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This paper presents an application of methods from the machine learning domain to solving the task of DNA sequence
recognition. We present an algorithm that learns to recognize groups of DNA sequences sharing common features such
as sequence functionality. We demonstrate application of the algorithm to find splice sites, i.e., to properly detect donor
and acceptor sequences. We compare the results with those of reference methods that have been designed and tuned to
detect splice sites. We also show how to use the algorithm to find a human readable model of the IRE (Iron-Responsive
Element) and to find IRE sequences. The method, although universal, yields results which are of quality comparable to
those obtained by reference methods. In contrast to reference methods, this approach uses models that operate on sequence
patterns, which facilitates interpretation of the results by humans.
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1. Introduction

Thanks to automated high-throughput DNA sequencing
technologies, an enormous amount of DNA sequences is
now available in public databases. Computational meth-
ods for their analysis are, however, still under develop-
ment. In this paper we discuss the DNA sequence annota-
tion problem. It consists in predicting the functionality of
a DNA fragment after analyzing its nucleotide sequence.

Currently, the most popular annotation methods use
human expertise and are based on experimental evidence
of different kinds (Elsik et al., 2006). Libraries of such ev-
idences exist that are used by volunteers to provide their
annotation suggestions. These suggestions are later ac-
cepted or rejected by experts—curators of the annotation
database. This approach is quite slow and it is now the
bottleneck in genetics research.

To speed up the process of annotation, several ma-
chine learning techniques are used. In the supervised
learning process the set of labeled examples (annotated
sequences) is used to create a generalized representation
of interesting DNA sites, assuming that certain types of
similarity in the primary sequence structure will correlate
with similar functions in the tested sequences. Therefore,
to obtain good generalization results, it is necessary to cor-
rectly choose similarity patterns that represent groups of

similar sequences. Below we briefly overview several ap-
proaches to the representation of similarities.

Similarity patterns can be represented by stochas-
tic grammars. This approach is shared by algorithms
such as Alergia (Carrasco and Oncina, 1994), Lapfa (Ron
et al., 1998) and RPNI (Oncina and Garcia, 1992). Al-
gorithms from this group start their work by building an
automaton that represents all sequences from the training
set. Such an automaton is usually unable to recognize any
sequences that were not included in the training set and
therefore some generalization process is required. This
process is performed by connecting “similar” states of the
automaton. The similarity definition is arbitrary and spe-
cific for each algorithm from the group considered. After
completion of the connection phase, the resulting automa-
ton can recognize sequences belonging to the language in-
duced from the training sequences. A similar approach
is assumed in the Amnesia algorithm (Ron et al., 1996),
which uses a tree-based representation of the automaton.

Another approach to representing similarity patterns
is based on introducing a set of random variables as a
model of a sequence. In the DGSplicer algorithm (Chen
et al., 2005), a Bayesian network is used to represent a
set of sequences. It is assumed that the interesting sig-
nal is position-dependent. For each pair of positions their
dependency is tested with the use of the χ2 statistics. Sub-
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sequently, a weighted graph is created in which every po-
sition is represented by a vertex and the dependence be-
tween positions is represented as an edge. Such a graph
is then converted into a Bayesian network that allows the
category for any sequence to be inferred. Another ap-
proach from that group is represented by a k-th order
Markov model (Durbin et al., 1998). This model is ap-
plied to define distributions of all random variables as-
signed for each position in the DNA strand. This means
that for a position p, the probability distribution of its ran-
dom variable depends solely on probability distributions
assigned for positions ranging from p − 1 up to p − k.
The higher the order of the model, the better its ability to
describe the analyzed sequences. However, the number
of parameters to be estimated grows with k, which com-
plicates computations and increases the risk of erroneous
generalization.

Yet another way to represent similarity patterns is to
use a set of attribute functions that translate sequences into
vectors of attribute values. These vectors are used as an
input for a classifier. An example application of that idea
is the NNSplice algorithm (Reese et al., 1997), where a
neural network (a multilayer perceptron) is used as a clas-
sifier of sequences of the length k. In the NNSplice, all
k − 1 pairs of neighboring nucleotides are considered.
Each such pair is assigned 16 binary attributes which rep-
resent all possible dinucleotide pairs. The attribute which
represents the observed pair is set to 1, whereas all the
others are set to 0. In the case of a donor, NNSplice an-
alyzes sequences of 15 nucleotides, which gives 14 pairs
of nucleotides and yields a binary input vector of 224 bits.
In the NNSplice implementation that comes together with
the Genie system, a neural network with 2 hidden neurons
is used for donor classification, and 10 hidden neurons are
used to perform acceptor classification.

