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Design of a state observer is an important issue in control systems and signal processing. It is well known that it is difficult
to obtain the desired properties of state feedback control if some or all of the system states cannot be directly measured.
Moreover, the existence of a lumped perturbation and/or a time delay usually reduces the system performance or even
produces an instability in the closed-loop system. Therefore, in this paper, a new Variable Structure Observer (VSO) is
proposed for a class of uncertain systems subjected to a time varying delay and a lumped perturbation. Based on the
strictly positive real concept, the stability of the equivalent error system is verified. Based on the generalized matrix inverse
approach, the global reaching condition of the sliding mode of the error system is guaranteed. Also, the proposed variable
structure observer will be shown to possess the invariance property in relation to the lumped perturbation, as the traditional
variable structure controller does. Furthermore, two illustrative examples with a series of computer simulation studies are
given to demonstrate the effectiveness of the proposed design method.
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1. Introduction

Lumped perturbations and time delays existing in many
real-world systems, and the study of a class of uncertain
systems subjected to time varying delays have become an
interesting issue in recent years (Liu, 2005; Xiang et al.,
2010; Hua et al., 2008; Shyu et al., 2005; Sun et al.,
2008). The time delay phenomenon is quite commonly
found in various systems, such as hydraulic/pneumatic, in-
terconnected, communication, biological and long trans-
mission ones. On the other hand, lumped perturbation
can be a combination of system uncertainties, nonlinear-
ities and/or external disturbances. In fact, the existence
of a time delay and the presence of a lumped perturbation
usually degrade the control performance or, even worse,
produce an instability of the closed-loop system. Hence,
the existence of a time delay and a lumped perturbation
always renders the control problem much more complex
and difficult.

In this paper, we consider an uncertain system with a
time-varying delay whose dynamics are described by

ẋ(t) = (A + ΔA)x(t) + (Ad + ΔAd)x(t − τ)
+ (B + ΔB)u(t) + Dw(t), (1)

x(t) = θ(t) for − τ ≤ t < 0, (2)

together with the output equation

y(t) = Cx(t), (3)

where x(t) ∈ R
n, u(t) ∈ R

m and y(t) ∈ R
h denote

the state variables, control inputs and measured outputs
of the uncertain system, respectively. The nonzero time-
varying delay is denoted by τ . The function θ(t) rep-
resents a continuous vector-valued initial function. The
matrices A ∈ R

n×n, Ad ∈ R
n×n, B ∈ R

n×m and
C ∈ R

h×n are the nominal state matrix, the state-delay
term matrix, the input matrix and the output matrix of
the uncertain dynamic system, respectively. The symbols
ΔA, ΔAd and ΔB are the uncertainty matrices. The func-
tion w(t) ∈ R

n denotes the nonlinear parts and/or the ex-
ternal disturbances of the system. The matrix D ∈ R

n×n

describes the influence of w(t) on the system.
To control an uncertain system, it has been shown

that Variable Structure Control (VSC) is a very effective
method (DeCarlo et al., 1988; Hung et al., 1993). As is
well known, in the VSC system, the trajectories of the
closed-loop system will be forced onto a specified sur-
face, which is the so-called sliding surface, and the trajec-
tories will be kept on the sliding surface thereafter. Such
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a motion is referred to as the sliding mode (Utkin, 1992).
During the sliding mode, the system remains insensitive
to internal parameter variations and external disturbance.
Moreover, when a sliding mode is achieved, the system
will experience a reduced-order motion.

To deal with the effects arising from the existence of
a time delay and uncertainties, the state feedback method
is frequently used in system control design. Liu (2005)
investigated the issue of robust asymptotic stabilization
for uncertain time-delay systems with saturating actua-
tors. Delay-dependent criteria for robust stabilization via
linear state feedback were obtained. Xiang et al. (2010)
dealt with the problem of fault tolerant control of a class
of uncertain switched nonlinear systems with time de-
lay under asynchronous switching. Hua et al. (2008)
studied a state feedback control problem for a class of
nonlinear time-delayed systems with matched uncertain-
ties. The state transformation is needed in their design
approach, but it may change an original state into another
one with a different physical meaning in the new coordi-
nates. Moreover, finding a suitable transformation or indi-
rect estimated states may become another problem. Shyu
et al. (2005) developed a new robust control law to sta-
bilize an uncertain large-scale time delayed system with a
dead-zone input via the state feedback method.

All of their discussions of such a problem were based
on the assumption that all the system states are known.
However, in practice, some or all of the system states can-
not be directly measured. This fact becomes a barrier in
acquiring the desired properties of state feedback control
method. To overcome the problem of incomplete informa-
tion of system states, the state observer could be an elegant
solution to gain the desired data. State observer design is
an important issue in control systems and signal process-
ing. An observer is an auxiliary dynamic system for es-
timating the components of the original system state vec-
tors. Luenberger (1971) first proposed the concept of the
observer, and some significant advances have been made
in observer theory (O’Reilly, 1983; Nijmeijer and Fossen,
1999). The so-called Luenberger observer can perform
well when the system dynamics are known. However, if
some uncertainties exist in the system, the estimation of
the states may not be sufficiently accurate.

