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The increased production of Reactive Oxygen Species (ROS) in plant leaf tissues is a hallmark of a plant’s reaction to
various environmental stresses. This paper describes an automatic segmentation method for scanned images of cucurbits
leaves stained to visualise ROS accumulation sites featured by specific colour hues and intensities. The leaves placed
separately in the scanner view field on a colour background are extracted by thresholding in the RGB colour space, then
cleaned from petioles to obtain a leaf blade mask. The second stage of the method consists in the classification of within
mask pixels in a hue-saturation plane using two classes, determined by leaf regions with and without colour products of the
ROS reaction. At this stage a two-layer, hybrid artificial neural network is applied with the first layer as a self-organising
Kohonen type network and a linear perceptron output layer (counter propagation network type). The WTA-based, fast
competitive learning of the first layer was improved to increase clustering reliability. Widrow–Hoff supervised training
used at the output layer utilises manually labelled patterns prepared from training images. The generalisation ability of the
network model has been verified by K-fold cross-validation. The method significantly accelerates the measurement of leaf
regions containing the ROS reaction colour products and improves measurement accuracy.

Keywords: image segmentation, colour space, morphological processing, image thresholding, artificial neural network,
WTA learning, Widrow–Hoff learning, Cucurbita species, plant stress, ROS detection.

1. Introduction

Recently, leaf image analysis systems have been used for
quantifying stress symptoms. They can be alternative ac-
curate methods for subjective visual assessment (James,
1971) or biochemical methods (Cheeseman, 2006), which
do not allow obtaining detailed data of stress symptom
distribution in leaves. A lot of automated methods of leaf
analysis are based on common software packages, e.g.,
quantifying infection of fungus Colletotrichum destruc-
tivum in Nicotiana benthamiana and other plant species
was done by the freely available Scion Image application
(Wijekoon et al., 2008). This popular, general purpose im-
age analyser requires time-consuming operations or sub-
stantial knowledge for appropriate macros building to ex-
tract the diseased regions. In that case, the authors consid-
ered only grey-level images to identify bright leaf blade

profiles and dark diseased areas inside of them by simple,
global thresholdings.

Symptoms of infection include leaf discolouration
(usually white or dark), thus making it possible to direct
quantification. However, a common feature of plant re-
sponse to biotic and abiotic stresses is the increased pro-
duction of Reactive Oxygen Species (ROS), which are
visible in leaf tissues as specific colour regions only af-
ter histochemical detection. These histochemical meth-
ods allow obtaining detailed data on in situ ROS distri-
bution and accumulation in different leaf parts, thus en-
abling better comparison of various treatments. How-
ever, ROS detected histochemically have been often as-
sessed semi-quantitative by visual estimation (Huang et
al., 2010). Recently, image analysis methods have been
developed and applied to the quantification of the products
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of ROS-mediated histochemical reactions in plant tissues
(Soukupova and Albrechtova, 2003).

The authors of this paper have been faced with the
identification of the sites of ROS generation in pumpkin
and cucumber leaves subjected to abiotic stresses (drought
and salinity) and infected with a pathogen. The subjects of
quantification were regions of accumulation of two ROS
species: superoxide anion radical and hydrogen peroxide,
visible after leaf staining as blue or red-brown spots, re-
spectively. In histochemically stained and then cleared
(chlorophyll free) leaves, these regions differ from the
intact leaf tissues by colour hue and saturation values.
The colour features and multidimensionality of the fea-
ture space suggest using the colour space instead of grey-
levels and a formal classifier, e.g., with an ANN (Artificial
Neural Network) instead of thresholding. So far, LVQ
(Linear Vector Quantization) type neural networks have
been successfully applied to many classification problems
like blood cell recognition (Tabrizi et al., 2010) or seafloor
acoustic images segmentation (Tang et al., 2007). The au-
thors propose the use of a slightly modified self-clustering
WTA (Winner Takes All) network (Kohonen 1990; 2001)
concatenated with a linear perceptron layer type (Widrow
et al., 1988; Hagan et al., 2009). Using a sufficient num-
ber of clusters, the network can recognise all visible leaf
staining colours and then combine them in two groups: in-
tact blade areas and the concentration regions of the stress
reaction. For a network of such a type, these groups do
not need to be assumed as linearly separated, which is not
guaranteed in the examined populations. The capabilities
of using Kohonen networks in image segmentation in the
L∗u∗v∗ colour space have already been studied (Ong et
al., 2002).

2. Plant material and leaf preparing

The material for image analysis consisted of the leaves
of cucumber and pumpkin plants cultivated under growth
chamber conditions. A set of five-week-old plants was
used for abiotic stress treatments. Plants were sub-
jected to water deficit (drought stress) or irrigated with
50 mM NaCl (salt stress) for seven days. The sec-
ond group of plants were not treated with abiotic factors.
Then each group was divided into two subsets: control
and inoculated with the pathogenic fungus Erysiphe ci-
choracearum. The plants were analyzed five days after
inoculation. Detached leaves were examined according
to Unger et al. (2005) for superoxide anion radical (O−

2 )
visualisation and to Thordal-Christensen et al. (1997) for
hydrogen peroxide (H2O2) detection. After staining and
clearing in ethanol, leaves became almost white, as a re-
sult of chlorophyll removal, and colour products of histo-
chemical reactions of O−

2 and H2O2 were visible as blue
and red-brown spots, respectively.

3. Image preprocessing

The stained leaf images have been acquired in a simple
computer measurement system consisting of a standard
desktop scanner connected to a dual core PC with a 32-
bit Windows 7 operating system. The leaf blade images
stored in JPEG files are subject to classification designed
by the authors to detect stress response regions. Both im-
age preprocessing and pixel classification methods have
been developed in the MATLAB environment and im-
plemented in the form of MATLAB functions as well as
C++ functions contained in MEX files (The Mathworks
Inc., 2011a). The purposes of preprocessing are to extract
a leaf blade and to eliminate a leaf petiole. The mechan-
ical cut-off of the petiole is often difficult to do without
injuring or even partially damaging the leaf tissue.

