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An approach to determine a scheduling policy for a sensor network monitoring some spatial domain in order to identi-
fy unknown parameters of a distributed system is discussed. Given a finite number of possible sites at which sensors are
located, the activation schedule for scanning sensors is provided so as to maximize a criterion defined on the Fisher infor-
mation matrix associated with the estimated parameters. The related combinatorial problem is relaxed through operating
on the density of sensors in lieu of individual sensor positions. Then, based on the adaptation of pairwise communica-
tion algorithms and the idea of running consensus, a numerical scheme is developed which distributes the computational
burden between the network nodes. As a result, a simple exchange algorithm is outlined to solve the design problem in a
decentralized fashion.

Keywords: distributed-parameter system, parameter estimation, running consensus, scanning measurements, sensor ne-
twork.

1. Introduction

Systems with spatio-temporal dynamics, commonly
known as Distributed-Parameter Systems (DPSs), consti-
tute one of the most general and important classes of sys-
tems which are widely used in modelling for a wide varie-
ty of real-world engineering problems. Recent develop-
ments in technical systems force engineers to search for
more precise mathematical models of the phenomena con-
sidered, which leads directly to the description of the sys-
tem at hand using Partial Differential Equations (PDEs) as
the lumped descriptions often become unsatisfactory and
cannot provide a sufficient approximation of the investi-
gated system. Despite the sophisticated formulation, such
models provide high quality and efficiency of simulations
and control techniques.

One of the essential issues encountered while trying
to design an experimental set-up for parameter estimation
of a distributed system is an appropriate configuration of
the monitoring system in terms of spatial deployment of
sensors. The impossibility to observe the system states
over the entire spatial domain implies the question of whe-
re to locate sensors and how to schedule the observations
so as to accurately estimate the unknown system parame-
ters. This question becomes especially important in the
context of recent advances in distributed sensor networks

(Ögren et al., 2004; Cassandras and Li, 2005; Martínez
and Bullo, 2006).

Over the past years, laborious research on the deve-
lopment of strategies for efficient sensor placement has
been conducted (for reviews, see Kubrusly and Malebran-
che, 1985; Rafajłowicz, 1986; Uciński, 2000a; 2005; van
de Wal and de Jager, 2001; Patan, 2004). However, most
techniques communicated by various authors usually re-
ly on exhaustive search over a predefined set of candida-
tes and the combinatorial nature of the design problem
is taken into account very occasionally (van de Wal and
de Jager, 2001). Obviously, such an approach is feasi-
ble for a relatively small number of possible sensor loca-
tions and becomes useless as the number of possible loca-
tion candidates increases. Although the number of sensor
placement techniques developed to manage the problems
of practical scale is very limited (cf. Uciński, 2005; Ku-
brusly and Malebranche, 1985; Patan, 2004), some ef-
fective approaches have been proposed to cover vario-
us experimental settings, including stationary (Nehorai
et al., 1995; Uciński, 2000a; Patan and Patan, 2005; Po-
int et al., 1996; Patan and Uciński, 2008; Joshi and
Boyd, 2009), scanning (Patan and Uciński, 2005; Patan,
2006; 2008; Uciński and Demetriou, 2004) or moving ob-
servations (Porat and Nehorai, 1996; Jeremić and Neho-
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rai, 2000; Uciński, 2000b; Rafajłowicz, 1986; Uciński and
Chen, 2005; Patan et al., 2008; Patan, 2009a; Demetriou
and Hussein, 2009; Song et al., 2009; Uciński and Pa-
tan, 2010). In addition to this, almost all approaches to
measurement scheduling in sensor networks reported so
far rely on centralized techniques, which assume the exi-
stence of some superior entity to oversee the whole ne-
twork and optimize the observation strategy. The distribu-
ted nature of the design problem is taken into account ve-
ry occasionally. Recent advancements in sensor networks
necessitate effective, distributed and fault-tolerant algori-
thms for computation and information exchange.

The main aim of the research reported here was to
develop a decentralized approach to sensor scheduling
which, while being independent of a particular model of
the dynamic DPS in question, would be versatile enough
to cope with practical monitoring networks consisting of a
large number of sensors. The proposed approach substan-
tially extends the efficient approach to distributed sensor
configuration reported by Patan (2009b) to the more ge-
neral setting of scanning sensor networks, where the obse-
rvation system comprises multiple stationary sensors loca-
ted at already specified locations and it is desired to activa-
te only a subset of them during a given time interval while
the other sensors remain dormant (Demetriou, 2000). A
reason for not using all the available sensors could be the
reduction of the observation system complexity and/or the
cost of operation and maintenance (van de Wal and de Ja-
ger, 2001). Selecting the best subset of sensors to activa-
te constitutes an inherently discrete large-scale resource
allocation problem whose solution may be prohibitively
time-consuming. An effective approach to overcome tho-
se difficulties, based on the branch and bound technique
dedicated to such a kind of optimization tasks, has been
proposed by Uciński and Patan (2007) in the context of
stationary sensors and further refined for different experi-
mental settings (Patan and Uciński, 2008; 2010a; 2010b).
Although a parallelization of calculations over network
nodes is also possible (Patan, 2008), it is based on centrali-
zed algorithms, since the full distribution of computations
is highly non-trivial and requires relatively high computa-
tional resources per each node.