An alternative way to perform classification without
introducing any attributes is to use a classifier based on the
Support Vector Machine (SVM). In this approach it is only
needed to specify a kernel function which is a generaliza-
tion of the distance function between the DNA sequences.
Among other possible approaches we would like to men-
tion those of Rätsch and Sonnenburg (2004) as well as
Sonnenburg (2009) where the concept of a Weighted De-
gree (WD) is used as a kernel function. The main idea be-
hind the WD is counting co-occurrences of subsequences
of some length in both compared sequences. The authors
claim that the WD kernel works well if the signal is highly
position-specific. They also propose a WDS (Weighted
Degree with Shifts) kernel that should be used to find sig-
nals that are not strongly position-related.

Deshpande and Karypis (2002) observed that first
order Hidden Markov Models (HMMs) are classifiers
which have been built upon the space of all possible din-
ucleotides. Thus for a standard classifier they propose an
approach similar to the HMM. They acquire a transition

probability matrix and change the sequence into a vector
of dinucleotides. Every dinucleotide is perceived as an at-
tribute. The attribute value is calculated as the product of
the number of occurrences of the dinucleotide in the se-
quence and the transition probability connected with that
dinucleotide. The authors used the SVM classifier with
the linear kernel. A similar approach, called MC-SVM,
has been proposed by Baten et al. (2006), the only differ-
ence being that the kernel function was a second-degree
polynomial.

In this paper we present a novel approach to classifi-
cation of DNA examples. We combine a tree-based clas-
sifier inspired by the ID3 algorithm (Quinlan, 1986) with
problem-specific attributes to characterize sequences. In
contrast to the classifier-based approaches overviewed
earlier in the text, we introduce a methodology which al-
lows attributes to be automatically defined. These auto-
matically defined attributes are those which are best-suited
to perform classification, and the attribute definition pro-
cess is invoked at each step of the classifier building pro-
cess. Our approach fits into the research on attribute in-
duction in data mining and is independent of the classifier
type, so it can be easily adopted not only for decision trees,
but also for neural nets, SVMs, etc.

We consider binary attributes defined with the use of
patterns which are in turn defined by regular expressions.
Given a specific sequence, an attribute returns the value
1 if the sequence matches the pattern assigned to the at-
tribute, otherwise the attribute returns 0.

Searching for appropriate attributes is perceived as a
process of optimization in the space of all possible pat-
terns. In this space we introduced a neighborhood relation
which is based on the generality of patterns, and an ob-
jective function that attempts to predict the quality of an
attribute.

The paper is composed in the following way. In
Section 2 we introduce the type of the examined anno-
tation problems mentioned earlier. Section 3 describes the
KIS method and Section 4 presents results of experiments
using datasets representing various annotation problems.
The paper is concluded in Section 5.

2. DNA annotation problems

A popular example of DNA sequence annotation is the
task of finding coding information contained in genes.
This task normally consists in finding splice sites and con-
necting them to achieve the most probable division of a
gene into coding and non-coding subsequences. Less pop-
ular but still important annotation problems exploit the in-
formation of some aspects of the spatial structure that will
be formed for the sequence considered. An example of
that kind of problems is the IRE finding task.
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2.1. Finding splice sites in the DNA chain. In eu-
karyotic cells the DNA sequence is composed of regions
(subsequences) that are responsible for information cod-
ing (exons) and those which are not (introns). In the pro-
tein synthesis process, a pre-mRNA sequence is generated
by rewriting the DNA sequence. After that an mRNA is
created by splicing, which is the process of removing in-
trons. In the predominant splicing mechanism (U2) the
process of intron excision is done by a spliceosome (Baten
et al., 2006). The spliceosome is able to find splice sites
thanks to the information encoded in relatively short sub-
sequences (signals) which are contained in introns close
to their borders with exons. In the case of the exon/intron
border the signal is called a donor, and in the case of
the intron/exon border it is called an acceptor. In the
final step of the protein synthesis the contents of exons
(mRNA) are translated by triplets into amino acids. In
certain cases some exons could be excised rather than
translated. That mechanism is called alternative splicing
(Berget et al., 1977), and it allows production of differ-
ent proteins from one DNA sequence, which makes the
process of gene finding even more difficult.

Detection of donors and acceptors has been at-
tempted by several existing algorithms; however, we are
interested only in those that are able to learn. Accord-
ing to our knowledge all splice site detection algorithms
are unable to work directly on a complete DNA chain. A
common approach to overcome this limitation is to apply
the windowing technique to create a set of donor or ac-
ceptor candidates. In this technique, the DNA sequence
is scanned from the beginning position to the end posi-
tion. During the scan, characteristic dinucleotides are lo-
cated (‘GT’ for donors and ‘AG’ for acceptors). For each
position of the chain where a characteristic dinucleotide
has been found, a window is defined which spans n nu-
cleotides towards the 5’ end of the sequence and m nu-
cleotides towards the 3’ end. In the remainder of the
text, each sequence defined by the windowing technique is
called an example. An example is considered positive if it
is a true donor/acceptor sequence, otherwise it is regarded
as negative. Values of the windowing parameters (n and
m) depend on the splice site type (donor or acceptor), and
there is no common agreement on their settings. In vari-
ous approaches, different values have been used to achieve
maximum annotation quality (Sonnenburg et al., 2007).