3.1. Leaf blade extraction. To simplify the separation
of a leaf blade from the image background, it is assumed
that the background has a highly saturated uniform colour
different from any colour appearing inside of the stained
leaf blade. Blue and red backgrounds made of plastic
sheets have been applied respectively for leaves with red-
brown and blue spots inside. The images are typically
scanned at the resolution of 200 dpi and colour depth
24 bit/px. In each of them, at least a 50 px background
margin must be preserved. The main image processing
steps of leaf blade extraction are depicted in Fig. 1 as a
flow diagram. The image background colour BC is tested
inside of the rectangle window W placed in the upper-left
corner of the background margin. With the assumptions
above, this colour indicates one of the two possible colour
groups of the ROS reaction. It is estimated as

BC =

{
B if E{IB(W )} > k · E{IR(W )},
R otherwise,

(1)

where E{·} signifies the expected value, IR(W ), IB(W )
mean the red and blue components of the true colour im-
age IRGB in the rectangular window W [50× 50] px, and
k = 1.5 is an arbitrarily chosen constant value. The dif-
ference of image colour components IBC and IG (green)
exposes a highly saturated background colour BC and
makes the resulting grey-level image independent of po-
tential background intensity variations. The global thresh-
olding of IBC − IG provides the inversion of a binary leaf
blade mask image IM :

IM =∼ T(IBC − IG), (2)

where T denotes the Otsu thresholding operator (Otsu,
1979). After the thresholding (Eqn. (2)), the binary im-
age IM can be considered the set of white objects {Oi}
of 8-adjacent pixels on a black background. All potential
“holes” in the leaf mask object should be removed by a
flood-fill operation on 4-adjacent background pixels. In
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the MATLAB environment it is represented by the func-
tion imfill (The Mathworks Inc., 2011b) equivalent to the
operation in Eqn. (3):

∀ (x, y) ∈ ext(OF ), IM (x, y) = 1, (3)

where ext(OF ) means the exterior of the 4-adjacent black
pixels object OF ⊂∼ IM including the image frame.
Only one object Om from the set {Oi} with the greatest

Fig. 1. Flow diagram of the algorithm providing the binary
mask of a leaf image.

area Am is preserved as a leaf blade mask. Objects with
smaller areas are spurious data and must be eliminated as

(x, y) ∈ O ∧ AO < Am ⇒ IM (x, y) = 0. (4)

3.2. Leaf petiole elimination. In the tested population
of stained leaves a petiole is usually the place of a high
concentration of dye, but biologists ignore this part of leaf
during visual estimation of a plant’s stress. Therefore, in
the presented algorithm the petiole is removed from the
leaf mask image IM by the method shown in Fig. 4. Based
on the observation of leaf mask contours, the authors no-
ticed that the petiole is always the most protruding part of
every leaf. They formulated the hypothesis that the peti-
ole tip can be distinguished as a leaf contour point with
the highest curvature value. The hypothesis was success-
fully verified in the tested population of leaves. The leaf
contour C(Om) has been found by a left-most search for

P
0 P

p

Fig. 2. Example leaf image with the white contour overlapped
on the edge of a leaf mask, P0: the contour starting pixel,
Pp: petiole tip pixel.

Fig. 3. Description of contour points and vectors for curvature
computation. Letter symbols explained in the text.

leaf mask edge points in eight directions (Gonzalez and
Woods, 2008),

C(Om) = LML([P0, . . . , PN−1]). (5)

Figure 2 shows an example image with a marked
white contour found around the leaf mask according to
the rule in Eqn. (5). For each contour point Pi, i ∈
[0, . . . , N − 1], the local curvature is represented as the
bending angle θi computed by (Du Buf and Bayer, 2002)

θi =
1
M

M∑
j=1

arccos
aj · bj

|aj | · |bj | , (6)

where aj = Pi−jPi and bj = PiPi+j are vectors as
shown in Fig. 3, aj · bj is the vector inner product and
M is the half size of an averaging mask. This mask rep-
resents a built-in low-pass filter smoothing the curvature
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Fig. 4. Flow diagram of the algorithm eliminating a leaf petiole.

P
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p

Fig. 5. Example leaf image with the contour part used to cal-
culate the curvature θi. P0: contour starting pixel, Pp:
petiole tip pixel.

values θi evaluated along a leaf mask contour. This fil-
tering is necessary due to the high sensitivity of θi to any
contour ripples. The value of M was chosen experimen-
tally in relation to the leaf contour length N as

M = 2.5/100× N. (7)

A proper selection of the value M plays a key role
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Fig. 6. Example curvature plot θ(i) along the section of the leaf
contour shown in Fig. 5

in the detection of petiole protrusion. Each of the scanned
leaves is assumed to be placed horizontally in the field of
view with its tip on the left side (Fig. 5). Then leaf mask
contour tracing begins at the leaf’s tip P0 and runs through
the petiole tip Pp located close to half the length of the
contour N/2. Therefore only the curvature of 30% of the
contour pixels around PN/2 ∈ [Pi1 , Pi2 ] is considered.
The petiole tip pixel Pp is determined as

Pp = arg max θi, i ∈ [i1, i2]. (8)

An example curvature plot with the global maximum
corresponding to the contour part in Fig. 5 is depicted in
Fig. 6. The petiole tip pixel Pp is only used as a marker
of the petiole region. This region belongs to the set of leaf
mask edge protrusion objects obtained by morphological
operations expressed by