As an alternative approach suitable for situations
where the numbers of candidate and gauged sites are ra-
ther large, a method whose idea is to operate on sensor
densities per unit area instead of the individual sensor po-
sitions is presented. This convenient reformulation makes
it possible to apply some powerful tools of convex ana-
lysis. The basic idea is to adopt the results for the so-
called clusterization-free designs set forth by Uciński and
Patan (2002). These, in turn, are reminiscent of the idea
of replication-free designs which have emerged relatively
late in the context of spatial statistics (see Fedorov and
Hackl, 1997; Müller, 2007). The decided advantage of
such an approach is that it can be relatively easily tailo-

red to the framework of the so-called gossip algorithms,
in which each node communicates with no more than one
neighbor at each time instant (Xiao and Boyd, 2004; Boyd
et al., 2006). The different nodes of the network indepen-
dently calculate and store the desired quantities and their
final estimates are obtained via a consensus between the
network nodes in a fully decentralized fashion. The ad-
vantages of this scheme of information exchange seem to
be clear as no powerful information fusion center is neces-
sary and it is robust with respect to individual sensor faults
as the global estimate is recorded at all sensor nodes and
can easily be recovered. Moreover, it leads to very simple
implementation and efficient performance of the resulting
procedures.

2. Optimal measurement strategy

2.1. System description. Consider a bounded spatial
domain Ω ⊂ R

d with a sufficiently smooth boundary Γ,
a bounded time interval T = (0, tf ], and a distributed
parameter system whose scalar state y at a spatial point
x ∈ Ω̄ ⊂ R

d and a time instant t ∈ T̄ is governed by the
partial differential equation

∂y

∂t
= F(

x, t, y, θ
)

in Ω× T , (1)

where F is a well-posed, possibly nonlinear, differential
operator which involves first- and second-order spatial de-
rivatives and may include terms accounting for forcing in-
puts specified a priori, with θ being an m-dimensional
vector of unknown constant parameters which must be es-
timated using observations of the system. The PDE (1) is
accompanied by the appropriate boundary and initial con-
ditions

B(x, t, y, θ) = 0 on Γ× T, (2)

y = y0 in Ω× {t = 0}, (3)

respectively, B being an operator acting on the boundary
Γ and y0 = y0(x) a given function. We assume that the
forms of F and B are given explicitly up to vector θ.

Let us assume that the state y is observed directly (an
extension to a more general situation where the state is
observed indirectly can be provided without serious dif-
ficulties, see the work of Patan (2004) for details) by N
pointwise sensors, from among which only n are activa-
ted at time instants 0 < t0 < t1 < · · · < tK = tf and
will gather the continuous measurements for the duration
of each subinterval Tk = (tk−1, tk], k = 1, . . . ,K . For-
ming such an arbitrary partition on the time interval T , the
‘scanning’ observation strategy considered can be formal-
ly represented as

z�(t) =y(x�
k, t; θ) + ε(x�

k, t), t ∈ Tk,

� = 1, . . . , n, k = 1, . . .K,
(4)
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where z�(t) is the scalar output and x�
k ∈ X stands for

the location of the �-th sensor at time subinterval Tk, X
signifies the part of the spatial domain Ω where the me-
asurements can be made and ε(x�

k, t) denotes the measu-
rement noise, which is customarily assumed to be zero-
mean, Gaussian, spatial uncorrelated and white (Quereshi
et al., 1980; Amouroux and Babary, 1988), i.e.,

E
{
ε(x�, t)ε(x�′ , t′)

}
= σ2δ��′δ(t− t′), (5)

where σ2 defines the intensity of the noise, δij and δ( · )
standing for the Kronecker and Dirac delta functions, re-
spectively. Although white noise is a physically impossi-
ble process, it constitutes a reasonable approximation to
a disturbance whose adjacent samples are uncorrelated at
all time instants for which the time increment exceeds so-
me value which is small compared with the time constants
of the DPS.

2.2. Estimation accuracy measure. Given the mo-
del (1)–(3) and the outcomes of the measurements z�( · ),
� = 1, . . . , n on time intervals Tk, estimate θ by θ̂, a glo-
bal minimizer of the output least-squares criterion

J (ϑ) =
K∑

k=1

n∑

�=1

1
tf

∫

Tk

{
z�(t)− y(x�

k, t;ϑ)
}2

dt, (6)

where y( · , · ;ϑ) denotes the solution to (1)–(3) for a gi-
ven value of the parameter vector ϑ.

