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This paper deals with the stability study of the nonlinear Saint-Venant Partial Differential Equation (PDE). The proposed
approach is based on the multi-model concept which takes into account some Linear Time Invariant (LTI) models defined
around a set of operating points. This method allows describing the dynamics of this nonlinear system in an infinite
dimensional space over a wide operating range. A stability analysis of the nonlinear Saint-Venant PDE is proposed both by
using Linear Matrix Inequalities (LMIs) and an Internal Model Boundary Control (IMBC) structure. The method is applied
both in simulations and real experiments through a microchannel, illustrating thus the theoretical results developed in the
paper.
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1. Introduction

Control problems for irrigation channels are of economic
and environment interest and considerable research has
been conducted in this area. Indeed, water is a precious
resource which has to be efficiently managed and pro-
tected. However, water losses in irrigation channels are
substantial remaining the biggest consumer of fresh wa-
ter (� 80%). The automation of irrigation channels has
improved the output of such a process, but the losses are
still around 30%, due to inefficient management and con-
trol. In order to avoid overflows and to satisfy specific wa-
ter requirements, the level of instrumentation (e.g., water
level measurements and motor-driven gates) and automa-
tion in open channel networks increases (see the work of
Mareels et al. (2005) for an overview). On the other hand,
the demands, the ecological constraints and necessary lim-
itations have become more and more important these last
years. Instrumentation and control (e.g., by a state feed-
back) allow improving the management of such systems.
Nevertheless, it is necessary to improve them so as to take
into account in a more precise way every event that may
occur.

In order to deliver water, it is important to ensure
that the water level and the flow rate in the open chan-
nel remain at given values. The difficulty in this control

system is that only the gate positions are able to meet per-
formance specifications. That is why the use of bound-
ary control laws satisfying the control objectives is re-
quired. Open surface channels possess nonlinear com-
plex dynamics because they couple phenomena of trans-
port and those of delay. Those distributed parameters
systems have dynamics represented by hyperbolic Saint-
Venant Partial Differential Equations (PDEs). This prob-
lem has been previously considered in the literature using
a wide variety of techniques (see the use of classical lin-
ear control theory by Malaterre et al. (1998), Papageor-
giou and Messmer (1989), Weyer (2002)). Some of them
take into account the uncertainties and apply some ro-
bust control approaches (e.g., Litrico and Georges, 1999).
Other researchers have studied directly the nonlinear dy-
namics (Zaccarian et al., 2007; Litrico et al., 2005; Dul-
hoste et al., 2001; Dos Santos and Prieur, 2008). Recent
approaches have considered the distributed nature of the
system. Using Riemann’s coordinate approach to Saint-
Venant equations, stability results are given by Greenberg
and Li (1984) for a system of two conservation laws and
by Li (1994) for a system of a larger dimension. Lya-
punov techniques have been used by Coron et al. (2007),
Dos Santos et al. (2008) as well as Dos Santos and Prieur
(2008).

In practice, process industries such as mining, chem-
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ical engineering, or water treatment processes are char-
acterized by complex processes which often operate in
multiple operating regimes (Blesa et al., 2010). It is of-
ten difficult to obtain nonlinear models that accurately de-
scribe plants in all regimes. Also, considerable effort is
required for development of nonlinear models. Compar-
atively, different techniques for linear system identifica-
tion, control and monitoring are available. An attractive
alternative to nonlinear techniques is to use a multiple lin-
ear model strategy. The concept of multiple models, or
‘multi-models’, is based on the partitioning of the operat-
ing range of a system into separated regions by applying
local linear control to each region (Murray-Smith and Jo-
hansen, 1997).

The multi-model structure is well adapted for nonlin-
ear systems because it allows determining a set of linear
models defined around some predefined operating points.
Each local model (sub-model) is defined as a Linear Time
Invariant (LTI) model dedicated to a specific operating
point. The multi-model philosophy is based on weighting
functions, which ensure the transition between the differ-
ent local models. These functions represent the degree
of validity of each local model. This degree is a func-
tion of the system inputs, outputs and time. The multi-
model approach has often been used for the modelling and
control of nonlinear systems (Porfirio et al., 2003; Athans
et al., 2005) and for fault diagnosis (Bhagwat et al., 2003;
Gatzke and Doyle, 2002; Rodrigues et al., 2008). Some
authors refer to it as a gain scheduling strategy (Leith and
Leithead, 2000), or Linear Parameter Varying (LPV) sys-
tems with the same formalism (Hamdi et al., 2011), or in-
terpolated controllers (Banerjee et al., 1995) and switch-
ing controllers (Narendra et al., 1995).