I ′M = IM\(IM ◦ SR1) 	 SR2 , (9)

where SR1 used in opening represents a circular structur-
ing element with the radius R1, which must be greater
than the half of the maximal petiole width. Erosion by
SR2 additionally shrinks reminded objects to improve
petiole separation from other protrusions. After enu-
meration (labelling) of these objects (The Mathworks
Inc., 2011b), the petiole can be found as the labelled ob-
ject Lm closest to the point of the maximum curvature Pp

(Eqns. (10) and (11)),

IL({Li}) = LBL(I ′M ), (10)

Lm = arg min ρi(Li, Pp). (11)

The leaf mask without a petiole has been evaluated
in Eqn. (12) as the logical product of the whole leaf mask
IM and the binary petiole image∼ T(IL(Lm)) previously
dilated by the disk structuring element SR2 ,

IM = IM∩ ∼ (T(IL(Lm)) ⊕ SR2), (12)

where ⊕ represents a dilation operator.
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4. Neural network model design and
validation

The second stage of the algorithm involves the classifica-
tion of leaf blade pixels (inside the mask of image IM ) in
the following two groups:

• the sites of ROS generation in leaf tissues visualised
after staining,

• the regions of intact leaf tissue with other colours.

4.1. Feature space selection. The observation of
stained leaf blade images leads to the conclusion that ROS
accumulation areas can be distinguished from other leaf
regions by their colour features. Depending on the ROS
type (O−

2 or H2O2) and chemical agents used in staining,
these areas appear as red-brown or blue. The rest of the
leaf blade has a background colour mixed with white at
the passage through chlorophyll free semi-translucent leaf
tissues except for opaque leaf veins. Red-brown stained
locations in a tested leaf population have usually high sat-
uration while blue areas can be medium or even low sat-
urated. The low saturated areas are hardly visible as grey
levels (Fig. 7). To rate a leaf blade pixel in terms of ROS
generation, specialists consider combinations of its colour
pigment and vividness. So the image feature space for
classification was built from two image colour compo-
nents matching the above terms: hue H and saturation S.
They were obtained by colour space transformation from
the RGB to the HSV colour space (Smith, 1978) as

{IH , IS , IV } = HSV (IRGB) . (13)

The traditional hexcone HSV colour model was ap-
plied to follow the HSB (HSV ) transformation of Corel
Photo Paint 12, which helps specialists in the manual clas-
sification procedure given below (Step 2). This procedure
performed by biologists provides pattern results for train-
ing and error estimation of the proposed automatic classi-
fication. It consists of the following steps listed as com-
mands to a human operator:

1. Load an examined leaf image into the Corel Photo-
Paint application.

2. Select Mask → Color mask. . . and the HSB mode
in the popped up colour mask window.

3. Create the mask of stressed colour regions by point-
ing one or more image pixels with typical ROS
colours and by setting their hue and saturation tol-
erances.

4. Correct the mask with visible floating edges by
changing reference pixels and H , S tolerances.

5. Adjust the mask using pencil and eraser tools.

6. Save the binary mask image (Mask → Paint mask) to
a disk PNG file (Mask → Save mask to disk. . . ).

7. Calculate the total area of ROS generation sites in
physical units using the popular application ImageJ
and built in image resolutions in X , Y directions.

In the proposed automatic classification of leaf blade
regions, manual class labelling is required only for train-
ing image data of hue-saturation plane (H, S). To ensure
that the expected clusters are closed within one period of
the colour hue (not dissected by its limits), both ROS reac-
tion colour types (blue and red-brown) have been located
in the lower half of the hue axis H . This has been achieved
by applying hue rotations as follows:

I ′H(x, y) =

{
rot(IH(x, y), Δ1) if BC = R,

rot(IH(x, y), Δ2) if BC = B,
(14)

where BC is the background colour as in Eqn. (1), Δ1 =
1/2 and Δ2 = 1/6 for IH(x, y) ∈ [0, 1].

(a) (b)

Fig. 7. Example of a blue stained leaf tip in a luminance image
(a), a hue image (b). The part of the circled blue region
is better distinguished from the background in the hue
image.

4.2. Training set preparation. Similarly to other
cases of classification, a properly selected training set of
input data in the (H, S) space must fulfil two general con-
ditions (Masters, 1993):

• Each of visually distinguished (H, S) colour classes
concentrating around particular patterns discussed in
Section 4.1 must be included in the training set.

• Within each of these classes, a sufficient statistical
variation should also appear and be as large as possi-
ble, still mindful of the limited representation.

The whole set of pixel data available for training
or classification is naturally divided into subsets building
individual images. Additionally, only pixels inside leaf
blade masks provide useful data. In the normal mode of
classifier activity, manual labelling makes sense only for
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a single image or at most a few images in the tested pop-
ulation. They must contain most colour hues and satu-
rations existing in the population to classify every image
item sufficiently well. Keeping in mind that the network
as a whole finally recognises two classes, the very approx-
imate identification of these classes and the statistical de-
viations of their data have been considered. All exam-
ined leaf populations included both strongly and weakly
stressed leaf samples (control group), so in all cases a sin-
gle image with a medium stressed leaf could be found and
used as the training set. The training image can be selected
intuitively, by a visual assessment of images or using a
heuristic formula of training the ability factor fi proposed
in Eqn. (16). The expression for fi applies the weighted
variances of a leaf blade histogram in the (H, S) space.
They are computed inside and between two output colour
classes c1 and c2, coarsely identified before the final clas-
sification. It is assumed that the training image with the
index

it = arg max fi (15)

will maximise

fi = kf

(
2∑

k=1

pi(ck)si(ck) + kg σi(c1, c2)
)

, (16)

where

si(ck) =
2∑

j=1

kj

Q(i,ck)∑
q=1

(xij(ck, q) − xij(ck))2 ,

pi(ck) is the probability of the (H, S) class ck, si(ck)
is a weighted variance inside of the i-th image class ck,
σi(c1, c2) is the i-th image between-class variance, kf be-
ing a scaling constant, kg is the participation rate of the
between-class variance, xij(ck, q) is the q-th input data
in the j-th dimension of the i-th image for the class ck,
xij(ck) is the mean data value in the class ck and the j-th
dimension of the image i.