Inevitably, the covariance matrix cov(θ̂) of the above
least-squares estimator depends on the active sensor loca-
tions x�

k. This fact suggests that we may attempt to select
them so as to yield the best estimates of the system pa-
rameters. To form a basis for a comparison of different
locations, a quantitative measure of the ‘goodness’ of par-
ticular sensor configurations is required. Such a measure
Ψ is customarily based on the concept of the Fisher Infor-
mation Matrix (FIM), which is widely used in optimum
experimental design theory for lumped systems (Fedorov
and Hackl, 1997; Atkinson et al., 2007). In our setting,
owing to the character of noise in (4), the FIM is given by
(Quereshi et al., 1980)

M =
K∑

k=1

n∑

�=1

1
tf

∫

Tk

g(x�
k, t)g

T(x�
k, t) dt, (7)

where

g(x, t) =
[
∂y(x, t;ϑ)

∂ϑ1
, . . . ,

∂y(x, t;ϑ)
∂ϑm

]T

ϑ=θ0

(8)

stands for the so-called sensitivity vector. Since in the
nonlinear case g depends on the estimated parameters,
some preliminary estimate θ0 is required for its calcula-
tion. Usually some known nominal values of the parame-
ters θ can be used or we can apply estimates obtained in

previous experiments (Uciński, 2005; Sun, 1994; Rafajło-
wicz, 1983). Up to a constant scalar multiplier, the inverse
of the FIM constitutes a good approximation of cov(θ̂)
provided that the time horizon is large, the nonlinearity
of the model with respect to its parameters is mild, and
the measurement errors are independently distributed and
have small magnitudes (Fedorov and Hackl, 1997).

As for a specific form of Ψ, various options exist
(Fedorov and Hackl, 1997; Atkinson et al., 2007), but the
most popular criteria to be minimized include the follo-
wing:

• the D-optimality (determinant) criterion,

Ψ(M) = − log det(M); (9)

• the A-optimality (trace) criterion,

Ψ(M) = tr(M). (10)

The resulting D- and A-optimum sensor configurations le-
ad, respectively, to the minimum volume and minimum
mean of axes of the uncertainty ellipsoid for the parame-
ter estimates.

2.3. Sensor scheduling problem. The optimal sensor
scheduling problem consists in seeking for each time sub-
interval Tk the best subset of n locations from among N
given potential ones. More precisely, the problem is to di-
vide for each time subinterval the N available sensor no-
des into n active ones and the remaining N − n dormant
ones so as to maximize the criterion (10) associated with
the parameters to be estimated. Introducing for each possi-
ble location xi (i = 1, . . . , N ) a set of variables vi

k, each
of them taking the value 1 or 0 depending on whether or
not a sensor residing at xi is activated during Tk, the FIM
in (7) can then be rewritten as

M(v1, . . . , vK) =
N∑

i=1

K∑

k=1

vi
kMk(xi), (11)

where

Mk(xi) =
1
tf

∫

Tk

g(xi, t)gT(xi, t) dt (12)

and vi = (vi
1, . . . , v

i
K). It is straightforward to verify that

the matricesMk(xi) are nonnegative definite and, therefo-
re, so isM(v1, . . . , vK). Hence, our design problem takes
the following form.

Problem 1 . Find a sequence v = (v1, . . . , vN ) to maxi-
mize

P(v) = Ψ
(
M(v)

)
, (13)
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subject to

N∑

i=1

vi
k = n, k = 1, . . . ,K, (14)

vi
k = 0 or 1, i = 1, . . . , N, k = 1, . . . ,K. (15)

This constitutes a 0–1 integer programming problem
which necessitates smart and efficient solution. A key dif-
ficulty in developing successful numerical techniques for
such a discrete optimization task is that the number of sen-
sor nodes in the network may be quite large, which consi-
derably increases the complexity of the problem. Another
important issue is to properly decompose a computatio-
nal task in order to provide a possibility for a decentrali-
zed procedure for determining an optimal sensor activa-
tion schedule.

Patan (2004) and Uciński (2005) proposed a general
sequential computational scheme to solve a similar pro-
blem based on the notion of the so-called directly constra-
ined design measures. A brief characterization of the main
ideas underlying such an approach and the development
of the appropriate decentralized numerical algorithm will
constitute the remainder of the paper.

3. Approximate solution via continuous
relaxation

3.1. Problem of optimal sensor densities. When the
number of candidate sites and sensors to be activated n
is large, we can operate on the spatial density of sensors
(i.e., the number of sensors per unit area), rather than on
the individual sensor locations. In order to get rid of the
combinatorial nature of the original problem, we relax the
definition of the set of admissible solutions by making use
of the observation that the density of sensors over the sub-
interval Tk can be approximately described by a proba-
bility measure ξk(dx) on the space (X,B), where B is
the σ-algebra of all Borel subsets of X . Such an exten-
sion of the set of feasible solutions makes it possible to
apply convenient and efficient mathematical tools of co-
nvex programming theory. As for practical interpretation
of the so produced results, it is, e.g., to partition X into
non-overlapping subdomains Xi of relatively small areas
and then, on each subinterval Tk, to allocate to each of
them the number

N i
r =

⌈
N

∫

Xi

ξk(dx)
⌉

(16)

of sensors (here �ρ� is the smallest integer greater than or
equal to ρ).

Accordingly, our aim is to find probability measures
ξk, k = 1, . . . ,K overX which are absolutely continuous
with respect to the Lebesgue measure and satisfy by defi-
nition the conditions

∫
X
ξk(dx) = 1, k = 1, . . . ,K. The

integration above is to be understood in the Lebesgue–
Stieltjes sense. In what follows we briefly write

ξ = (ξ1, . . . , ξK) (17)

and call ξ a design measure.
Consequently, we replace (7) by

M(ξ) =
K∑

k=1

∫

X

Mk(x) ξk(dx). (18)

This leads directly to the so-called continuous designs,
which constitute the basis of the modern theory of opti-
mal experiments (Fedorov and Hackl, 1997; Patan, 2004;
Uciński, 2005).