The use of the multi-model representation for a sta-
bility study of systems described by nonlinear PDEs is
something new in the literature on such systems, but some
researchers like Wang et al. (2011) have recently devel-
oped a control strategy using Takagi–Sugeno models for
nonlinear PDE systems with a stability study. More gen-
erally, common approaches are based on a finite dimen-
sional approximation of the nonlinear PDE and adaptive
control. The stability and the control of such systems in
infinite dimensions are still an open problem.

In this paper, an analysis of the stability of the non-
linear Saint-Venant PDE is proposed through the use
of the multi-model and Internal Model Boundary Con-
trol (IMBC) structures. The stability study is performed
based on a Linear Matrix Inequality (LMI) due to the
effectiveness in calculating a unique gain solution for
multiple models (Lopez-Toribio et al., 1999; Rodrigues
et al., 2007; Dos Santos Martins and Rodrigues, 2011).

The paper is organized as follows. Firstly, Saint-
Venant equations are presented along with the control
problem. The internal model boundary control is ex-
plained and the physical constraints are given. Secondly,

linearized systems are developed around a set of equilibria
which depend on the space variable. Their insertion into
the LMI formalism is also described. The third part of
the paper is dedicated to the design of an integral feed-
back gain by an LMI which ensures the system stabil-
ity: an integral controller is designed and implemented
using a “Lyapunov/LMI” approach. The last section is
dedicated to simulations and experiments. The data used
are those of the water channel of Valence. Comparisons
between initial experimental results using a PI-controller
(done some years ago) and simulations with the presented
integral controller using the theoretically tuned gain are
realized. New experiments are implemented, too, with
these theoretical gains found by LMI synthesis.

2. Channel regulation problem statement

Consider the class of water channels represented in Figs.
1 and 2, i.e., a reach of an open channel delimited by un-
derflow and/or overflow gates, where

• Q(x, t) is the water flow rate,

• Z(x, t) is the height of water channel,

• L is the length of the reach taken between the up-
stream xup = 0 and the downstream xdo = L,

• Uup = U0(t), Udo = UL(t) are the openings of the
gates at upstream and downstream.

Fig. 1. Channel scheme: upstream underflow and downstream
overflow gates.

The regulation problem concerns the stabilization of
the water flow rate and/or the height of the water around an
equilibrium for a reach denoted by (Ze(x), Qe(x)). A lin-
ear model with varying coefficients can be deduced from
the nonlinear PDE, in order to describe the variation in the
water level and the flow for an open channel. Let us recall
these models.

2.1. Model of a reach. The channel is supposed to
have a sufficient length L such that one can assume that
the lateral movement is uniform. Nonlinear Saint-Venant
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Fig. 2. Channel scheme: two underflow gates.

PDEs, which describe the flow on the channel, are the fol-
lowing (Georges, 2002):

∂tZ = −∂x
Q

b
, (1)

∂tQ = −∂x

(
Q2

bZ
+

1
2
gbZ2

)
+ gbZ(I − J), (2)

Z0(x) = Z(x, 0), Q0(x) = Q(x, 0), (3)

∀x ∈ Ω = (xup, xdo) = (0, L), t > 0, where I is the
slope, b is the channel width, g is the constant gravity.

Here J is the friction slope from the Manning–
Strickler formula and R is the hydraulic radius. J and
R are defined such that

J =
n2Q2

(bZ)2R4/3
, R =

bZ

b + 2Z
. (4)

The different limit conditions allow us to consider two
control cases, for all x ∈ Γ = ∂Ω:

Case A. Single variable control, spillway case.
The equation of the upstream condition of the reach (x =
xup) is given by

Q(xup, t) = Uup(t)Ψ1(Z(xup, t)), (5)

with Ψ1(Z) = K1

√
2g(Zup − Z). The downstream con-

dition of the reach (x = xdo) is given by the spillway
equation, cf. Fig. 1:

Z(xdo, t) = Ψ2(Q(xdo, t)), (6)

where

Ψ2(Q) =
(

Q2

2gK2

)1/3

+ hs.

Zup is the water height at the upstream of the gate, Ki is
the product of the channel width and the water flow rate
coefficient of the gate n0i, Uup(t) is the upstream control.
hs is the height of the spillway which considered constant
in this case. Note that the controlled variable is the height
Z(xdo). Thus, in this case xup = 0, xdo = L, Uup = U0,
(cf. Fig. (1).