Table 1. Training ability factors fi for the example population
of images with the maximum and minimum values un-
derlined.

Image Train ability
i fi

1 1.8359
2 2.7222
3 2.5978
4 3.9283
5 1.2117
6 3.6953
7 0.5066
8 2.5903
9 1.5800

10 1.4347

The two classes c1 and c2 used in Eqn. (16) were
obtained by applying the kmeans algorithm (Forgy, 1965)

to the input data x = [x1, x2], x1 = IH(p), and x2 =
IS(p) taken from hue and saturation image components
IH , IS of any pixel p as follows:

{c1, c2} = kmeans ({x}, Nc) , (17)

where Nc = 2 is the required number of classes. The
computed values fi for an example population of 10 im-
ages are given in Table 1 and two images with extreme fi

are illustrated in Figs. 8(a) and (b). For the data in this ta-
ble the coefficients in Eqns. (16) and (17) are kf = 1/256,
kg = 0.1, k1 = 1, k2 = 1.44. There seems to be

(a) (b)

Fig. 8. Selected images corresponding to the minimum and
maximum values of fi from Table 1: the image with
fmax featured by the noticeable variances of (H,S)
within and between the two basic colour classes ck, k =
1, 2 in Eqn. (17) (a), another leaf image with fmin and
the same variances of small values (b). Darker leaf blade
regions are blue and bluish-grey, respectively, in the im-
ages (a) and (b).

no danger of network overfitting in the learning process
because of the large number of training feature vectors
derived from pixel colours inside of a leaf blade mask.
The scanned leaf images typically have a size of about
1000 × 1000 pixels and a leaf blade occupies about half
of the image area. The first network layer proposed in
Section 4.3 with two inputs and 8–12 neurons has only
16–24 vector weights. The second layer with one neu-
ron has the same amount of weights as the number of
first layer outputs, which gives a total of maximum 36
weights to learn. So the number of data is incomparably
larger than four times of the total network weights num-
ber recommended by practitioners as the minimum data
limit to avoid overfitting (Masters, 1993). Nevertheless
the proposed network model is tested for overfitting by
K-fold cross-validation described below. When experi-
ments suggest that the selected training image does not
represent sufficiently colour subclasses or their variations,
giving unaccepted classification errors, further images
with the highest fi factors can be applied to additional
training.

4.3. Structure of a neural network. The proposed
model of the classifier applies a two-layer neural net-
work of the counter propagation type (Hecht-Nielsen et
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al., 1987) shown in Fig. 10. The first layer is a self-
organising Kohonen network with MWTA (Modified Win-
ner Takes All) learning accepting two-dimensional input
vector x = [x1, x2]T of IH and IS pixel values masked
by IM . It has been developed because there is no guar-
antee that the regions of ROS generation and other leaf
parts are linearly separable in the (H, S) space and can
always be extracted by a single layer network or another
linear classifier. Using the modified learning method aims
to achieve a more reliable classification result and will
be discussed in the following sections. Input image data
of hue and saturation physically restricted to the domain
[0, 1] are mapped to the range [−1, 1] optimal for the Ko-
honen network (Kohonen, 1990; Masters, 1993). A pre-
requisite for network application is to normalise the input
data vector to a fixed length. To preserve the original x
data lengths, Z-axis normalisation has been applied as ex-
plained in Fig. 9. It expands the original data space to a
three-dimensional space with unit length vectors accord-
ing to the following formulae:

x′
i =

xi√
2
, i ∈ {1, 2}, (18)

x′
3 =

√
1 − ||x||2

2
.

Fig. 9. Z-axis normalisation.

The initial values of weight array W(1) are rescaled
and extended like input data in Eqn. (18). After train-
ing the weights are reduced in dimensionality, back-
scaled and remapped. All components of the input vec-
tor are connected to each of the M output neurons y =
[y1, . . . , yM ]T ∈ [0, 1]M representing the centres of clus-
ters (Fig. 10). The output neuron yi of the first layer is de-
fined by the weight vector w(1)

i = [w(1)
i1 , w

(1)
i2 ]T . The neu-

ron yc(w
(1)
c ) whose weights w(1)

c are closest to the data
vector x becomes the ‘winner’ (Eqns. (19) and (20)) and
is slightly updated towards the input vector by the learning

Fig. 10. Structure of a 2-layer neural network applied for the
segmentation. M : number of clusters, W(1),W(2):
weight arrays of the first and second network layer,
respectively, CM : data competition module, MWTA:
modified WTA layer, LP: linear perceptron layer.

rule given in Eqn. (25),

c = arg min
i

ρ(x,w(1)
i ), (19)

yj =

{
1 if j = c,

0 otherwise,
(20)

where ρ is distance between the input x and the i-th
weight vector w(1)

i , c the index of the ‘winner’ weight
vector closest to the input vector. The second linear
perceptron type layer contains one neuron with the stair
step activation function at its output (Eqn. (22)) not in-
volved in a learning process. This layer merges the
initially clustered pixel data at M -dimensional input in
two final classes: with and without ROS colour features,
which are expressed respectively as zeros and ones at
single output. The weight vectors of the output neuron
w(2) = [w(2)

1 , . . . , w
(2)
M ]T (Eqn. (21)) must be calculated

by matching an output pattern (supervised learning) pre-
pared by specialists as mentioned in Section 4.1,

u =
M∑
i=0

w
(2)
i yi, (21)

z =

{
1 if u > 0.5,

0 otherwise.
(22)

where y0 is the offset adjusted in the output layer.