To apply learning to perform annotation, an initial set
of examples is needed (a training set). This set is produced
as a result of two steps. In the first step, examples are
generated by application of the windowing technique to
the annotated sequence. In the second step, a database of
annotations is used to classify examples. Every example
marked in the database as a true donor/acceptor is consid-
ered a positive example and all the others a negative one.

2.2. Finding the iron-responsive element. The Iron-
Responsive Element (IRE) is the fragment of a non-coding
RNA that is a binding place for proteins in the process of
regulation of iron metabolism. This RNA fragment binds
to itself to form a stem-loop spatial structure. The IRE
model which has been introduced by Pesole et al. (2000)
is presented in Fig. 1. In this model each circle repre-
sents a nucleotide which may be additionally specified as
a single value or as a set of admissible values (listed in
square brackets). Dashed lines represent complementary
bonds and solid lines connect neighboring nucleotides in
the sequence. Complementarity means that an Adenine
(A) forms a pair with Thymine (T) and Guanine (G) forms
a pair with Cytosine (C). In the RNA spatial structures it
is also possible to observe weaker bonds to form G-T base
pairs.

3. KIS method

In this section we define building blocks of the KIS
methodology: a classifier, a pattern based attribute and an
optimization problem which arises when considering the
space of all possible patterns.

3.1. Classifier. Consider a number of binary attributes
being functions of a form ai : S → B, where S is
the set of all possible examples (DNA sequences) and
B = {0, 1}. A classification function c : S → B assigns
a class label to each example. A classifier is a function
κ : Bn → B which assigns a label to each example us-
ing values of n attributes characterizing the example being
considered. The classifier is used to define an approxima-
tion ĉ to the classification function c according to the rule
ĉ(s) = κ(a1(s), . . . , an(s)).

In the presented solution we use a classifier based on
a decision tree. In general, a tree is defined as a connected
graph consisting of a set of nodes V and edges E ∈ V ×V .
For each pair of nodes in a tree there exists exactly one
sequence of edges that link these nodes. Decision trees are
directed ones. If nodes v1 ∈ V and v2 ∈ V are linked and
the link is directed towards v2, then v1 is called a parent
of v2, and v2 is a child of v1. Nodes with at least one
child are called internal nodes, and nodes with no children
are called leaves of the tree. There exists a unique node
v0 ∈ V which has no parent and it is called the tree root.

Fig. 1. IRE model.
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In the decision tree each internal node v has a test
tv(s) assigned to it. The test tv is a function tv : S →
V that selects a child node for a tested sequence s. We
consider tests based on single attributes which have the
form

tv(s) =

{
v1 if av(s) = 0,

v2 if av(s) = 1,
(1)

where av is an attribute that has been assigned to the node
v. Each node v of the decision tree has a label assigned
to it according to a labeling function l : V → B. When
a sequence s is to be classified with the decision tree, it
is repeatedly examined by test functions starting from the
tree root. A decision path from the root v0 to a leaf vk is
defined as a sequence v0, v1, . . . , vk−1, vk where for each
i = 0, . . . , k − 1 it holds that vi+1 = tvi(s). The value
of the classification function c(s) is approximated by the
value l(vk) of the labeling function l assigned to the ter-
minal node vk which has been reached for the sequence s.

When a set of examples T ⊆ S is considered, we
denote by T (v) ⊆ T the set of examples from T that
is the result of the application of a sequence of tests as-
sociated with the decision path from v0 to v. A set of
examples from T (v) that has the class d will be denoted
by T (v, d), d ∈ B. The labeling function l which is
based on the set of examples T is defined as l(v) =
arg maxd∈B |T (v, d)|. If the numbers of examples with
both decision classes are equal, then the labeling func-
tion returns the default class value d0. We also define the
misclassification function of a labeling function l which is
given by e(l(v)) = |{s ∈ T (v), l(v) �= c(s)}|.

The tree building algorithm, which is based on the fa-
mous ID3 approach (Quinlan, 1986), is outlined in Fig. 2.
The algorithm assumes a set of training examples T ⊂ S,
a default category d0 and an initial set of attributes A
which have to be defined prior to training. In the begin-

build tree( T, d0, A )
begin

v := create node();
v.c := choose category( T, d0 );
if stop criterion( T, A ) then

return v;
v.a := choose attribute( T, A );
A := A − {v.a};
for each d ∈ B do
begin

Ad := find attributes( T (v) );
v.v[d] := build tree( T (v), v.c, A ∪ Ad );

end
return v;

end

Fig. 2. Pseudocode of the tree-building algorithm.

ning the decision tree contains only a root node and then a
growing procedure is iterated. In each iteration a leaf v is
selected with a nonzero misclassification function value.
For that leaf an attribute is selected to maximize the qual-
ity of the test which is based on that attribute. In this paper
we express the test quality as the information gain accord-
ing to the following methodology.