Case B. Multi-variable control.
The upstream condition equation is still (5). Another con-
trol can appear at the downstream of the reach, i.e., at
x = xdo (Fig. 2):

Q(xdo, t) = Udo(t)Ψ3(Z(xdo, t)),

where Ψ3(Z) = K2

√
2g(Z − Zdo) and Udo(t) is the

downstream control of the reach, Zdo is the water height
downstream of the gate (cf. Fig. 2). Note that

• The upstream and downstream depend on the reach
considered. The same case is for the abscissa and the
gates.

• Case B is considered, i.e., the multi-variable control
case.

2.2. Regulation model. An equilibrium state (∂t(·) ≡
0) of the system satisfies the following equations:

∂xQe = 0, (7)

∂xZe = gbZe
I − Je

gbZe − Q2
e/bZ2

e

, (8)

Remark 1. The river case is considered and it follows
that:

Ze > 3
√

Q2
e/(gb2). (9)

Note that Qe is constant but Ze depends on the space
variable. The linearized model around an equilibrium
point (Ze(x) Qe(x))t is written down by introducing

ξ(t) = (z(t) q(t))t.

We obtain

∂tξ(x, t) = A1(x)∂xξ(x, t) + A2(x)ξ(x, t) (10)

= A(x)ξ(x, t),
ξ(x, 0) = ξ0(x),

q(xup, t) = Uup,e∂zΨ1(Ze(xup, t))z(xup, t)
+ uup(t)Ψ1(Ze(xup, t)), (11)

q(xdo, t) = Udo,e∂zΨ3(Ze(xdo, t))z(xdo, t)
+ udo(t)Ψ3(Ze(xdo, t)), (12)

where Uup,e and Udo,e are the opening gates for the up-
stream and downstream at the equilibrium and uup(t),
udo(t) are the variations of these opening gates to be con-
trolled. The matrices A1(x), A2(x) are given by

A1(x) =
(

0 −a1

−a2(x) −a3(x)

)
, (13)

A2(x) =
(

0 0
a4(x) −a5(x)

)
, (14)
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with

a1 = 1/b,

a2(x) = gbZe(x) − Q2
e

bZ2
e (x)

,

a3(x) =
2Qe

bZe(x)
,

a4(x) = gb(I + Je(x) +
4
3Je(x)

1 + 2Ze(x)/b
),

a5(x) =
2gbJe(x)Ze(x)

Qe
.

The control problem is to find variations in uup(t)
at the extreme x = xup and udo(t) at the extreme x =
xdo of the reach such that the downstream water level,
z(xdo, t) = z(L, t) (measured variables), tracks a refer-
ence signal r(t).

The reference signal r(t) is chosen for all cases: con-
stant or non-persistent (a stable step response of a non-
oscillatory system).

In this paper, the control scheme based on the Inter-
nal Model Boundary Control (IMBC) (Dos Santos, 2004;
Dos Santos et al., 2005) is adopted as illustrated in Fig. 3.
This control strategy integrates the process model in real
time and allows regulating the water height in all the
points of the channel by taking into account the error be-
tween the linearized model and the real system (or the
nonlinear model for the simulations).

Observe that

• Mf is a linear filtering model of a finite dimension
which aims at filtering the error signal e(t) = ys(t)−
y(t).

• Mr is a pursuit model which allows to impose dy-
namics by means of a fixed reference r(t).

Fig. 3. IMBC structure.

2.3. Stability of the system. Equation (10) describes
the dynamics of the open loop system. In this representa-
tion, the state vector ξ(x, t) is not explicitly linked to the
boundary control. In order to design an output feedback
and to study the closed-loop stability, an operator D of the
boundary control distribution is introduced.

It is a bounded operator such that Im(D) ⊂ Ker(A)
and Du ∈ D(A) and (Dos Santos, 2004; Touré and
Rudolph, 2002; Sakawa and Matsushita, 1975)

ξ(x, t) = ϕ(x, t) + Du(t). (15)

This operator is naturally null in the domain of A(x)
as it is active only on the domain boundary. This change
of variables allows obtaining a Kalman system repre-
sentation (Touré and Rudolph, 2002; Sakawa and Mat-
sushita, 1975; Alizadeh Moghadam et al., 2011):

∂tϕ(x, t) = A(x)ϕ(x, t) − Du̇, (16)

ϕ(x, 0) = ϕ0(x) = ξ0(x) − Du(0). (17)