4.4. Training and validation of the network. For
the training of a neural network’s competitive layer, the
MWTA method has been proposed, previously mentioned
in Sections 1 and 4.3. The goal of the training modifi-
cation is to minimise some drawbacks accompanying the
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standard WTA algorithm (Kohonen, 2001). All changes
have been made between the consecutive epochs of stan-
dard WTA learning as shown in Fig. 12.

The WTA training procedure begins with random ini-
tialisation of the weight vectors w(1)

i representing initial
class centres, collected the weight array W(1). They are
selected by uniform, no-replacement, random sampling
from indexes of the Q data samples entered in one epoch,

w(1)
i (0) = rand({1, . . . , Q}), i ∈ {1, . . . , M}. (23)

For the proposed MWTA method its start is extended
to the set {W(1)} of several weight vector arrays han-
dled independently according to the WTA rule during
one epoch. Given the pixel feature input vector x(q)
normalised in three dimensions, the output neurons with
weights w(1)

i (q) from array W(1)
i compete to match to

this vector using the dissimilarity measure (Rubner et
al., 2001) as the Euclidean distance:

‖x(q) − w(1)
c (q)‖ = min

i
‖x(q) − w(1)

i (q)‖, (24)

where w(1)
c (q) is the weight vector winning competition at

the presentation of the q-th datum. The weights of winner
neuron yc are then modified according to the rule

w(1)
i (r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w(1)
i (q) + α(1)

[
x(q) − w(1)

i (q)
]

if i = c,

w(1)
i (q)

if i �= c,

(25)

where r = q + 1. The aim of WTA learning is to find the
minimum quantisation error E(W(1)) at the approxima-
tion of all input data vectors x by M weight vectors (or
neurons) shown in Fig. 10.

Using the Euclidean metric, this error can be ex-
pressed as

E
(
W(1)

)
= max

c

1
Q

Q∑
q=1

‖x(q) − w(1)
c (q)‖2, (26)

where Q is the number of data vectors in one epoch,
w(1)

c (q), c ∈ {1, . . . , M} is the weight of neuron win-
ning at the presentation of the x(q) vector. The learning
process described in Eqn. (25) ensures only the conver-
gence to a local minimum, when the learning rate α(1) is
small enough. The learning rate has been experimentally
chosen as a constant value α(1) = 0.002 to ensure good
and fast convergence of the algorithm. The stopping crite-
rion at the local minimum of E(W(1)) exploits the effect
of neuron position (weight) stabilisation around the mini-
mum and is expressed by Eqn. (27):

max
i

‖Δw(1)
i (ep)‖ < ε, (27)

Δw(1)
i (ep) = w(1)

i (ep) − w(1)
i (ep − 1),

(28)

Fig. 11. Example plot of W(1)(ep) weight stabilisation during
MWTA training for validation using (H,S) pixel data
of the image from Fig. 8(a). W(1)(ep) represents the
selected sequence of weights convergent to the mini-
mum quantisation error E(W(1)) (Eqn. (26)).

where i ∈ {1, . . . , M}, ε represents the weights im-
provement limit and ep the epoch number (Fig. 11). The
number of convergence steps to fulfil the above criterion
is varying and depends on the randomly selected start-
ing weights (Eqn. (23)). To limit the time of learning,
the following additional condition of maximum allowable
epochs EP is imposed on the convergence limit:

ep < EP. (29)

During each epoch of WTA training all valid sets
(arrays) of weight vectors W(1)

k = [w(1)
i ]k, k =

1, . . . , Nk, i = 1, . . . , M, are independently moved to-
wards the nearest class centres minimizing the error func-
tion in Eqn. (26). Each of them also comes under the stop-
ping criterion given above. After stopping, the currently
fixed weight sets are stored for final solution analysis (ar-
rays Vk in Fig. 12). All of still shifted sets are tested
for their possible concentrations in the input data space.
Sufficiently concentrated groups of weight arrays are re-
placed by the concentration centres before the next train-
ing epoch. It is expected that with the successive training
epochs the weight arrays W(1)

k will concentrate around

the different local minima of E(W(1)
k ) existing in the op-

timisation task considered. The measure of this concen-
tration is taken as the maximum deviation d of wik set
elements from weight set centres wi as given in Eqn. (30):

d = max
k,i

‖w(1)
ik − w(1)

i ‖, (30)

w(1)
i =

1
Nk

Nk∑
k=1

w(1)
ik , i = 1 . . .M,

where d is the deviation of the weight set, −w(1)
i is the

mean weight vector of i-th neuron, w(1)
ik stands for the

weights of i-th neuron from the weight set W(1)
k .



Neural network segmentation of images from stained cucurbits leaves . . . 677

Fig. 12. Flow diagram of the proposed MWTA algorithm

for training the first layer of the neural network.

W
(1)
k , k = 1, . . . , Nk: k-th set of neuron weights,

Vk, fk: k-th vector set and its error function value

stored when WTA learning is stopped, W(1)
c : centroids

array of W
(1)
k set, W(1)

(gk), gk = 1, . . . , Ngk: k-th set

of neuron weights in the group g, W(1)

(gc): centroids ar-

ray of W
(1)
(gk) set in the group g.

Many weight sets help to increase the chance of de-
tection and storage of more than one local minimum. The
global minimum is then selected from them by the com-
parison of minimal values E(W(1)

k ). The weight sets
highly concentrated in groups are considered to be redun-
dant. The weights in the same or almost the same posi-

Fig. 13. Detailed flow diagram of testing the vector weight ar-
rays W

(1)
k for concentration. dlim: limit of weight vec-

tors concentration, dm: maximum deviation in the set
W

(1)
k .

tions come under the same attraction of data vectors at
successive training epochs. The feature space distance
limit dlim in

d < dlim ⇒ { w(1)
ik } = {w(1)

i }, (31)

serves to recognise all weight sets W(1)
k as the same and

can be taken arbitrarily or can be better estimated from the
original image resolution in a data space.