We define the information content of the set of exam-
ples T (v):

I(T (v)) =
∑
d∈B

−|T (v, d)|
|T (v)| log

|T (v, d)|
|T (v)| , (2)

and the information gain of the attribute a:

g(a, T (v)) = I(T (v)) − E(a, T (v)), (3)

where E(a, T (v)) is the entropy of the attribute a on the
data set T (v):

E(a, T (v)) =
∑
r∈B

|T (v, a, r)|
|T (v)| E(a, r, T (v)), (4)

and E(a, r, T (v)) is a conditional entropy of a value r of
the attribute a which reads

E(a, r, T (v)) = −
∑
d∈B

|T (v, a, r, d)|
|T (v, a, r)| log2

|T (v, a, r, d)|
|T (v, a, r)| ,

(5)
where

T (v, a, r) = {s ∈ T (v) : a(s) = r},
T (v, a, r, d) = {s ∈ T (v) : a(s) = r, c(s) = d}.
In the node expansion process an attribute with the

highest information gain is selected. The attribute is se-
lected from the set which contains the initial set of at-
tributes A and the attributes which have been dynami-
cally inferred each time a node has been expanded (see
the find_attributes method in the algorithm’s out-
line). The attribute construction process will be described
in the next section.

The decision tree is generated with the use of the
training set T . After the tree has been built it may un-
dergo pruning to reduce the risk of overfitting to the train-
ing set (Quinlan, 1993). Pruning is performed with the
use of a pruning set Tp ⊂ S, i.e., a set of examples
which is independent of the training set. For each in-
ternal node v, we compare the values of the misclassi-
fication error e1 = |{s ∈ Tp(v), l(v) �= c(s)}| and
e2 = |{s ∈ Tp(v), l(tv(s)) �= c(s)}|. When e1 ≤ e2,
we transform the node v into a leaf.

3.2. Definition of attributes. In the approach pre-
sented we consider binary attributes defined by similar-
ity patterns which are represented by regular expressions.
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An attribute a for a sequence s takes the value 1 when the
sequence matches the attribute’s pattern p(a), i.e., there
exists a subsequence s′ ∈ s which is conformant with the
pattern p(a).

The similarity pattern is a sequence of symbols and it
is based on the traditional Unix regular expressions (reg-
exps) syntax. We enriched the syntax by introducing spe-
cial symbols, e.g., a positioning sequence, to classify se-
quences with a characteristic reference position, such as,
a marked intron/exon boundary. In this way we can con-
struct patterns that will match the classified sequence only
if the positioning sequence is matched to a specific side of
the reference position. Symbols that can be used to define
similarity patterns are listed below.

A, C, G, T a nucleotide symbol; each one matches itself
in the classified sequence.

[ ] an ambiguous symbol; these brackets enclose a group
of nucleotide symbols. The match is observed when
one of enclosed symbols matches itself in the classi-
fied sequence.

. a gap which matches any single nucleotide.

.{x,y} a flexible gap which matches any sequence com-
posed of x up to y nucleotides, x and y being positive
integers (y ≥ x). The value of the difference y − x
will be called the flexibility of a gap.

<s> s is a positioning sequence.

ˆs(d) d is the distance from the beginning of the sequence
s to the positioning sequence.

s(d)$ d is the distance from the end of sequence s to the
positioning sequence.

R MATCH a positioning sequence which is an argument
of the symbol should match the substring on the right
hand side of the reference position.

L MATCH a positioning sequence which is an argument
of the symbol should match the substring on the left
hand side of the reference position.

RPM>r the number of the pattern matches on the right
hand side of the reference position should be greater
than the product of r and sequence length.

LPM>r the number of the pattern matches on the left
hand side of the reference position should be greater
than the product of r and sequence length.

L-(α)γ-L a symbol of a stem-and-loop which is com-
posed of a stem sequence α and a loop sequence γ;
thus the sequence has a structure αγβ, where β is the
reverted version of the sequence that is complemen-
tary to α.

Example patterns and sequences to which they match are
presented in Table 1 (the reference position is marked
by |).

There are several types of information available in
DNA sequences. To exploit them, we introduce three
types of attributes:

• Positioning attributes: an attribute has value 1 if its
pattern is matched at a specified position of the clas-
sified sequence.

• Existence attributes: an attribute has value 1 if a
pattern is matched at least once to the classified se-
quence.

• Frequency attributes: an attribute has value 1 if the
ratio of the number of possible pattern matches and
the sequence length exceeds a certain threshold.

The last two types of attributes (existence and frequency)
could use the positioning sequence to require a match at a
specified side of the reference position.