In addition to the Luenberger observer, other ob-
server design techniques have been proposed. For exam-
ple, Karafyllis and Kravaris (2007) studied the construc-
tion of observers for time-varying discrete-time systems
and proposed some appropriate notions of robust complete
observability. Liu (2004) proposed an algorithm for state
observer design of two-dimensional linear shift-invariant
systems via using the well-known one-dimensional sys-
tem results. Röbenack and Lynch (2006) proposed two
methods for nonlinear observer design which are based
on a partial nonlinear observer canonical form. More-
over, Sliding Mode Observer (SMO) design of an uncer-

tain system is an important issue of recent discussion. Slo-
tine et al. (1987) examined the potential use of sliding
surfaces for observer design for systems in companion
form and in general form. Żak and Hui (1993) proposed
a class of VSO for uncertain/nonlinear dynamic systems
with bounded uncertainties, but they only discussed the
sliding condition for the switching surface. Unel et al.
(2008) used sliding mode observers to estimate the mo-
tion and the structure of a moving body with the aid of a
change-coupled device camera. Yan and Edwards (2007)
used an equivalent output error injection approach to con-
sider the fault detection and estimation issues for a class
of systems with uncertainty, and the fault estimation ap-
proach was dependent on the bounds on the uncertainty.
Spurgeon (2008) presented an overview of both linear and
non-linear SMO paradigms. Since their SMO design (Yan
and Edwards, 2007; Spurgeon, 2008) is based on a state
transformation, their results are indirectly obtained due to
the requirement of coordinate transformation. Recently,
using the generalized matrix inverse approach, Liu et al.
(2009) proposed a new SMO for a class of uncertain sys-
tems. However, none of the above SMO design consid-
ered the state delay factor. It is worth emphasizing that the
existence of time delay usually degrades the control per-
formance or, even worse, causes instability in the closed-
loop system. Therefore, it is necessary to develop a new
variable structure observer to deal with the state estima-
tion problem for uncertain time delayed systems.

In this paper, utilizing the results derived by Liu et
al. (2009) and VSC theory, the design of a new VSO for
a class of uncertain systems with time-varying delay is
accomplished. The proposed variable structure observer
will be shown to possess the invariance property in re-
lation to the lumped perturbation as the traditional vari-
able structure controller does. Moreover, based on the
strictly positive real concept, the stability of the equiva-
lent error system is verified. Following the generalized
matrix inverse approach, the global reaching condition of
the sliding mode of the error system is guaranteed. Since
the proposed VSO is not based on the transformed sys-
tem model, it is no longer necessary to worry about the
problems of finding a suitable transformation or indirect
estimated states. As a consequence, the proposed VSO
synthesizing procedure is simpler than the aforementioned
VSO design found in the literature. Finally, some simula-
tion results are illustrated to show the proposed variable
structure observer is superior to the traditional one, de-
signed without considering the time-varying delay term.

The rest of the paper is organized as follows. System
and problem descriptions are introduced in Section 2. Sec-
tion 3 derives the main results of the paper, which show
how to construct the developed VSO. Section 4 verifies
the proposed design method through two simulation stud-
ies. Finally, some concluding remarks are outlined in Sec-
tion 5.
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2. System and problem description

In this paper, a class of uncertain time-varying delay sys-
tems whose dynamics as shown in (1)–(3) is considered.
For the developed uncertain time-varying delay system,
the pair (A, B) is assumed to be controllable, and the pair
(A, C) observable. The following matching conditions
are also assumed to hold:

ΔA = BEC, ‖E‖ ≤ k1, (4a)

ΔAd = BFC, ‖F‖ ≤ k2, (4b)

ΔB = BG, ‖G‖ ≤ k3, (4c)

Dw(t) = Bwm(t), ‖wm(t)‖ ≤ k4, (4d)

where E, F, G are constant matrices, wm(t) is a vector
with dimension m. ki, i = 1, 2, 3, 4, are known non-
negative constants, and ‖(·)‖ denotes the Euclidean norm
when (·) is a vector, or the induced norm when (·) is a
matrix. Further, it is well known that observable (A, C)
implies that one can find a matrix K ∈ R

n×h, such that
the matrix

A = A − KC (5)

is Hurwitz.

Remark 1. Note that when the above matching condi-
tions are satisfied, a lumped perturbation will only affect
the initial conditions of the sliding mode equations. The
state dynamics are insensitive to the lumped perturbation
after the switching surfaces are hit.