Here w(1)
i and d are as in Eqn. (30). When the weight

set does not fulfil the condition as a whole, it is divided
into subsets (subgroups) using the built-in mean-shift al-
gorithm (Fukunaga and Hostetler, 1975).{{

W(1)
(gk)

}
g

}
= mean shift

(
{W(1)

k }, K, B
)

, (32)

where gk ∈ {1, . . . , Ngk} is the within-subset weight ar-
ray index, g ∈ {1, . . . , Ng} is the subset index, K is the

flat circle kernel with the radius B in nrows(W(1)
k ) ×

ncols(W(1)
k ) dimensional space, B is a scalar bandwidth

value. Then the process of deviation validating is repeated
for each subset (Fig. 13).

After each epoch the vectors of any weight array re-
lating to the same neurons may be located at random row
numbers and have to be matched before the analysis of
concentration. This has been done as follows:

{w(1)
ik } = arg first(sort(Rk), M)), (33)

Rk =
[
ρij(w

(1)
ik ,w(1)

j1 )
]
,

where the function first(·, M) selects the sequence of M
shortest distances ρij(·, ·) between the i and j components
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of the first and k-th weight vector sets previously sorted in
ascending order.

To train the output layer MWTA self-clustering must
be first finished and its vector weights be fixed.

The network’s linear layer is to minimise the error
(Kohonen, 2001; Osowski, 2006)

E(W(2)) =
1
Q

Q∑
q=1

‖δ(q)‖2, (34)

δ(q) = t(q) − W(2)y(q),

as a quadratic function of weight matrix W(2), where
t(q) signifies the q-th vector of the image pattern, y(q)
is the q-th output vector of the self-organised layer, δ(q)
is the error between the q-th pattern and output vectors,
q ∈ {1, . . . , Q}, Q is the number of data vectors per one
epoch.

An example behaviour of E(W(2)) is shown in
Fig. 14. To minimise this error, the Widrow–Hoff method

Fig. 14. Example plot of the mean square error vs. the epoch
number in supervised learning of the network linear
layer.

has been used for learning (Eqn. (35)). It applies a
gradient-like adjustment for each example from the train-
ing set,

w
(2)
ij (q + 1) = w

(2)
ij (q) + 2α(2) · δi(q) · yj(q), (35)

where w
(2)
ij is the weight between the j-th input and the

i-th output of the second network layer, yj(q) is the j-
th component of the M-dimensional output vector of the
WTA layer. The symbol α(2) means the maximum stable
learning rate (Fukunaga and Hostetler, 1975):

α(2) =
1

λmax (YYT)
, (36)

where λmax(·) is the maximum eigenvalue, Y is the hor-
izontal array [(M + 1) × Q] of Q input vectors provided

Fig. 15. Components of the neural network classifier model.
PP: preprocessing module, NN: neural network mod-
ule, LP: linear perceptron.

to the neural network from Fig. 10 in one epoch.
To verify the network generalisation ability, quintuple

cross-validation has been carried out on the vectorised
hue, saturation of leaf blade data x = [x1, x2]T in several
training images with manually labelled patterns (Fig. 15).
The folding routine implements the MATLAB function
crossvalind, which returns randomly generated indices for
a K-fold cross-validation of Q data items,

{ix1, ix2}k = crossvalind(′Kfold ′, Q, K), (37)

where k = 1, . . . , K is the fold number, ix1, ix2 are re-
spectively training and testing index vectors with values
in {1, . . . , Q} for cross-validation of Q data. The pre-
sented algorithm divides leaf blade pixels into the class
of ROS coloured ones and others, which gives four possi-
ble results in comparison with pattern data. The results
are counted in separate elements of confusion matrices
(Masters, 1993), whose model is shown in Fig. 16.

In K-fold cross-validation, only, K estimates of clas-
sification errors can obtained. To achieve better estima-
tion performance, K-fold cross-validation can be exe-
cuted several times with the data or their indices reshuffled
before each round (Du Buf and Bayer, 2002; Refaeilzadeh
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et al., 2009). As a result of the cross-validation, confusion
matrices are computed for the classified data from trained
images. The matrices include separate counts of all pos-
sible classification results. The confusion matrix based

Fig. 16. Structure of the confusion matrix for classification into
two classes. TNF : true negative fraction, FNF : false
negative fraction, FPF : false positive fraction, TPF :
true positive fraction.

factors selected to estimate classification method quality
are

PE =
FPF

TNF + FPF
, (38)

NE =
FNF

FNF + TPF
, (39)

ER =
FNF + FPF∑

F
, (40)

where
∑

F denotes the sum of all fraction counts, PE
is the false positive error rate, NE is the false negative
error rate, ER is the classifier error rate. The last factor
is used to validate the proposed classifier. The process of
preparing the classifier model is shown as the flowchart in
Fig. 15.

5. Experimental results

5.1. Experiment framework. The proposed segmen-
tation algorithm with neural network classification was
developed in the MATLAB 2008a environment as men-
tioned in Section 3. The code of the preprocessing stage
was written as MATLAB scripts with the intensive use
of vectorisation techniques. The colour space transforma-
tion, image thresholding, edge detection, tracing and the
morphological extraction of the leaf blade mask (Figs. 1
and 4) apply appropriate functions built in the Image Pro-
cessing Toolbox (The Mathworks Inc., 2011b). To in-
crease the network training speed, the clustering of the
first layer as well as the supervised learning of the second
layer were written as C++ functions in MEX files com-
piled with Visual Studio Express 2008 (The Mathworks
Inc., 2011a). The prepared algorithm was executed on

a PC with a dual core processor Intel Core (TM)2 Duo
T5750 2 GHz, 4 GB RAM and the operating system Win-
dows 7.