3.3. Space of patterns. The attribute generation pro-
cess is interpreted as a search task in the space Π of all
possible patterns which is organized with the neighbor-
hood relation. For each pattern p ∈ Π, a neighborhood
N(p) ⊆ Π is defined as a set of all patterns that can
be obtained from p by applying a single Elementary Edit
Operation (EEO). During the development of the method
we have investigated several possible definitions of EEOs.
For the splice site recognition task we obtained the best
results using the following set of EEOs:

• operations that generalize:

1. decreasing the lower limit of the flexible gap
length,

2. increasing the upper limit of the flexible gap
length,

Table 1. Example patterns and sequences to which they match.
Pattern Example sequences matched

AG GAGTAG
A.G ATG, ACG

A.{1,3}G ATG, ACG, ATTG, ATATG
A[CT]G ATG, ACG

ˆx(2)A<G> TAGC, CAGC, AAGA
<A>Gx(2)$ TAGC, CAGC, AAGA
L-(..)CC-L AGCCCT, TACCTA, CTCCAG
<A>G R_MATCH TAC|AGC, TAC|ACCGGGCAG
<A>G L_MATCH TAGC|TAGC, TAGCTTGG|TAC
<A>G RPM>0.49 TAGC|AGAGAGAGAGAGAGAG
<A>G LPM>0.25 AGTTAGAGTTT|TAGC
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3. adding another letter to the set of letters that
can match the position (which results in trans-
forming a single letter into a 2-letter ambigu-
ous symbol, a 2-letter into a 3-letter ambiguous
symbol and a 3-letter ambiguous symbol into a
gap),

4. changing an L symbol to a flexible gap;

• operations that specialize:

1. increasing the lower limit of the flexible gap
length,

2. decreasing the upper limit of the flexible gap
length,

3. taking one letter from the set of letters that can
match the position,

4. adding one 3-letter ambiguous symbol at the
beginning or at the end of the pattern,

5. operates as in 3 but the ambiguous symbol is
added after the flexible gap,

6. adding an L symbol L-(α)γ-L, where α and γ
are flexible gaps.

3.4. Scoring function. The search process in the space
of patterns is driven by the pattern scoring function Π →
R+. The function definition originates in the concept of
information entropy that is used to select attributes in the
decision tree building process and reads

q(p, T ) =
2g(a(p),T ) − 1
(1 + ρ(p))�

, (6)

where a(p) is an attribute based on the pattern p,
g(a(p), T ) is the information gain of the test based on the
attribute a(p) for the set of examples T (Eqn. (3)), ρ(p)
is a penalty function for the pattern p and � ∈ [0, 1] is
a parameter that controls the influence of the penalty on
the overall evaluation of the pattern quality. The penalty ρ
function is defined as

ρ(p) = ς · η(p) + μ · f(p), (7)

where η is a pattern length, f is the sum of flexibility val-
ues of all used gaps and ς, μ are program parameters. The
program parameters can express the actual computational
costs (which rise with the pattern flexibility) or the user
preferences, e.g., building the longest possible patterns
with the smallest flexibility.

3.5. Search method. We create patterns by searching
the space Π in order to find a pattern with the highest
possible scoring function value. We tested three different
search techniques including the Evolutionary Algorithm
(EA), Monte Carlo search and greedy search. We found

that the best performance was attained by the EA (see the
work of Michalewicz (1996) for a comprehensive descrip-
tion of EAs), therefore we provide detailed information on
the EA version used in the KIS method. The pseudocode
of the EA version implemented is depicted in Fig. 3.

The EA maintains populations Pc of similarity pat-
terns which contain M elements. The algorithm starts
with an initial population P0 and then loops the follow-
ing steps. A temporary population Oc is created from Pc

by mutating all patterns from Pc. Mutation is defined as a
transition to a neighboring pattern p′ ∈ N(p) according to
the neighborhood definition implied by EEOs. Generation
of the neighboring pattern is a two-step process. The first
step is to decide which group of EEOs—specification or
generalization—is to be used for mutation. We assumed
that EEOs that specify will be selected with probability
0.33, whereas those which generalize will be selected with
probability 0.67. Then a single pattern is generated by
randomly selecting a pattern from an appropriate group
(either more general or more specific) with uniform prob-
ability distribution.

The best pattern from the population Pc is inserted
unchanged into Pc+1. All of the remaining M − 1 pat-
terns which are input into Pc+1 are generated as a result
of performing the following two steps: (i) selection with
replacement of a pair of patterns from Oc ∪Pc, (ii) choice
of a pattern with a higher score in the selected pair. Af-
ter completion of the main loop, the EA returns the set of
patterns with the best scoring function value.