Furthermore, another natural assumption is that the
densities of sensor allocation are bounded by some pre-
scribed level, i.e.,

ξk(dx) ≤ ω(dx), k = 1, . . . ,K, (19)

where ω(dx) can be interpreted in terms of some reasona-
ble level related to the maximal possible ‘number’ of sen-
sors per dx (Fedorov and Hackl, 1997; Patan, 2004; Uciń-
ski, 2005) such that

∫
X ω(dx) ≥ 1. Finally, we come up

with the following optimization problem:

Problem 2 . Find a design measure ξ ∈ Ξ(X), Ξ(X) be-
ing the set of all K-tuples defined by (17), to maximize

P(ξ) = Ψ
(
M(ξ)

)
(20)

subject to

ξk(dx) ≤ ω(dx), k = 1, . . . ,K. (21)

The design ξ�, being the solution to the problem above,
is then said to be a (Ψ, ω)-optimal design (Fedorov and
Hackl, 1997).

3.2. Characterization of the optimal solutions. In or-
der to derive an efficient decentralized algorithm for so-
lving Problem 2, a number of important properties of the
optimal design ξ� can be provided from the general results
of Patan (2004) and Uciński (2005). In the remainder of
this paper we shall make the following assumptions:
(A1) X is compact.

(A2) g ∈ C(X × T ; Rm).
(A3) Ψ is convex.

(A4) If M1 �M2, then Ψ(M1) ≥ Ψ(M2) is convex.

(A5) ω(dx) is atomless, i.e., for any set ΔX ⊂ X with
some positive measure there exists its subset ΔX ′ ⊂
ΔX with positive measure such that

∫

ΔX′
ω(dx) <

∫

ΔX

ω(dx). (22)
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(A6) There exists a finite real value q such that Ξ̃(X) ={
ξ : ξ satisfy (21) and P(ξ) ≤ q} 	= ∅.

(A7) For any ξ ∈ Ξ̃(X) and ξ̄ ∈ Ξ(X), Ψ is Fréchet
differentiable at M(ξ) in the direction of M(ξ − ξ̄).
Assumptions (A1)–(A4) are quite natural, since they

determine a regularity of solution and allows us to stay
within the framework of convex analysis, which greatly
facilitates subsequent deliberations. Assumption (A5) es-
tablishes a required level of design relaxation allowing
application of techniques for continuous optimization. As
for (A6), it only states that there exist designs with finite
values of Ψ, which constitutes a rather mild and quite lo-
gical requirement. Finally, Assumption (A7) simply amo-
unts to the existence of the directional derivative whose
form must be on the one hand specific, but on the other
for most practical criteria such a condition is not parti-
cularly restrictive. Requiring Ψ to be differentiable with
respect to the individual elements of its matrix argument,
we obtain

ψk(x, ξ) = ς(ξ)− φk(x, ξ), (23)

where

φk(x, ξ) = − tr
[ ◦
Ψ[M(ξ)]Mk(x)

]
, (24)

ς(ξ) = − 1
K

tr
[ ◦
Ψ[M(ξ)]M(ξ)

]
, (25)

and
◦
Ψ[M(ξ)] =

∂Ψ(M)
∂M

∣
∣
∣
∣
M=M(ξ)

.

For particular criteria we have, e.g.,

• D-optimality criterion:
◦
Ψ[M(ξ)] = M(ξ)−1,

• A-optimality criterion:
◦
Ψ[M(ξ)] = M(ξ)−2.

In what follows, we write Ξ̄(X) for the collection of
all the design measures whose components satisfy

ξk(ΔX) =

{
ω(ΔX) for ΔX ⊂ supp ξk,
0 for ΔX ⊂ X \ supp ξk,

(26)

where the support of a measure ξ is defined as the closed
set supp ξ = X \⋃{G : ξ(G) = 0, G is open}, (cf. Rao,
1987, p.80). Further, given a design ξ, we will say that the
function ψk( · , ξ) defined by (23) separates sets X1 and
X2 with respect to ω(dx) if for any two sets ΔX1 ⊂ X1

and ΔX2 ⊂ X2 with equal non-zero ω-measures we have
∫

ΔX1

ψk(x, ξ)ω(dx) ≥
∫

ΔX2

ψk(x, ξ)ω(dx). (27)

Now we are able to formulate the following pro-
perties of (Ψ, ω)-optimal designs, (for details, see Patan,
2004; Uciński, 2005).

Theorem 1. Let Assumptions (A1)–(A7) hold. Then

(i) there exists an optimal design ξ� ∈ Ξ̄(X), and

(ii) a necessary and sufficient condition for ξ� =
(ξ�

1 , . . . , ξ
�
K) ∈ Ξ̄(X) ∩ Ξ̃(X) to be (Ψ, ω)-optimal

is that functions φk( · , ξ�) separate X�
r = supp ξ�

k

and its complement X \X�
k for k = 1, . . . ,K .

From a practical point of view, the above result me-
ans that at all the support points of an optimal design ξ�

the mapping φk( · , ξ�) should be greater than anywhere
else, i.e., preferably supp ξ�

k should coincide with maxi-
mum points of φk( · , ξ�). In practice, this amounts to al-
locating observations to the points at which we know least
of all about the system response.