It has been proved that the open-loop system de-
scribed below is exponentially stable (Dos Santos, 2004;
Dos Santos and Toure, 2005), as the operator of the lin-
earized system in infinite dimensions generates an expo-
nentially stable C0-semigroup. Moreover, under a PI con-
trol u(t) = αiκi

∫
ε(s) ds + αpκpε(t) ∈ U = R

n,
u ∈ Cα([0,∞], U) 1, conditions on the tuning parame-
ters are also given to ensure the stability of the closed-
loop nonlinear system using the IMBC structure and the
properties of stability of the closed-loop linearized system
Fig. 3. For example, some of those conditions are taken
for the tuned parameters of the PI-control:

0 ≤ αi < αi,max = min
λ∈Γ

(a‖R(λ;Ae)‖ + 1)−1, (18)

0 ≤ αp < αp,max = (sup
λ∈Γ

a‖R(λ;A)‖)−1, (19)

where Ae is a part of the series development of the closed-
loop operator (Dos Santos and Toure, 2005), and R(λ; K)
is the resolvent operator of K , while a signifies a constant
which depends on Ae.

Those theoretical results were coupled with simu-
lations and experiments which confirmed this approach
(Dos Santos, 2004; Dos Santos and Toure, 2005). The
experiments showed limitations due to the linearization
around an equilibrium state and a first attempt at multi-
model experiments was successfully realized (Fig. 10),
but it was not optimal and no theoretical proof was given.
The aim of this paper is to develop a first step towards this
proof.

In order to control the water level over a wide oper-
ational range, a set of local models are considered around
judicious operating points: each model is an approxima-
tion of the process in a small interval of the operating
range and a control is synthesized and activated on this
interval when the system goes through it. The idea here is
to define necessary conditions to preserve the stability of
this system all along the operating range.

1The regularity coefficient is generally taken as α = 2.
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2.4. Multi-model representation of Saint-Venant
equations. The multi-model structure like that of Ro-
drigues et al. (2008), or Hamdi et al. (2011), allows con-
trolling the system over a wide operating range because
it takes into account the different sub-models which can
be activated under different operating regimes (Murray-
Smith and Johansen, 1997). The representation of the
(the Saint-Venant PDE) around N operating points by the
multi-models approach is defined by the following equa-
tions:

∂tξ(x, t) =
N∑

i=1

μi(ζ(t))Ai(x)ξ(x, t), (20)

Ai(x) = A1,i(x)∂x + A2,i(x), (21)

ξ0(x) = ξ(x, 0),

where

• Ai(x) is the operator which corresponds to the i-th
equilibrium state;

• ζ(t) is a function depending on some decision vari-
ables directly linked with the measurable state vari-
ables and eventually with the input;

• μi(ζ(t)) is the weighting function that based on the
output height of the process zL and determining
which sub-model is used for the control law.

A multi-model approach can be developed. It makes the
study of the stability by the second Lyapunov method pos-
sible.

In the following paragraph, the synthesis of a control
law by the LMI technique is outlined. An output feedback
is considered under an integral control and the synthesis of
the gain by the LMI technique ensures the system stability.

3. Stability study by the LMI

In this part, the closed-loop structure (Fig. 3) is studied
under an integral feedback. The pursuit model (Mr) and
the filtering model (Mf ) are not considered. The choice of
an integrator can be justified by the fact that the derivative
of the control u̇ appears in the state equation (16).

3.1. Closed-loop structure for an integral feedback.
For a control with an output feedback, K is defined as the
gain, u (t) = K

∫
ε(t) dt, and it follows that (Dos San-

tos, 2004)

ε(t) = r(t) − y(t), (22)

u(t) = K

∫
[r(τ) − y(τ)] dτ, (23)

with y(t) = C(ξ(x, t) + Eq(x, t)), where Eq(x, t) =∑N
i=1 μi(ζ(t))(ze,i(x) qe,i)t is the equilibrium state and,

for example, CEq(x, t) =
∑N

i=1 μi(ζ(t))ze,i(L) if the
aim is to regulate the water level at x = L. From
Eqn. (15), one deduces that

y(t) = Cϕ(x, t) + CEq(x, t) + CDu(t), (24)

and by substituting y(t) into the control equation,

u(t) = K

∫
[r(τ) − CEq(x, τ)

−Cϕ(x, τ) − CDu(τ)] dτ

which implies

u̇(t) = K [r(t) − CEq(x, t) − Cϕ(x, t) − CDu(t)] .