The initial population is filled with simple starting
patterns of one nucleotide length. We assumed the pop-
ulation size M = 20 and that the main loop turns 500
times, which results in evaluating up to 10,020 similar-
ity patterns. The actual number of evaluated patterns is

EA(P0, n)
begin

R := ∅;
c := 0;
while c < n

begin
Oc := mutation(Pc);
evaluation(Oc);
R := R∪ the best from(Oc);
Pc+1 := selection(Pc ∪ Oc);
c := c + 1;

end
return R;

end

Fig. 3. Pseudocode of the EA algorithm.
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smaller thanks to the use of an associative memory where
all generated patterns are kept together with their scoring
function values. Before computing the scoring function
value for a newly generated pattern, we search for an iden-
tical pattern in the associative memory and use the mem-
orized scoring function value if available. Thus we speed
up computation by overcoming a well known drawback
of the EA of returning to previously visited points (see
Fig. 5).

4. Results and discussion

In this section we report the results of KIS obtained for
popular sets of real data: DGSplicer (Chen et al., 2005)
and NN269 (Reese et al., 1997). These datasets provide
separate test sets, which allows for comparison with the
reported results for several up-to-date annotation algo-
rithms, including Alergia (Carrasco and Oncina, 1994),
Amnesia (Ron et al., 1996), Lapfa (Ron et al., 1998),
RPNI (Oncina and Garcia, 1992), NNSplice (Reese et al.,
1997), MC (Durbin et al., 1998), MC-SVM (Baten et al.,
2006), WD (Rätsch and Sonnenburg, 2004), WDS (Rätsch
et al., 2005) and DGSplicer (Chen et al., 2005). Both
datasets used for comparison assume binary classification,
i.e., each example is either a positive or negative. This al-
lows a classifier to be evaluated by comparing each exam-
ple class to the classifier’s output. Thus the set of all ex-
amples T is divided into four disjoint sets which are true
positive (TP ), false positive (FP ), true negative (TN )
and false negative (FN ). These sets are used to define
the following quality measures (see the work of Davis and
Goadrich (2006) for a comprehensive introduction):

• accuracy: acc = |TP ∪ TN |/|T |,
• true positive ratio (recall): TPR = |TP |/|TP ∪

FN |,
• false positive ratio: FPR = |FP |/|TN ∪ FP |,
• false negative ratio: FNR = |FN |/|TP ∪ FN |.

Accuracy and recall should be maximized while FPR and
FNR should be minimized.

A decision tree is a classifier which directly classi-
fies each example. There is, however, a group of classi-
fiers which assign to each example a certain value of the
probability that the example is positive. In such cases the
user has to provide a threshold value which has to be ex-
ceeded by the aforementioned probability value to regard
an example as positive. The proper choice of the threshold
value can be made by using curves of Receiver Operating
Characteristic (ROC), where for each threshold value we
plot a pair of FPR and TPR values. This curve can be
used to characterize threshold-based classifiers; in partic-
ular, the area under the curve (auROC) can be used as a
quality measure which has to be maximized.

4.1. DGSplicer data. The DGSplicer datasets have
been created for the purpose of testing the DGSplicer al-
gorithm (Chen et al., 2005) and they can be downloaded
from www.fml.tuebingen.mpg.de/raetsch/
suppl/splice. There are separate datasets for donors
and acceptors, and each dataset contains a pair of separate
files with training and testing sets.

The data for these files were extracted from 462 an-
notated multiple exon human genes. A basic characteristic
of these datasets is provided in Table 2. As we can see the
datasets are large and examples contained in the datasets
are mostly negative.

In Table 3 we report the comparison of results for the
DGSplicer datasets which have been obtained by KIS and
by other methods reported by Sonnenburg et al. (2007).
They provided results for the best model that was se-
lected on a subset of training examples. For KIS, since
the method is stochastic, we report not only the best result
but also the average and the standard deviation of results
obtained in 10 independent runs of the algorithm. Unfor-
tunately, Sonnenburg et al. (2007) provided only areas
under curves (auROC and auPRC) which cannot be di-
rectly obtained for the binary decision tree. Therefore, for
the purpose of comparison, we adopted our classifier to
provide probabilities for each classification. We assumed
that for each node v the probability of assigning the posi-
tive class to an example is estimated from the training set
T and equals Pv(s) = |{s ∈ T (v), c(s) = 1}|/|T (v)|.
Then s is classified as a positive example when the value
of Pv(s) of the leaf appropriate for s exceeds the user
specified threshold value. This method of measuring clas-
sifier quality made it necessary to switch off the pruning
step in the classifier induction.

Table 2. Basic characteristic of DGSplicer datasets.
Donor Acceptor

Sequence length 18 36
Consensus position 10 26
Training examples 228 268 322 156
Testing examples 57 067 80 539

Positive examples (%) 0.8 0.6

Table 3. Values of the auROC measure for the DGSplicer
dataset.