4. Decentralized exchange algorithm

4.1. Distributed data exchange. Clearly, unless the
design problem considered is quite simple, we must em-
ploy a numerical algorithm to make the outlined idea use-
ful. Moreover, the key property of the resulting procedu-
re should be an effective distribution of computations be-
tween the sensor nodes in a fully decentralized way. In the
following we assume the asynchronous time model for the
configuration process. Let r = 0, 1, 2, . . . be the discrete
time index, which partitions the continuous configuration
time axis into time slots Zr = (zr−1, zr].

Owing to Theorem 1, ξ�
k(dx) should be nonzero in

the areas where φk( · , ξ�) takes on larger values. Thus the
central idea when constructing a computational algorithm
for sensor density optimization is to move some measu-
re from areas with smaller values of φk( · , ξ(r)) to those
with larger values, as we expect that such a procedure will
improve ξ(r). A fundamental question related to this issue
is whether the functions φk( · , ξ(r)) can be calculated or
estimated in a decentralized way. From (24) we see that
the only component of φk( · , ξ(r)) which cannot be calcu-
lated independently of other nodes is the global informa-
tion matrix M(ξ(r)). Furthermore, from (11) it is clearly
seen that this matrix is a weighted average of the local
information matrices given by (12). In such a way, our
task is closely related to the problem of distributed avera-
ging on a sensor network which appears in many applica-
tions and has been a subject of extensive studies (Kempe
et al., 2003; Xiao and Boyd, 2004; Boyd et al., 2006; Bra-
ca et al., 2008).

One of the simplest and popular techniques of distri-
buted averaging is a pairwise communication flooding, al-
so known as a gossip scheme, which in its classic version
assumes that at the r-th time slot the i-th sensor contacts
some neighboring node j with probability Pij , i.e., a pa-
ir (i − j) is randomly and independently selected. P is
a doubly stochastic matrix with nonnegative entries and
Pij > 0 only if node i is within a range of node j. At this
time, both nodes set their values equal to the average of
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their current values. Denoting by M �(ξ(r)) an estimate of
the global FIM maintained by the �-th sensor at time slot
Zr, we can write (← is an update operator)

M �(ξ(r))← 1
2

(
M i(ξ(r)) +M j(ξ(r))

)
, � ∈ {i, j}.

(28)
Under some assumptions on the communication

scheme, such an update leads to the mean of local FIMs of
all network nodes (see the work of Xiao and Boyd (2004)
for detailed conditions for this to happen).

However, in our setting the distributed averaging pro-
blem is not typical as not all of the nodes contribute to the
global FIM at the r-th configuration slot but only those lo-
cated at the support of the current design. Therefore, apart
from updating local estimates of the FIM, the sensor no-
des should be equipped with a mechanism to store and
change the global design ξ(r). This can be achieved by
the exchange of tokens representing the activation of the
sensors at given subintervals Tk. Such tokens are trans-
ferred between nodes in the situation where a neighbor
node over a particular observation subinterval Tk is more
informative in the sense of the function φk( · , ξ(r)) calcu-
lated for the current estimate of the FIM (and, obviously,
it is not activated yet). A decided advantage of such an
approach is that the structure of the design ξ(r) is distri-
buted via tokens over the whole network. Therefore, it is
necessary to store at the i-th node only the binary vec-
tor vi = (vi

1, . . . , v
i
K) indicating whether or not the node

owns the token at the k-th time instant not.
It is clear that, in order to achieve convergence to the

mean of the FIMs for selected sensor nodes on a given
time subinterval, only the nodes possessing tokens should
follow the update (28). More precisely, we have to apply
a weighted average

M �(ξ(r))←
K∑

k=1

M �(ξ(r)
k ), � ∈ {i, j}, (29)

where, for vi
k + vj

k > 0,

M �(ξ(r)
k ) =

1
(vi

k + vj
k)

(
vi

kM
i(ξ(r)

k ) + vj
kM

j(ξ(r)
k )

)
.

(30)
The convergence of this averaging scheme with high

probability is proven to be of exponential rate, (Boyd
et al., 2006, Thm. 3), which is crucial for the effective-
ness of the optimization task. However, there are a num-
ber of drawbacks of such an update of the FIM. First of
all, since the weights vi

k are binary variables, from (30) it
immediately follows that the information can flow only in
one direction, i.e., from the active nodes, which own some
tokens, to the dormant ones, without tokens. A direct con-
sequence of the fact that dormant nodes cannot share the
information with active ones is that for any time subinte-
rval Tk the nodes owning the tokens have to form a con-
nected graph in order to achieve consensus in the network.

In practice, this may not be the case, especially when the
range of each node is very limited. Furthermore, the ne-
twork is not robust with respect to individual sensor faults
and the network topology becomes of crucial importance.

To overcome those difficulties, instead of (30), as a
generalization, the following two stage update is proposed
with simultaneous optimization and data exchange:

• At the first stage of communication the nodes i and
j estimate the global FIM according to the classical
averaging scheme (28). Then, based on this estima-
te, the nodes calculate the function φk( · , · ) for each
observation subinterval Tk. Finally, using φk as a cri-
terium for choosing more informative node at each
Tk, the tokens can be exchanged between the nodes.