From Eqn. (16), the closed-loop expression is

∂tϕ(x, t)

=
N∑

i=1

μi(ζ(t))
[Ai(x)ϕ(x, t) − DK

(
r(t)

− CEq(x, t) − Cϕ(x, t) − CDu(t)
)]

=
N∑

i=1

μi(ζ(t))
[
(Ai(x) + DKC)ϕ(x, t)

+ DK (CDu(t) + CEq(x, t) − r(t))
]
. (25)

Define

K̃ = DK. (26)

Equation (25) can be written as

∂tϕ(x, t) =
N∑

i=1

μi(ζ(t))[(Ai(x) + K̃C)ϕ(x, t)

+ K̃(CDu(t) + CEq(x, t) − r(t))]
= Mi(x, t). (27)

The stability conditions are ensured by using a quadratic
Lyapunov function as in the works of Rodrigues et al.
(2007) and Hamdi et al. (2011) in order to guarantee the
convergence of the water height to the reference r(t) over
the widest operating range.

3.2. Stability study with a quadratic Lyapunov func-
tion. Consider

V (ϕ(x, t), t) = 〈ϕ(x, t), Pϕ(x, t)〉, (28)

where 〈·, ·〉 is the inner product under study. The multi-
model representation of the linearized Saint-Venant PDE
defined by Eqn. (27) is asymptotically stable if there exists
a matrix/operator P > 0 such that1

1We assume that ∂tψ = ψ̇ whatever the function ψ.
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(i) for finite-dimensional systems,

V̇ (ϕ(x, t), t) < 0, (29)

⇔ 〈ϕ̇, Pϕ〉 + 〈ϕ, P ϕ̇〉 < 0; (30)

(ii) for infinite-dimensional systems,

〈ϕ̇, Pϕ〉 + 〈Pϕ, ϕ̇〉 = −〈ϕ, ϕ〉. (31)

Remark 2. As stated previously, we want to give the
first elements of a proof of the stability using the LMI
technique usually defined for finite-dimensional systems
but applied to infinite-dimensional systems in this pa-
per. Hante and Sigalotti (2010) worked on the stability of
switching systems in infinite dimensions and they are still
working to link those mathematical results to the LMI ap-
proach. The tools for the LMI technique developed in in-
finite dimensions have not been found by the authors and
we try to developed those making a parallel with known
techniques. Wang et al. (2011) also used an LMI tech-
nique for the stability study.

The previous results, like in the example part, can be
put in parallel with the following theorem (Curtain and
Zwart, 1995).

Theorem 1. Suppose that A is the infinitesimal generator
of a C0-semigroup T (t) on a Hilbert space Z . Then T (t)
is exponentially stable if and only if there exists a positive
operator P ∈ L such that (with ż = Az)

〈Az, Pz〉+ 〈Pz, Az〉 = −〈z, z〉, ∀z ∈ Z.

The main difference here between this stability result
in finite and infinite dimensions is located in the inequality
of the Lyapunov function for a finite-dimensional system
and the equality for infinite dimensional ones. This equal-
ity complexity can be removed in some cases. For ex-
ample, for operators with a compact resolvent (Triggiani,
1975; Dos Santos, 2004; Curtain and Zwart, 1995), and
in this case the same inequality from finite dimension
is a sufficient and necessary condition for the infinite-
dimensional case. Indeed, the inequality from finite di-
mension cannot be transposed directly in infinite dimen-
sions because the spectral growth assumption is not satis-
fied in general (it is in a finite dimension), i.e., an operator
A generating a C0-semigroup TA(t) satisfies the spectral
growth assumption if

sup{R(λ); λ ∈ σ(A)} = w0(A) := inf
t>0

‖TA(t)‖
t

.

Thus, if the spectral growth assumption is satisfied
and there exists a positive operator P ∈ L such that (with
ż = Az)

〈Az, Pz〉 + 〈Pz, Az〉 < 0, ∀z ∈ Z, (32)

then T (t) is exponentially stable.

For Saint-Venant equations, it has been shown that
the operator has a compact resolvent (Dos Santos and
Toure, 2005; Dos Santos, 2004), so it satisfies the spec-
tral growth assumption.