Remark 2. Based on the matching condition (4), the
uncertain time delayed system (1) can be rewritten as

ẋ(t) = Ax(t) + Adxd(t) + B[u(t) + f(t)], (6)

where

xd(t) = x(t − τ), (7)

f(t) = Ey(t) + Fyd(t) + Gu(t) + wm(t) (8)

and f(t) represents a lumped perturbation which satisfies

‖f(t)‖ ≤ k1‖y‖ + k2‖yd‖ + k3‖u‖ + k4, (9)

where yd denotes the delay output.
Let the state estimate x(t) be denoted by x̂(t), and

the error difference between the estimate state and the true
state by e(t), i.e.,

e(t) = x(t) − x̂(t). (10)

Here, a variable structure observer under consideration is
of the form

˙̂x(t) = Ax̂(t) + Bu(t)
+ K[y(t) − Cx̂(t)] + BN(t), (11)

where K is a gain matrix designed as in (5) and the nonlin-
ear switching term N(t) will be used to ensure robustness
against the lumped perturbation of the system (6) which
will be designed later.

Subtracting (11) from (6), the governing error dy-
namics will be of the form

ė(t) = (A − KC)e(t) + Adxd(t) + B(f − N(t)). (12)

The goal of this paper is to design the gain matrix
K and the switching term N(t), such that the uncertain
error system with the time-varying delay (12) is globally
asymptotically stable.

In the following section, we present schematic pro-
cedures of VSO design for a class of uncertain systems
with time-varying delay. Usually, VSO design is a two-
phase process. Phase 1 is to choose a proper switching
surface for the uncertain system such that the sliding mo-
tion on the switching surface possesses the desired prop-
erties. Phase 2 is to determine a switching term which is
able to force the system to move toward the sliding sur-
face in spite of the presence of uncertainties and then stay
on it thereafter.

3. Variable structure observer design

At the beginning, a proper switching surface for the uncer-
tain system is chosen such that the sliding motion on the
switching surface possesses the desired properties. The
switching surface is chosen as follows:

σ(t) = Se(t) = MCe(t) = M(y − ŷ), (13)

where σ(t) ∈ R
m is a vector function, S ∈ R

m×n, M ∈
R

m×h are constant matrices and m < n. Assume that
the product matrix SB is nonsingular, and S has full row
rank.

A brief description for the strictly positive real con-
cept is summarized (Khalil, 1996) for the stability of the
equivalent error dynamics.

Definition 1. A transfer function T (q) is positive real if
Re[T (q)] ≥ 0 for all Re[q] ≥ 0. It is strictly positive real
if T (q − ε) is positive real for some ε > 0, where q is a
complex number.

The following lemma is modified after Walcott and
Żak (1987) as well as Khalil (1996), and will be used to
verify the motion of the uncertain delayed error system on
the switching surface to possess the property of insensi-
tivity to the lumped perturbation.

Lemma 1. Let T (q) = MC(qI − A)−1B be an
m × m transfer function matrix, where A is stable while
(A, B, MC) is controllable and observable. Then T (q)
is strictly positive real if and only if there exist positive
definite symmetric matrices P and W such that

PA + AT P = −W, (14)
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where (·)T denotes the transpose of (·).
It is well known that, when the governing error sys-

tem operates on the sliding mode, the following conditions
are satisfied:

σ = 0 and σ̇ = 0. (15)

Let Neq denote the equivalent control. From (12), (13)
and (15) one gets

σ̇ = S[(A − KC)e + Adxd + Bf − BNeq] = 0. (16)

Therefore, the equivalent control Neq is given as

Neq = (SB)−1S[Ae + Adxd + Bf ]. (17)

Let Ad = BL, where L is a constant matrix. Sub-
stituting (17) into (12), we can easily show that the equiv-
alent error dynamics on the switching surface are in the
form of

ėeq(t) = [I − B(SB)−1S]Ae. (18)

Note that the resulting equivalent error dynamics (18)
have to be asymptotically stable.

Remark 3. Based on Lemma 1, the involved system is re-
quired to be asymptotically stable and completely control-
lable. In other words, if the strictly positive real condition
is satisfied, then (A, B) is controllable and the asymptoti-
cal stability of (18) can be guaranteed. Furthermore, from
(18), we can see that Eqn. (18) is insensitive to lump un-
certainty. In other words, the invariance property is also
held for VSO design.

To ensure the existence of a sliding mode, the follow-
ing Assumption 1 and Lemma 2 will be used.

Assumption 1. There exists a positive definite matrix Q ∈
R

m×m , such that

SAS+ = −Q, (19)

where S+ = ST (SST )−1 denotes the Moore–Penrose in-
verse (generalized inverse) of S.