• At the second stage, if a network node owns a token
for some of subintervals Tk, it is allowed to additio-
nally contribute to its own estimate of the FIM accor-
ding to the following weighted average:

M i(ξ(r))← r − 1
r

M i(ξ(r))

+
1
r

( K∑

k=1

vi
k

(
Mk(xi) +M i(ξ(r)

k )
))
.

(31)

The first term in (31) enforces consensus among the nodes
(represents the average information from the rest of ne-
twork), while the second one accounts for the increase in
the total contribution of the active node at subinterval Tk,
i.e., for vi

k = 1. The idea is quite similar to the so-called
running consensus averaging (cf. Braca et al., 2008), whe-
re the sensing and the averaging stages are simultaneous
and the network continues collecting data while adaptive-
ly computing the distributed estimator. Therefore, conver-
gence in first and second moments is a straightforward ge-
neralization of the results of Braca et al. (2008).

Remark 1. The convergence rate of the proposed scheme
is proportional to r−1 (Braca et al., 2008), and this seems
to be disadvantageous compared with the exponential co-
nvergence of the classic consensus scheme. However, one
consequence is that such a scheme is far less sensitive with
respect to specific properties of network connectivity and
changes in topology than the classical gossip update. In
fact, since all the nodes share and exchange information,
the network is more robust to individual sensor failure.
Furthermore, we can achieve a simultaneous exchange of
the design measure and a proper estimation of the glo-
bal information matrix without the necessity of separating
these processes.

Remark 2. From a practical point of view, it is very use-
ful to approximate the last term of (31) with an average
information matrix per observational subintervals, i.e.,

M i(ξ(r)
k ) ≈ 1

K
M i(ξ(r)). (32)
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Algorithm 1 Distributed data exchange model. Indexes i and j denote, respectively, data from the local repository and
obtained from the neighbor. The quantities M i(ξ) and vi are the only ones that have to be stored in the local repository
till the next communication event.

1: procedure EXCHANGE_PROTOCOL

2: EXCHANGE(M j(ξ),M i(ξ)) � sends and receives FIM . . .
3: EXCHANGE(vi,vj) � . . . and activation schedules
4: M i(ξ)← 1

2

(
M i(ξ) +M j(ξ)

)
� global FIM averaging

5: D(ξ)←
◦
Ψ[M i(ξ)] � Calculate the derivative of FIM

6: for k ← 1,K do
7: if XOR(vi

k, v
j
k) then � the token may be exchanged

8: φk(xi, ξ)← tr
[
D(ξ)Mk(xi)

]

9: EXCHANGE
(
φk(xi, ξ), φk(xj , ξ)

)

10: if φk(xi, ξ) > φk(xj , ξ) then
11: vi

k ← 1 � activation token goes to the more informative node
12: else
13: vi

k ← 0
14: end if
15: end if
16: end for
17: M i(ξ)← r−1+ 1

K

∑ K
k=1 vi

k

r M i(ξ) + 1
r

∑K
k=1 v

i
kMk(xi) � Final FIM update

18: end procedure

Thus, instead of (31) we have

M i(ξ(r))← 1
r

(

r − 1 +
1
K

K∑

k=1

vi
k

)

M i(ξ(r))

+
1
r

( K∑

k=1

vi
kMk(xi)

)
.

(33)

Obviously, in such a manner a bias is introduced to the es-
timator, but since the corrected term is weighted with the
reciprocal of r, it is asymptotically unbiased. The advan-
tage is that at each node only the estimate of the total FIM
has to be stored and updated instead ofK information ma-
trices for each time subinterval separately.

4.2. Distributed numerical scheme. The detailed
scheme of the pairwise communication process is embo-
died by Algorithm 1. The EXCHANGE operator involved
in implementation of Algorithm 1 is responsible for du-
plex data exchange between two nodes, i.e., sending and
receiving data to/from a connected neighbor (order depen-
ding on who initiated communication). At r = 0 each ne-
twork node starts with a global FIM estimate M i(ξ(0))
initialized with its local information matrix M(xi) =
n

∑K
k=1Mk(xi) and randomly allocated tokens satisfy-

ing (14). Then at each time slot Zk an appropriate pair of
nodes exchanges information according to Algorithm 1.

The resulting procedure may be considered a distri-
buted counterpart of the class of sequential exchange al-
gorithms based on restricted design measures (cf. Uciński
and Patan, 2002; Patan, 2004; Uciński, 2005) originated

from experimental design theory. In particular, in the fra-
mework considered, we have ω(dx) = � dx, where � is
a sensor density and every grid element must not contain
more than one supporting point.

The algorithm performs extremely fast due to its sim-
plicity and the central idea of operating on the sensor den-
sities, which allows avoiding the inherent impediments re-
lated to the combinatorial sensor selection problems. As
regards the convergence to an optimal design, it is assu-
red only for a decreasing value of the exchanged design
measure (Uciński, 2005), which is not the case here. The-
refore, after an initial phase of fast convergence, some
oscillations in P(ξ(r)) may sometimes be observed when
approaching the vicinity of the optimum. A denser spa-
tial grid usually constitutes a remedy for this predicament
(Patan, 2004; Uciński, 2005; Müller, 2007) and assures
that the lack in optimality is negligible.