Then, taking account of (27)–(32), it follows that one
has to prove the inequality

〈Mi, Pϕ〉 + 〈ϕ, PMi〉 < 0. (33)

The development of this inequality leads us to considering
an inequality for each sub-system of index i such that

〈[Ai(x) + K̃C]ϕ(x, t), Pϕ(x, t)〉
+ 〈K̃(CDu(t) − r(t) + CEq(x, t)), Pϕ(x, t)〉
+ 〈ϕ(x, t), P K̃(CDu(t) − r(t) + CEq(x, t))〉
+ 〈ϕ(x, t), P [Ai(x) + K̃C]ϕ(x, t)〉 < 0. (34)

In the inequality (34), which defines the system stability
condition, the control parameter u appears and it is a dif-
ficulty for the design of the gain K̃. Let us consider the
following equality deduced from (15):

CDu(t) − r(t) = Cξ(x, t) − r(t) − Cϕ(x, t). (35)

Proposition 1. If there exists a positive definite matrix
P , a matrix W and a scalar α such that the following
statements hold true:

(a) 〈ϕ, PK̃ (CDu(t) + CEq(x, t) − r(t))〉 (36)

≤ αϕT PK̃Cϕ,

(b) AT
i P + PAi + WC + CT WT < 0, (37)

with

K̃ =
1

1 + α
P−1W,

then the system (16) with an integral control input (23) is
stable. �

Proof. Let us consider the quadratic Lyapunov function

V (ϕ(x, t), t) = 〈ϕ, Pϕ〉 = ϕT Pϕ.

Then one can write V̇ (t) < 0 such that (34) can be upper
bounded. Indeed, the inequality (36) implies that

ϕT P
[
(Ai + K̃C)ϕ + K̃(CDu − r)

]

≤ ϕT P
[
(Ai + K̃C)ϕ + αK̃Cϕ

]

≤ ϕT P
[
Aiϕ + K̃Cϕ(1 + α)

]
. (38)

Hence, with the last consideration, the inequality (34) can
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be then upper bounded by

ϕT (x, t)[Ai(x) + K̃C]T Pϕ(x, t)
+ϕT (x, t)P [Ai(x) + K̃C]ϕ(x, t)
+[K̃(CDu(t) − r(t) + CEq(x, t))]T Pϕ(x, t)
+ϕT (x, t)P [K̃(CDu(t) − r(t) + CEq(x, t))]

≤ ϕT (x, t)
{

[Ai(x) + (1 + α)K̃C]T P

+P [Ai(x) + (1 + α)K̃C]
}

ϕ(x, t) (39)

= ϕT
[AT

i P + PAi + WC + CT WT
]
ϕ < 0,

with

K̃ =
1

1 + α
P−1W.

Now, let us examine the inequality (36):

ϕT PK̃ (CDu(t) + CEq(x, t) − r(t)) ≤ αϕT PK̃Cϕ.

Let us remember that the system is exponentially sta-
ble in open loop and for a PI-controller in closed loop,
with gains correctly tuned (Dos Santos, 2004; Dos San-
tos and Toure, 2005) for a time t well chosen, so one can
assume that there exists k > 0 such that

|Cξ(x, t) + CEq(x, t) − r(t)| ≤ k|Cϕ(x, t)|. (40)

Let εf(t) = sign(f(t)). Then

CDu(t) − (r(t) − CEq(x, t))
= Cξ(x, t) − (r(t) − CEq(x, t))
− Cϕ(x, t),

|CDu − r + CEq(x, t)|
≤ |Cξ − (r − CEq)| + |Cϕ|.

That is to say, one can bound (CDu − r) by

− (k + 1)ε(Cϕ)Cϕ

≤ CDu − r

≤ (k+1)ε(Cϕ)Cϕ,

−(k+1)ε(Cϕ)ε(ϕT PK̃)ϕ
T PK̃Cϕ

≤ ϕT PK̃ (CDu − r)

≤ (k + 1)ε(Cϕ)ε(ϕT PK̃)ϕ
T PK̃Cϕ

and thus

ϕT PK̃ (CDu − r) ≤ (k + 1)ε(ϕT PK̃Cϕ)ϕ
T PK̃Cϕ.

Accordingly, the inequality (36) is proved and

ϕT P [Ai + K̃C]ϕ + ϕT P [K̃(CDu − r)ϕ (41)

≤ ϕT P
[
Ai + (1 + (k + 1)ε(ϕT PK̃Cϕ))K̃C

]
ϕ.

Then, we obtain the gain K̃ as

ϕT P [Ai + K̃C]ϕ + ϕT P [K̃(CDu − r)ϕ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

≤ ϕT P
[
Ai + (k + 2)K̃C

]
ϕ

if ε(ϕT PK̃Cϕ) = 1, with α = k + 1,

≤ ϕT P
[
Ai + kK̃C

]
ϕ

if ε(ϕT PK̃Cϕ) = −1, with α = −k.