Segmentation by the presented method was per-
formed on 12 images of single leaves with visible ROS
accumulation regions. The images were read from JPEG
files, where they had been stored after scanning. Three
leaf images, with the best training ability values fi

(Eqn. (16)), one with blue and two with red-brown re-
gions, were chosen as training data. They represent leaves
of different plant species (cucumber, pumpkin) affected
by the combinations of pathogen and additional stress fac-
tors (e.g., drought). The execution of the proposed seg-
mentation algorithm is independent of the type of stress,
as long as the colour symptoms in leaves are similar in hue
and saturation. At the preprocessing stage of the segmen-
tation only the leaves from two groups are distinguished,
determined by the ROS types (O−

2 or H2O2). The binary
pattern images of regions with stress response were manu-
ally labelled to enable supervised learning of the classifier
output layer (Fig. 15).

To initially assess the classifier quality 5-fold cross-
validation was performed for the two different training im-
ages from Figs. 17 and 20, representing different ROS
types. Then the cardinalities of training vector sets were
taken respectively as 4/5 of the values 498473 and 387693
equal to the pixel number of each leaf blade.

Fig. 17. Example of a pumpkin leaf image undergoing segmen-
tation, with blue stained regions of ROS reaction prod-
ucts visible as darker pixels. Image size: 844×952 px,
depth: 24 bit/px, leaf blade area: 498473 px.
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Fig. 18. Segmentation result for the image from Fig. 17 with the
class of ROS stained pixels shown as white regions.

Fig. 19. Manually labelled pattern for the image from Fig. 17
with the class of ROS stained pixels shown as white
regions and a grey image background.

5.2. Discussion of the results. The classifier error
rates ER at five-fold cross-validation for the training im-
ages from Fig. 17 (Fig. 18) and Fig. 20 (Fig. 21) are visu-
alised in Fig. 23. Small values of the errors in the range

Fig. 20. Example of a cucumber leaf image before segmen-
tation with red-brown stained regions of ROS reac-
tion products visible as darker pixels. Image size:
1180 × 1182 px, depth: 24 bit/px, leaf blade area:
387693 px.

Fig. 21. Segmentation result for the image from Fig. 20 with the
separated class of ROS stained pixels shown as white
regions.

[0.9, 1.6]% confirm the proper training of the classifier,
free of the overfitting phenomenon. The classification er-
rors in the segmentation of 12 example images mentioned
in Section 5.1 are listed in Table 2. The classification was
preceded by three network trainings with images repre-
senting differently stained leaf groups. Each of the train-
ings involved the H, S feature data of all leaf blade pixels.
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Fig. 22. Manually labelled pattern for the image from Fig. 20
with the class of ROS stained pixels shown as white
regions and a grey image background.

Fig. 23. Example plots of the error rates ER computed accord-
ing to Eqn. (40) at five-fold cross-validation for images
in Fig. 18 (plot 1) and Fig. 21 (plot 2).

Classification errors were evaluated for all these images,
whose binary patterns were manually labelled for this pur-
pose (Figs. 19 and 22). The computed error rates ER vary
from 0.24% to 2.77% (mean 1.42%), which means good
compliance with the patterns. False positive errors (mean
1.49%) are regarded as less important than false negative
errors (mean 2.30%), because further studies of dye con-
centration in the stained areas enable detection of this type
of errors.

It should be emphasised that sometimes manual iden-
tification of stained foliar areas can be ambiguous, which
gives different possible patterns for one image. In such
cases the pattern variant closest to the automatic classifi-

Table 2. List of classification errors derived from the confusion
matrix.

Image False positive False negative Classifier
number error rate error rate error rate

PE [%] NE [%] ER [%]

1 2.39 0.01 1.36
2 2.25 0.01 1.77
3 1.79 0.18 1.59
4 3.04 0.19 2.77
5 0.08 8.64 0.24
6 0.75 0.03 0.56
7 1.22 0.00 0.95
8 1.45 1.83 1.52
9 0.10 3.47 0.97

10 1.60 6.22 1.94
11 1.20 5.30 1.39
12 1.87 3.78 1.92

Table 3. Example learning times for the images from Figs. 18
and 21, respectively. The learning times of layer 1 are
calculated for Nk = 10 initial neuron weight sets.

Image NN learning time
number layer 1 layer 2

(validation) [s] [s]

1(1) 29.95 0.97
1(2) 43.18 0.76
1(3) 27.63 0.61
1(4) 33.61 0.55
1(5) 30.08 0.63
2(1) 18.90 3.94
2(2) 17.69 2.70
2(3) 17.58 3.44
2(4) 19.84 4.23
2(5) 15.86 4.46

cation results was taken into account. The accuracy of fi-
nal classification results was accepted by specialists iden-
tifying the sites of ROS accumulation in stained leaves.
The execution times of MWTA self-clustering and linear
perceptron supervised learning registered in the example
cross-validation are listed in Table 3 for M = 8 MWTA
layer neurons and Nk = 10 weight vector sets. The av-
erage clustering times computed from time data shown in
Table 3 are about 33 s and 18 s respectively, for the train-
ing images from Figs. 17 and 20. The times can be differ-
ent because of different leaf areas and (H, S) distributions
as well as the random starting values of MWTA initial
weight vectors. The MWTA training with 10 initial weight
sets lasts on average 4 to 5 times longer than the classic
WTA learning of the same tested image population. This
is the cost of increasing the chance to achieve the global
minimum of the clustering error in the first layer.

Because MWTA consists of partially independent
tasks of weight arrays correction, they can be executed as
parallel threads with GPU computing applying CUDA or



682 J. Gocławski et al.

Open CL technology (Sanders and Kandrot, 2011). This
will be the subject of future research. The MWTA (Nk =
10) classification errors shown in Table 2 are of the same
order as in the case of applying classic WTA (Nk = 1)
when each of these methods stops at the same weight ar-
ray W(1) indicating the global minimum of E(W(1)) as
given in Eqn. (26). If the WTA method reaches only a lo-
cal, but not the global, minimum of E(W(1)), the error
rates of classification can be relatively high.