Another important issue is the choice of a proper
communication scheme in terms of symmetric probability
matrix P , which significantly influences the convergence
rate. This is of special importance when one step upda-
te (30) can be applied for distributed averaging. In gene-
ral, under some assumptions on the network connectivity
graph, a suitable gossip algorithm can be provided with an
exponential convergence rate. In particular, for an asyn-
chronous time model, finding the fastest averaging algori-
thm is equivalent to solving the following problem (Boyd
et al., 2006).

Problem 3 Find P to minimize λ2

(
(1− 1

n )I + 1
nP

)
sub-
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ject to

n∑

j=1

Pij = 1, i = 1, 2, . . . , n, Pij ≥ 0, (34)

where λ2( · ) is the second largest eigenvalue of its argu-
ment.

This problem can be cast in the framework of semi-
definite programming and effectively solved in the centra-
lized fashion. For a complete network connectivity graph,
it is easy to show that the solution to Problem 3 is P with
all diagonal entries equal to zero and all off-diagonal en-
tries equal to the value of 1/(n− 1). Since a detailed di-
scussion on such important issues is far beyond the scope
of this work, we refer the reader to the seminal papers
of Xiao and Boyd (2004), as well as Boyd et al. (2006),
where also a distributed subgradient scheme is provided
to solve this problem in a fully decentralized way.

5. Simulation example

As an illustrative example of the presented approach, con-
sider the problem of sensor configuration for parameter
estimation in the process of air pollutant transport over a
given urban area Ω, which is a square with a side of length
1 km. In this domain, two active sources of pollution are
present, which yields the pollutant spatial concentration
y = y(x, t). The evolution of y over the observation inte-
rval T = (0, 1000] (in seconds) is described by the follo-
wing advection–diffusion–reaction equation:

∂y(x, t)

∂t
+ ∇ · (v(x, t)y(x, t)

)
+ αy(x, t)

= ∇ · (κ∇y(x, t)
)

+ f1(x) + f2(x), x ∈ Ω,

(35)

subject to the boundary and initial conditions

∂y(x, t)
∂n

= 0 on ∂Ω× T, (36)

y(x, 0) = y0 in Ω, (37)

where terms f�(x) = μ� exp
(−100‖x−χ�‖2), � = 1, 2

represent the pollutant sources with emission intensities
μ� located at the points χ� = (χ�

1, χ
�
2), � = 1, 2, and

∂y/∂n stands for the derivative of y in the direction of the
outward normal to the boundary ∂Ω. The average spatio-
temporal changes in the wind velocity field over Ω were
approximated according to the model (scaled in [km/h])

v(x, t) = 7.2·(x1+x2−t·10−3, (2x1−1)t·10−3+x2−1
)
.

Furthermore, κ denotes an unknown turbulent diffusion
coefficient and α = 0.02 s−1 stands for the absorption
rate modelling a slow decay of the pollutant. Figure 1 il-
lustrates the resulting complex process dynamics.

t = 1 s
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Fig. 1. Temporal changes in the wind velocity field and pollu-
tant concentration (stars indicate the locations of pollu-
tant sources).
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Fig. 2. Convergence plots of determinant bounds (max and min value for each iteration) (a) and the coefficient of variation (b).

Our goal is to identify the sources and the unk-
nown diffusion coefficient, i.e., an estimate of the vector
θ = (μ1, χ

1
1, χ

1
2, μ2, χ

2
1, χ

2
2,κ), using a sensor network

with scanning nodes. The observation horizon was split
into five evenly partitioned subintervals Tk = (200(k −
1), 200k], k = 1, . . . , 5.

In order to verify the proposed approach, a MA-
TLAB program was written using a PC equipped with
an Intel Core i7 processor (1.83 GHz, 4 GB RAM)
running Windows 7 and MATLAB 2009b. First, the
system of PDEs was solved using efficient solvers of
the COMSOL environment based on the finite ele-
ment method (COMSOL AB, 2007). The nominal va-
lues of the system parameters were assumed to be
θ = (12 kg/s, 0.4 km, 0.7 km, 15 kg/s, 0.8 km, 0.3 km,
50 m2 s). Calculations were performed for a spatial mesh
composed of 978 triangles, 520 nodes and an evenly par-
titioned time interval (101 subintervals).

The observation grid was assumed to be created at lo-
cations selected from among those elements of the above-
mentioned 520-point triangulation mesh which do not lie
on the outer boundary (there were 460 such nodes, which
are indicated with dots in Fig. 3). Given N = 460 pro-
spective sites in Ω, we aim at selecting at each time subin-
terval Tk their subset consisting of the locations at which
the measurements made by n = 100 sensors would lead
to D-optimum least-squares estimates of the parameters θ.

It was assumed that the network was fully connected
with uniform probability distribution for the connection
between selected pair of nodes. The complexity of the sys-
tem dynamics makes the proper prediction of the observa-
tion locations rather difficult and nonintuitive. The sensors
tend to form patterns reflecting the areas of greatest chan-
ges in the pollutant concentration. Sensor configurations
at different stages of the algorithm are shown in Fig. 3.