Algorithm Donor [%] Acceptor [%]

WD 97.84 97.50
MC 98.34 97.23

WDS 97.47 97.28
DGSplicer 96.88 95.91
KIS-best 97.29 94.35
MC-SVM 95.08 95.35
KIS-av. 96.53 93.66
KIS-sd. (0.41) (0.50)

www.fml.tuebingen.mpg.de/raetsch/
suppl/splice
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From the results presented in Table 3 it can be seen
that all methods under comparison perform better for
donors than for acceptors. Values of auROC obtained by
KIS are outperformed by most of methods under compar-
ison, but the difference between KIS and the winner is not
high. The best KIS result is only 1% worse (donors) and
3% worse (acceptors) than the best result of all compared
methods, and it is 2% better (donors) than the worst of all
methods under comparison.

We believe that the relative KIS quality could be
higher if algorithms were compared by accuracy and
FPR/FNR rather than by the auROC measure.

4.2. NN269 data. The NN269 datasets (Reese et al.,
1997) consist of data which have been organized sim-
ilarly to the DGSplicer datasets, i.e., separate pairs
of training and testing sets are provided for donors
and acceptors. These datasets have been created to
test the NN269 algorithm and they are available at
http://www.fruitfly.org/sequence/human
-datasets.html. The data for these files were ex-
tracted from 269 annotated human genes. The basic char-
acteristic of these datasets is provided in Table 4.

The results for all algorithms except for KIS have
been reported by Kashiwabara et al. (2007). He provided
the results of the best models that have been selected on
subsets of training examples. For KIS, in addition to the
best result, we report the average and the standard devia-
tion of results obtained in 25 independent runs of the algo-
rithm. Providing the KIS-best value is reasonable because
we were able to detect the best model by assessing the
classifier quality on the pruning set.

The results for the NN269 dataset are reported in Ta-
bles 5 (for donors) and 6 (for acceptors). We provide the

Table 4. Basic characteristic of NN269 datasets.
Donor Acceptor

Sequence length 15 90
Consensus position 8 69
Training examples 5 256 5 788
Testing examples 990 1 087

Positive examples (%) 21.0 19.4

Table 5. Classification results for the NN269 dataset (donor).
Algorithm Acc. [%] FPR [%] FNR [%]

NNSplice 94.80 6.80 5.54
KIS-best 94.65 2.43 11.06

Lapfa 94.34 3.84 12.50
KIS-av. 93.65 3.70 16.29
KIS-sd. (0.48) (0.63) (2.52)
Alergia 89.09 4.74 34.13

Amnesia 77.68 22.00 23.56
RPNI 76.53 23.92 22.44

values of accuracy, FPR and FNR. Results yielded by KIS
are reported after pruning of the classifier. This pruning
was performed using 33% examples taken randomly from
the training set.

It can be observed that the accuracy of the best solu-
tion yielded by KIS is the second best one in both tables
(5 and 6). The best algorithm for the donor dataset was
different than the best one for the acceptor dataset. More-
over, even the average quality of results yielded by KIS is
significantly better than best solutions yielded by Alergia,
Amnesia and RPNI. The results produced by KIS are also
characterized by a very low FPR error, which is important
for this task. For the donor dataset, even an average solu-
tion yielded by KIS has a better FPR value than the best
of the alternative algorithms. For the acceptor dataset, the
FPR value of the best KIS result is the second best of the
alternatives. The average FPR value of result by KIS is
outperformed only by the NNSplice and Alergia. When
considering the FNR error, the best result by KIS is the
second best for both the donor and acceptor datasets, and
the average of KIS results on the fourth and the third po-
sition, respectively.

Models produced by KIS are not only highly accu-
rate, but are also likely to be readable by humans, which
would therefore facilitate better understanding of donor
and acceptor structures. If many algorithms are capa-
ble to give comparable results, then it seems to be rea-
sonable that the one that can explain its decisions should
be preferred. Figure 4 provides an example decision tree

Table 6. Classification results for the NN269 dataset (acceptor).
Algorithm Acc. [%] FPR [%] FNR [%]

Lapfa 94.67 4.65 8.17
KIS-best 93.39 2.61 12.02
NNSplice 92.13 3.00 26.20
KIS-av. 91.83 4.59 23.33
KIS-sd. (0.99) (1.29) (5.67)
Alergia 70.16 1.84 76.44
RPNI 68.54 28.11 45.50

Amnesia 62.63 34.05 51.44

Fig. 4. Decision tree generated for the NN269-donor dataset.

http://www.fruitfly.org/sequence/human
-datasets.html
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Table 7. KIS results on IRE100x (in %).
Model/Algorithm Acc. [%] FNR [%] FPR [%]

Model by Pesole et al. 82,61 86,96 0,00
KIS-av 88,17 11,74 11,85

KIS-best 99,13 0,00 1,09

which has been generated by KIS for the donor dataset.
Its interpretation seems quite intuitive. First, a match-
ing for a sequence ‘[GA]AG...$’ is checked. If a
match can be found, then the example sequence consid-
ered is classified as a donor. Otherwise, matching of
‘AG<(G)>[TC][CGA]’ is checked on the right from the
reference position (from the donor consensus ’GT’). If this
pattern is matched, then the example is classified as not
being a donor. Otherwise, the classification process fol-
lows according to the decision tree structure.