(42)

�

Remark 3. The solution of Proposition 1 may lead to
a conservatism since a unique gain has been determined
for all the models. However, it is here a first attempt into
infinite dimensions and the use of the LMI applied to such
PDE systems is very recent.

The gain K̃ has been implemented in the discretized
model for simulations so as to verify the stability of the
system. Some results have been obtained for a single
reach with two underflow gates. The aim is to com-
pare the simulation and experimental curves obtained
with this method and those obtained experimentally by
Dos Santos Martins in her previous works (Dos San-
tos, 2004; Dos Santos et al., 2005).

4. Simulation and experimentation results

Firstly, let us describe the benchmark used for the simula-
tions and the experimentations which are presented in the
second and third subsections, respectively.

4.1. Configuration and data of the channel. An ex-
perimental validation has been performed on the Valence
micro-channel, cf. Figs. 4 and 5, Table 1. This pilot chan-
nel is located at the ESISAR 2/INPG 3 engineering school
in Valence (France). It is operated under the responsibility
of the LCIS 4 laboratory. This experimental channel (total
length of 8 meters) has an adjustable slope and a rectan-
gular cross-section (a width of 0.1 meter). The channel is
ended at its downstream by a variable overflow spillway
and equipped with three underflow control gates (Figs. 4
and 5). Ultrasound sensors provide water level measure-
ments at different locations of the channel (Fig. 6).

Note that the water flow is deduced from the gate
equations and was not measured directly. For all numeri-
cal simulations, the Chang and Cooper theta-scheme of or-
der 2 is used (Cordier et al., 2004). To validate this numer-
ical discretization, comparisons between the numerical
simulations with real data and those using the Preissmann
scheme (which is employed in other works dealing with
the control of flows (Litrico and Georges, 1999; Ouarit

2École Supérieure d’Ingénieurs en Systèmes Industriels Avancés
Rhône-Alpes.

3Institut National Polytechnique de Grenoble.
4Laboratoire de Conception et d’Intégration des Systèmes.
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Fig. 4. Pilot channel of Valence.

Fig. 5. Pilot channel of Valence.

et al., 2003)) were provided by Dos Santos and Prieur
(2008). They validated the numerical discretization and
the identification of the parameters. It also was done for
the micro-channel (Fig. 7). The experimental data de-
picted below were filtered to get a better idea of the exper-
imentation results. One reach has a length of 0.7 m, the
water level at the upstream of the first gate is Zup = 0.172
m and at the downstream of the second gate Zdo = 0.085
m (theoretical values).

For this study, the following set of parameters from
the practical Valence channel (Fig. 5) is considered;

• n = 20 is the number of the discretizated points,

• ZL is the water height to be regulated.

Table 1. Parameters of the channel of Valence.

Parameters B [m] L [m] K [m] [m1/3 · s−1]

Values 0.1 7 97
Parameters µ0 µL slope [m · m−1]

Values 0.6 0.73 1.6 0/00

Fig. 6. Pilot channel of Valence: gate and ultrasound sensors.
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Fig. 7. Pilot channel of Valence: open-loop identification.

In this single reach with two gates, the regulation of the
water height ZL at x = L is done by controlling the
openings U0(t) and UL(t) of the gates at upstream and
downstream, respectively: it is a multi-variable control
(cf. Fig. 2).

The equilibria profiles were chosen such that the cal-
culated control law from the local models can be effi-
cient over the entire operating range of the water height
(Dos Santos, 2004). Let notice that it was experimentally
verified that a local model is valid for around ±20% of
a water level equilibrium profile, i.e., the model and the
data have the same behavior and values. In order to assign
references which are included between 0.06 m and 0.2 m,
the operating points at x = 0 are given in Table 2.

Table 2. Initial set points for the simulations and the experimen-
tations.

Simulations Experimentations

ze1(x = 0) 0.062 m
ze2(x = 0) 0.077 m
ze3(x = 0) 0.099 m
ze4(x = 0) 0.135 m
ze5(x = 0) 0.18 m

ze1(x = 0) 0.062 m
ze2(x = 0) 0.094 m
ze3(x = 0) 0.141 m

The efficiency of the computer managing the D-
Space card cannot bear more than three equilibrium states
as it runs on a Windows 95 version. Consequently, their
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numbers towards the simulations had to be reduced.
In this application, the weighting function μi(ζ(t)) is

equal to 1 if the output’s height is included into the valid-
ity domain of the model, otherwise it is equal to 0. The
parameter ζ(t) exclusively depends on the output, which
is the only one decision variable in this case.