The convergence to the optimal sensor configura-
tion is very fast at the first stage, which is clearly seen
in Fig. 2(a). Since the algorithm deals with simultaneous
optimization and the averaging of the FIM, we can obse-
rve that the variance of the distributed estimator increases
at this phase (gap between bounds in Fig. 2(a)). Becau-
se of the increase in the total determinant value, a much
better measure of the current variability of the averaging
estimator is the coefficient of variation plotted in Fig. 2(b),
where the convergence in the second moment is clearly il-
lustrated.

After a relatively small configuration time r, the sen-
sor activation pattern is very similar to the optimal one cal-
culated with the use of centralized approach (cf. Figs. 3(c)
and (d)). Then the algorithm considerably slows down and
convergence with high accuracy requires many processes
of pairwise communication.

6. Conclusion

The sensor scheduling problem in view of accurate pa-
rameter estimation for distributed-parameter systems sub-
ject to limitations on the total number of activated sensor
nodes has been addressed. A crucial difficulty here is the
large scale of the resulting global optimization problem,
since the monitoring networks encountered in process in-
dustry or environmental engineering may often consist of
several hundreds of nodes. This makes the exhaustive se-
arch on a candidate-by-candidate basis practically intrac-
table and creates a strong necessity for more systematic
and effective approaches. In particular, this work presents
a proper adaptation of an approach based on the conver-
sion of the original combinatorial optimization problem to
its relaxed continuous approximation. The main idea is to
operate on density of sensors, rather than on their direct
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Fig. 3. Allocation of active sensors at chosen observation subintervals at consecutive stages of network configuration (a)–(c) and final
D-optimal configuration (d).
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locations, making it possible to apply some effective me-
thods of convex optimization. Although such an approach
is known in optimum experimental design theory, there
have been just few attempts to exploit it in the context
of decentralized computation schemes dedicated to sen-
sor networks identifying DPSs (Patan, 2009b). This work
contributes to this issue providing the proper mathemati-
cal formulation and characterization of the problem in the
general setting of scanning observations.

Another crucial difficulty is a proper decomposition
of the relaxed optimization problem in order to facilitate
its efficient solution in a decentralized manner. The main
contribution here consists in the construction of the spe-
cialized protocol of information exchange for the simulta-
neous optimization and estimation of the global optimality
criterion at each node. Consequently, the proposed method
leads to the fully distributed scheme of calculations which
can be implemented with great ease, and our experience
provides evidence that, with this tool, even large-scale de-
sign problems can be solved using an off-the-shelf PC.

Obviously, there still remain some open problems
which require close attention. The following points can
be raised as the main directions of further research:

• Extension of the discussed class of DPSs. A great
advantage of the delineated approach is that it is in-
dependent of a specific form of PDEs used as a ma-
thematical model of the DPS considered. In such a
manner the presented approach can be rather easi-
ly adopted for the class of multi-output DPSs or/and
systems with delays.

• Development of the approaches taking into account
parametric uncertainty. A very important problem is
the dependence of the solutions on the true values of
the unknown parameters. This leads directly to the
notion of the so-called robust design strategies (Sun,
1994; Uciński, 2005; Patan, 2004), which try to make
the optimal solutions independent of the parameters
to be identified.

• Extensions to more sophisticated monitoring sys-
tems, i.e., mobile sensor networks. In fact, a scanning
network can be interpreted as mobile nodes whose
positions are determined in discrete time.

• Refinements of the proposed approach taking into ac-
count numerous constraints inherent to network de-
sign, e.g., energy consumption or time-varying ne-
twork topology.
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Patan, M. and Uciński, D. (2010b). Time-constrained sensor
scheduling for parameter estimation of distributed systems,
Proceedings of the 49th IEEE Conference on Decision and
Control, Atlanta, GA, USA, pp. 7–12.

Point, N., Vande Wouwer, A. and Remy, M. (1996). Practical is-
sues in distributed parameter estimation: Gradient compu-
tation and optimal experiment design, Control Engineering
Practice 4(11): 1553–1562.

Porat, B. and Nehorai, A. (1996). Localizing vapor-emitting
sources by moving sensors, IEEE Transactions on Signal
Processing 44(4): 1018–1021.

Quereshi, Z.H., Ng, T.S. and Goodwin, G.C. (1980). Optimum
experimental design for identification of distributed para-
meter systems, International Journal of Control 31(1): 21–
29.

Rafajłowicz, E. (1983). Optimal experiment design for identifi-
cation of linear distributed-parameter systems: Frequency
domain approach, IEEE Transactions on Automatic Con-
trol 28(7): 806–808.

Rafajłowicz, E. (1986). Optimum choice of moving sensor tra-
jectories for distributed parameter system identification,
International Journal of Control 43(5): 1441–1451.

Rao, M.M. (1987). Measure Theory and Integration, John Wiley
& Sons, New York, NY.

Song, Z., Chen, Y., Sastry, C. and Tas, N. (2009). Optimal
Observation for Cyber-physical Systems: A Fisher-
Information-Matrix-Based Approach, Springer-Verlag,
Berlin/Heidelberg.

Sun, N.-Z. (1994). Inverse Problems in Groundwater Modeling,
Theory and Applications of Transport in Porous Media,
Kluwer Academic Publishers, Dordrecht.
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