4.3. IRE finding. The next example task for KIS was
to find the IRE sequences in noise and to provide a model
of the IRE common to various species. The IRE dataset
was prepared by the authors of this paper using data ex-
tracted from the 22nd release of UTR.db. It consists of
IRE sequences observed for various species (from fungi
and viruses through invertebrates to human). The task
was to verify the hypothesis that structures of the IRE se-
quence for various species reveal some common features.
The secondary goal of the analysis was to find the IRE
signals in the presence of noise.

We generated a dataset with 232 positive exam-
ples. To make the problem more difficult, the IRE sig-
nal was enclosed within randomly generated sequences.
They have been generated by concatenation of nucleotides
drawn uniformly from the DNA alphabet. Since the IRE
model has 27 nucleotides, the authors decided that the ex-
amples would be 100 times longer, i.e., 2,700 nucleotides
(27 enclosed with random 2 673). The negative exam-
ples were generated as random sequences. The number
of generated negative examples was 928. This prelim-
inary dataset was randomly divided into training (10%)
and testing (90%) datasets. These files are available at
http://staff.elka.pw.edu.pl/˜rbiedrzy/
KIS/index.html.

It was not possible to find other tools that solve
the IRE detection problem, so KIS was compared with
a model introduced by Pesole et al. (2000), which has
been briefly discussed in Section 2.2 and Fig. 1. The
comparison is provided in Table 7. In this case pruning
was disabled. KIS was run 10 times, and an average and
the best result are provided. Several decision trees of good
quality were generated and detected. These good models
were investigated more deeply. Most of them used the
classifier that was testing one attribute only. This attribute
(‘CL-(.{5,5})CAG[AT]G[ATC]-L MATCH’) was

responsible for detection of Stem I and both loops (see
Fig. 1). Another good classifier used two attributes: one
responsible for the detection of Loop I, and the other
for the detection of Stem I, Loop II and a fragment of
Loop I. For the examined dataset the model introduced
by Pesole et al. (2000) achieved lower accuracy and a
higher false negative ratio than the best result yielded by
KIS! Therefore it can be supposed that Stem I and both
loops are well conserved fragments across the various
species, which is not the case for Stem II. Thus, KIS was
able to build a human readable model with high accuracy
by selecting important signals from data that came from
various species.

4.4. KIS scalability. Even the best theoretical ap-
proach may turn out to be useless for large datasets due
to an unacceptable computation time. Therefore KIS scal-
ability was verified. The computing time (in seconds) of
the most time-consuming part of an algorithm (which is
the attribute construction step) was measured. The mea-
surement was performed using the data generated artifi-
cially from the DGSplicer-donor dataset. The dataset was
used to derive random samples with the sample size rang-
ing from 200 to 200,000 examples. It was assumed that
in every sample of the dataset at least 100 positive exam-
ples should be contained. Except for the smallest samples,
the proportion of examples from both decision classes was
identical for the original dataset and for its random sam-
ple. In Fig. 5 the running time of the KIS method is plotted
as a function of the sample size. The logarithmic scale

Fig. 5. KIS scalability.

was used on both dimensions and the measured points
were connected to indicate the slope inclination. In ad-
dition, two lines were plotted which correspond to o(n)
and o(nlog(n)) complexity. It was concluded that the KIS
computational complexity is approximately linear when
the cache is enabled and it scales like nlog(n) without a
cache.

http://staff.elka.pw.edu.pl/~rbiedrzy/
KIS/index.html
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5. Conclusions

We have developed a general method which can be suc-
cessfully used in various tasks that involve classification
of DNA strands. We have demonstrated a case when the
method is used to recognize splice sites. In this partic-
ular application, KIS generated results of a quality com-
parable to other tools dedicated to solve this task. This
was despite the fact that the length of sequences in both
datasets was carefully tuned to maximize the performance
of the NNSplice and DGSplicer algorithms. We have also
shown that KIS is able to find IRE, i.e., to find characteris-
tic elements that are forming 2D structures. An important
advantage of the method is the readability of the generated
model, which is usually not the case for other methods. In
some applications (e.g., medical diagnosis), model read-
ability is required to assess classifier reliability (Tickle
et al., 1998; Diederich, 2008). In other cases, it can be
learned from the acquired model, which is common in the
given family of sequences (like in the IRE case). The pro-
gram scales well with a number of examples and is able to
handle long sequences.

The KIS approach could be used when model read-
ability is important or in tasks where no other tools are
available.

Further tests are envisaged to assess the performance
of KIS with classification algorithms and other optimiza-
tion methods.
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