4.2. Simulations. These results are obtained from an
IMBC control and a multi-model approach with an LMI
gain calculated in the previous section. Figure 8 shows
that the output Z(L) converges to the reference even if it
strongly varies (variations > 100%). The reference tracks
slow dynamics and one can see that the convergence of
the output is good.

0 200 400 600 800 1000 1200

0.8
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1.2

1.4

1.6

1.8
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Time (s)

(d
m

)

Reference
Non linear system

Fig. 8. Variations in the reference greater than 100%.

The curves that describe the upstream and down-
stream gate openings of the reach are given in Fig. 9. The
convergence of the output to the reference is ensured even
when the reference is decreasing or increasing.
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Fig. 9. Gate opening.

Next simulations are a first comparison between sim-
ulations using the theoretical gain obtained through the

LMI approach with the first tests realized some years ago
by Dos Santos et al. (2005), using an experimental multi-
model gain, without any theoretical study. Figure 10 rep-
resents the dynamic evolution of the simulated system and
the experimental data. Note that the reference curves are
equals, the experimental one stands for the signal v(t),
and the simulation one stands for the signal r(t) after the
reference model Mr (cf. Fig. 3). Figure 11 compares the
dynamics of the gate openings. The dynamics of the gates
and the water level are similar and this result are promis-
ing. One can observe in Fig. 10 that the convergence is

0 50 100 150 200 250 300 350 400 450 500
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Comparison of the downstream                                
water level measured in the Valence channel vs simulated one

Reference from the simulation
Non linear system (I−LMI simulation)
Water level data (PI experimentation)
Reference from the experimentation

Fig. 10. Comparison of the downstream water level measured
in the Valence channel with the first multi-models ap-
proach in 2004 vs. the simulated one with the LMI
approach.

better than the one obtained experimentally and the over-
shoot is smaller, too. But the rising time is obviously long
(at time t = 120 − 200 s example given) with the integral
controller (simulation) vs. the PI-controller (experimenta-
tion). The next step is to design a new PI-controller us-
ing the LMI, to compare it with the experimental PI. It is
presently under study.

Remark 4. The reference level of the channel is limited
by physical constraints: the minimum is obtained with the
maximum between the water height of the downstream
reach and the fluvial condition, obtained from the initial
model (9). The maximum from the size of the channel it-
self. In these simulations, the critical water height from
fluvial constraint is zec = 0.0369 m.

4.3. Experiments. The experiments were realized in
the Valence channel (Fig. 5) with a multi-model approach
and a gain calculated via the LMI approach. In the exper-
imental figures (12)–(13), a wide range of the accessible
water level is tested. Let us remark that some problems
appear with the gates as sometimes they stay jammed be-
cause of the friction (e.g., here at time t = 50 s, t = 120
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Fig. 11. Gate opening.

s, t = 550 s and t = 625 s). Those problems act like per-
turbations and the integral controller tries to compensate
them.
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Fig. 12. Valence micro channel: downstream water level.

The convergence of the downstream water level is en-
sured in spite of the perturbations, but it is necessary to
improve the controller to take them into account.

Those experimental results are relevant and promis-
ing for the applicability of our approach. Nevertheless,
some improvements have to be done and the next step is
to extend first results to a PI-controller, and thus to get
robustness.
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Fig. 13. Valence micro channel: gate openings.

5. Conclusion

First attempts to employ a multi-model approach for irri-
gation channels control, through an IMBC structure, have
been made some years ago (Dos Santos, 2004; Dos San-
tos et al., 2005). Good experimental results, but with no
attendant theory, were obtained and are promising. In this
paper, the authors have formalized an LMI approach to the
problem and gave first theoretical results in order to tune
the new feedback gain trough LMI in the case of an in-
tegral controller. Simulations demonstrated the improve-
ments realized towards the initial multi-model approach
and new experiments confirmed the new theoretical gain
tuning method. This paper allowed to find some stability
results for infinite dimensional systems with LMI tools for
finite dimensional systems.

Extensions to a PI-controller are actually investigated
and preliminary results have been published (Dos Santos
Martins and Rodrigues, 2011). The complexity is here
located in the fact that it is a boundary control problem.
Consequently, the control appears in a derivative form.
Further experiments are planned for a new PI-controller
and thus comparisons with the same controller have al-
ready been performed.
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