lim
ρ→0+

J ′
φ(uk+1

ρ ) = 0. (79)

Using once more the formulae for the derivatives of
the domain functionals (Sokołowski and Zolesio, 1992)
and differentiating the functional (78) with respect to ρ,
we obtain

J ′′
φ (ρ) = J1(ρ) + J2(ρ) + J3(ρ), (80)

where

J1(ρ) =
∫

Γρ

∂

∂n

[ 1
E

σθθ(rk+1
ρ + φ)σθθ(uk+1

ρ )

+ fk+1 · (φ + rk+1
ρ )

]
ds,

(81)

J2(ρ) = −
∫

Γρ

[ 1
E

(σθθ(rk+1
ρ + φ)σθθ(uk+1

ρ ))′

+ fk+1 · (φ + rk+1
ρ )′

]
ds,

(82)

J3(ρ) = −1
ρ

∫

Γρ

[ 1
E

σθθ(rk+1
ρ + φ)σθθ(uk+1

ρ )

+ fk+1 · (φ + rk+1
ρ )

]
ds.

(83)

Recall after Sokołowski and Żochowski (2004) that on Γρ

∂

∂n
(·) = − ∂

∂r
(·).

Using the asymptotic expansion (76), we obtain on Γρ the
derivatives of σθθ,

∂σθθ(uk+1
ρ )

∂n
= auk+1

ρ2

r3
− 6buk+1

ρ4

r5
cos(2θ)

r=ρ
= auk+1

1
ρ
− 6buk+1

1
ρ

cos(2θ), (84)

∂σθθ(uk+1
ρ )

∂ρ

= auk+1
ρ

r2
− 6buk+1

ρ3

r4
cos(2θ) + O(ρ−ε)

r=ρ
= auk+1

1
ρ
− 6buk+1

1
ρ

cos(2θ) + O(ρ−ε),

(85)

From (84)–(85) we have that singular terms cancel
out:

∂σθθ(uk+1
ρ )

∂n
−

∂σθθ(uk+1
ρ )

∂ρ
= O(ρ−ε). (86)

Using (76) as well as (86) we obtain that, as ρ → 0+,

J1(ρ) + J2(ρ) → 0. (87)
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Consider the last term J3(ρ) of the functional (80).
The stress component σθθ(radt

ρ + φ) can be expressed in
the frame of principal stress directions for the displace-
ment field uk+1

ρ , i.e.,

σθθ(rk+1
ρ + φ) =

1
2
ark+1

ρ +φ(1 +
ρ2

r2
)

− 1
2
brk+1

ρ +φ(1 + 3
ρ4

r4
) cos 2(θ − δ)) + O(ρ1−ε)

r=ρ
= ark+1

ρ +φ − 2brk+1
ρ +φ cos 2(θ − δ) + O(ρ1−ε).

(88)

Using (88) and transforming the integral over Γρ into the
integral on interval [0, 2π], we obtain

lim
ρ→0+

∫ 2π

0

σθθ(uk+1
ρ )σθθ(rk+1

ρ + φ)dθ

= 2πρ[auk+1ark+1+φ + 2buk+1brk+1+φ cos(2δ)].
(89)

Using (83) and (89) along with the properties of in-
tegrals along the circle boundary Γρ and employing the
formula (45), we get the topological derivative (46) with
uk+1.

Consider the passage to the limit as k → ∞ (i.e., as
Δt → 0) in this formula. Let {um} and {ũm} denote
the sequences of functions defined on [0, T ] by um(t) =
uk+1 and ũm(t) = uk + (t − tk)(uk+1 − uk)/Δt for
t ∈ (tk, tk+1) with tk = k � t, k = 0, 1, . . . , m − 1,
and um(0) = ũm(0) = u0. From the work of Rocca and
Cocu (2001, Lemmas 14–16, Theorem 17) it follows that
there exist two subsequences {u′

m} ⊂ {um} and {ũ′
m} ⊂

{ũm}, denoted further by {um} and {ũ}, and an element
u ∈ H1(I; F ) satisfying the system (26) such that

um(t) ⇀ u(t) weakly in F, (90)

ũm(t) ⇀ u(t) weakly in H1(I; F ). (91)

Using the same arguments, we obtain

rm(t) ⇀ r(t) weakly in F, (92)

r̃m(t) ⇀ r(t) weakly in H1(I; F ). (93)