It may happen for some types of error functions with
different local and global minima, whose shapes are ex-
plicitly unknown and a single initial weight array in the
WTA algorithm is randomly selected. The high error val-
ues can also appear when this array has been accidentally
localised far from the nearest minimum of E(W(1)) and
the minimisation process has been broken by the limited
number of allowable iterations. In the series of 100 train-
ings with the classic WTA method applied to four images
with high ability factors fi (Eqn. (16)), increased classifi-
cation errors up to ER ≈ 6 − 7% appeared on average in
1 per 12 times. Two of the four tested images are shown
in Figs. 17 and 20. All trainings were limited to 60 epochs
at the clustering stage and had the convergence condition
ε (Section 5.3).

The training of the linear perceptron layer with the
maximum learning rate (Eqn. (36)) is much faster (0.7 s
and 3.8 s on average). It should be remembered that the
learning process refers only to the small number of train-
ing images and the rest of each image population is in-
tended for the classification, typically 10 to 20 times faster
than the learning.

5.3. Algorithm parameters. The developed algorithm
has a series of parameters, which can be tuned if necessary
to achieve good adaptation to different image classes. The
preprocessing involves two parameters:

• R1 = 20: the radius of the structuring element used
at the image IM opening (Eqn. (9)) to cut off a leaf’s
petiole, above half an expected petiole width,

• R2 = 4: the radius of the structuring element used at
the auxiliary erosion/dilation (Eqns. (9) and (12)) for
the isolation of leaf edge protrusions.

The most important parameters of NN-classification are

• M = 8: the number of clusters (output neurons) in
the first layer,

• Nk = 10: the number of initial weight vector sets for
MWTA training,

• α(1) = 0.002: the learning rate of the MWTA layer,

• ε = 10−10: the limit of the weight vector location
error maxi ‖Δw(1)

i (ep)‖ in the clustering layer,

• EP = 60: the allowed number of epochs at cluster-
ing,

• ε = 0.01: the limit of the mean square learning error
E(W(2)) in the output layer,

• EP = 100: the allowed number of epochs at output
learning,

• B = 0.002: mean-shift bandwidth,

• dlim = 0.004: distance limit for MWTA weight con-
centration.

The number of first layer clusters M = 8 was se-
lected as the lowest number of neurons for which the aver-
age classification error ER of 12 tested images from Ta-
ble 2 stops to decrease at the value near 1.4% (Fig. 24).
A further enlargement of M is then useless and only in-
creases the computational effort. In this paper only the
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Fig. 24. Plot of a mean classification error ER vs. the number
M of neurons in the neural network’s first layer.

correctness of the image segmentation method has been
verified. To take full advantage of the results in biological
research, the comparison with classic biochemical meth-
ods is necessary. The quantitative segmentation results
expressed as the areas of ROS reaction products in plant
leaves will be statistically compared with the results of
biochemical analysis in the future.

6. Conclusions

A method for automatic segmentation of cucurbits leaves
was presented. It aims to detect the blade regions con-
taining the colour products of ROS the reaction. Counting
and measurements of these areas are of basic importance
for biologists defining the degree of the plant response to
biotic and abiotic stress, and it is a terminal stage of the
complex biological experiment. In this case, ROS mea-
surement can verify the influence (positive or negative) of
abiotic factors (salinity and drought) on pathogen infec-
tion. The results of experiments can give a suggestion for
modification of cultivation conditions, and thus provide a
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natural protection of cucurbits against fungal disease. All
leaf pixel classification errors collected in Table 2 fall in
the range acceptable by biologists. The execution is also
faster than manual labelling. This indicates the usefulness
of the proposed method for the extraction and area mea-
surement of ROS accumulation sites in stained leaves.

The proposed algorithm consists of preprocessing
and classification stages. The preprocessing includes leaf
blade detection and leaf petiole elimination using proce-
dures shown in the flow diagrams in Figs. 1 and 4. The
second stage of the algorithm applies a two-layer neural
network of the counter propagation type to classify hue
and saturation data of leaf blade pixels. The first network
layer has been trained using the new MWTA (modified
WTA) method (Fig. 12), which needs more time to exe-
cute than original WTA learning, but instead gives a much
higher certainty of correct classification due to the use of
several initial neuron weight arrays. At the training phase
of the neural network’s first layer the neuron weight arrays
are systematically replaced by their centres when they suf-
ficiently concentrate around the local minima of the quan-
tisation error function (Eqn. 25). Finally, only the solution
providing the global minimum is selected.

The accuracy of leaf pixels classification obtained
with the proposed method is sufficient to estimate the level
of plant reaction stress in the examined populations. In
the paper only a counter propagation network type was
considered to replace manual classification of leaf blade
pixels. The possible comparison of the proposed solu-
tion with other neural network types to find the optimal
architecture and training methods is out of the scope of
this paper and will be the subject of future research. The
proposed segmentation method of leaf images with ROS
reaction colour products is fully automatic except for the
neural network training phase, which requires manual la-
belling of single pattern images. Therefore it is faster than
any manual labelling of every image using general pur-
pose graphic applications and also more free of human er-
rors, which improves overall segmentation accuracy. Im-
plementation of the segmentation algorithm requires only
the MATLAB environment with the Image Processing
Toolbox and low cost hardware (a personal computer and
a desktop scanner), which should be accessible in each
research laboratory.
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nical University of Łódź. From 1989 to 2005 he
was employed at the Informatics Department in
the IMAL company in Łódź, where he worked
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promoted to the present position of an assistant professor in the Depart-
ment of Plant Physiology and Biochemistry, University of Łódź. Her
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