Using (90) as well as (2) we obtain that the sequence
of stress tensor components for i, j = 1, 2

σij(um(t)) ⇀ σij(u(t)) weakly in H1(I;H). (94)

From the results of Rocca and Cocu (2001, Lemma 15) as
well as (18)–(19) we get the boundedness of the sequence
of the stress fields σ(um(t)). Using (49)–(50) as well as
(47)–(48) and denoting by α either α = u or α = r, we
obtain

σI(um(t)) ⇀ σI(u(t)) weakly in H1(I;H), (95)

σII(um(t)) ⇀ σII(u(t)) weakly in H1(I;H), (96)

aαm(t) ⇀ aα(t) weakly in H1(I;H), (97)

bαm(t) ⇀ bα(t) weakly in H1(I;H). (98)

Assuming that f(tm) converges strongly in
L2(I; L2(Ω; R2)) to f(t) and using (93) and (95)–(98),
we obtain that the sequence of the topological derivatives
(46) for u(tm) converges to the topological derivative
(46) for u(t) satisfying (31)–(32) as Δt → 0 (m → ∞).

�

3.2. Necessary optimality condition. Using the topo-
logical derivative (46), the following necessary optimality
condition for the problem (39) can be formulated.

Lemma 2. Let Ω� ∈ Uad be an optimal solution to
the problem (39). Then there exist Lagrange multipliers
μ1 ∈ R, μ1 ≥ 0, associated with the volume constraint
and μ2 ∈ R, μ2 ≥ 0, associated with the finite perimeter
constraint such that for all x ∈ Ω� and for all topology
perturbations δΩ ∈ Uad of the domain Ω� ∈ Uad given
by (40) such that Ω� ∪ δΩ ∈ Uad, at any optimal solution
Ω� ∈ Uad to the topology optimization problem (39), the
following conditions are satisfied for almost all t ∈ I:

TJφ(u(Ω�); x) + μ1 + μ2 dPD(Ω�; x) ≥ 0, (99)

(μ∼
1 − μ1)(

∫

Ω�

dx − const0) ≤ 0,

∀μ∼
1 ∈ R, μ∼

1 ≥ 0, (100)

(μ∼
2 − μ2)(PD(Ω�) − const1) ≤ 0,

∀μ∼
2 ∈ R, μ∼

2 ≥ 0, (101)

where u(Ω�) = u(x, t) denotes the solution to the
state system (31)–(32) in the domain Ω�, the topo-
logical derivative TJφ(u(Ω�); x) is given by (46) and
dPD(Ω�; x) denotes the topological derivative of the fi-
nite perimeter functional PD(Ω�) equal to

dPD(Ω�; x) = 4π, (102)

(see Fulmański et al., 2007; Sokołowski and Żochowski,
2004). The given constants const0 > 0 and const1 > 0
are the same as in (36).

The method to prove Lemma 2 is standard (see
Duvaut and Lions, 1972; Haslinger and Mäkinen, 2003;
Myśliński, 2006). Note that Lemma 2 deals with topology
perturbations of domain Ω in the form of circular-shaped
holes (40) only.

4. Conclusions

A topology optimization problem for the quasistatic con-
tact phenomenon with prescribed friction has been con-
sidered in the paper. The topology derivative of the shape
functional has been calculated and the necessary optimal-
ity condition formulated. The calculated derivative will
be used in numerical topology optimization of the rolling
contact problem where one of the contacting surfaces is
covered with the functionally graded material (see Fig. 3).
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Fig. 3. Quasistatic wheel-rail rolling contact problem.

This problem is described by the quasistatic elliptic vari-
ational inequality (Chudzikiewicz and Myśliński, 2009).
The topology optimization approach is useful in reducing
the normal contact stress, which is the main factor gener-
ating rolling contact fatigue and noise during the move-
ment of the body in contact with the foundation. Ex-
amples of numerical solutions of topological optimization
problems for static contact problems can be found in the
work of Myśliński (2010).
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Novotny, A.A., Feijóo, R.A., Padra, C. and Tarocco, E. (2005).
Topological derivative for linear elastic plate bending prob-
lems, Control and Cybernetics 34(1): 339–361.



280 A. Myśliński
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