Lemma 2. (Utkin, 1992) The motion of the sliding mode
(13) is asymptotically stable if the following condition is
satisfied:

σT (t)σ̇(t) < 0. (20)

To satisfy the condition (20), the switching term N(t)
is designed as follows:

N(t) = η
(σT SB)T

‖σT SB‖ [k1‖y‖ + (‖LC+‖ + k2)‖yd‖
+ k3‖u‖ + k4], η > 1. (21)

Now, we are in a position to show that the proposed
switching term can achieve the condition (20).

Theorem 1. Consider the uncertain error delayed sys-
tem (12). If the switching term in (21) is applied to the
error dynamic system (12), then the sliding mode and the
attractiveness to the sliding surface (13) will be ensured.

Proof. Let the Lyapunov function candidate be in the
form of

V (t) =
1
2
σT (t)σ(t). (22)

Taking the time derivative of the Lyapunov function can-
didate yields

V̇ (t) = σT (t)σ̇(t)

= σT S[Ae + Adxd + Bf − BN ]. (23)

Note that there are unmeasurable states e and xd in
the above equation. The generalized matrix inverse is use-
ful to avoid using the unmeasurable states in VSO design.
Hence, we have e = S+σ and xd = C+yd, where S+ is
defined in (19) and C+ = CT (CCT )−1 is the generalized
right inverse of the matrix C. Applying (19) to the above
equation, one has

V̇ (t) = −σT Qσ + QT SBLC+yd + σT SBf

− σT SBN. (24)

Using (9), (21) and the property ‖AB‖ ≤ ‖A‖‖B‖ yields

V̇ (t) ≤ λmin(Q)‖σ‖2 + (1 − η)‖σT SB‖[k1‖y‖
+ (‖LC+‖ + k2)‖yd‖ + k3‖u‖ + k4] < 0,

(25)

where λmin(Q) denotes the minimum positive eigenvalue
of Q. The sliding condition (20) stated in Lemma 2
V̇ (t) < 0, ensures the attractiveness to the sliding surface,
and the proof is complete. �

4. Illustrative examples

In this section, two examples are presented to illustrate the
effectiveness of the proposed VSO scheme. Example 1 is
a Single-Input Single-Output (SISO) case, in which four
different cases will be considered to show that the pro-
posed VSO is superior to the traditional ones. Example 2
is a Multi-Input Multi-Output (MIMO) case with a more
complex delay term.

Example 1. Here, an illustrative example is chosen from
the literature on the subject. The purpose of this exam-
ple is to demonstrate the effectiveness of the proposed
VSO, and four different cases will be considered to show
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that the proposed VSO is superior to the traditional ones.
The following dynamical system is adopted from Liu et
al. (2009), Walcott and Żak (1987) as well as Żak and
Hui (1993), in which all the parameters are the same as
their parameters except the time-varying delay term. The
observers with and without considering the time-varying
delay terms were simulated on a computer.

Consider an uncertain system with a time-varying de-
lay given by

ẋ(t) =
[

0 1
0 0

]
x(t) +

[
0 0
−1 −1

]
xd(t)

+
[

0
1

]
u(t) +

[
0
1

]
f(t) (26)

with the output equation

y(t) = [1 1]x(t), (27)

which are subjected to the lumped perturbation f(t) =
− sin(x1(t)), and the time-varying delay τ = 0.8| cos(t)|.

The purpose of designing a VSO with the structure
(8) is to ensure that the uncertain time-varying delay error
dynamics (10) are globally asymptotically stable. It can be
easily checked that the nominal system (A, C) is observ-
able. Therefore, there exists a gain matrix K = [1 1]T ,
such that the eigenvalues of A = A − KC are {−1,−1}.

Now, the observer equation corresponding to the de-
veloped system is given by

[ ˙̂x1

˙̂x2

]
=

[ −1 0
−1 −1

] [
x̂1

x̂2

]
+

[
0
1

]
u

+
[

1
1

]
y +

[
0
1

]
N(t).

The switching surface is chosen as

σ(t) = y − ŷ.

In this simulation study, the initial values are chosen
as [x10x20]T = [−11]T , and the following parameters are
given for the computer simulation:

η = 1.2, k1 = 0.5, k2 = 0.5, k3 = 0, k4 = 1.5.

In order to provide a comparison with the existing
literature, the following cases are considered:
Case 1. Applying the traditional VSO (Walcott and Żak,
1987) to the system (26) without considering the time-
varying delay term, i.e., Ad = 0.

Case 2. Applying the traditional VSO (Walcott and Żak,
1987) to the system (26) with considering the time-
varying delay term, i.e., Ad �= 0.

Case 3. Applying the proposed VSO to the system (26)
without considering the time-varying delay term, i.e.,
Ad = 0.

Case 4. Applying the proposed VSO to the system (26)
with considering the time-varying delay term, i.e., Ad �=
0.

Figures 1–4 show the time responses of system states
and error states for Cases 1–4, respectively, which consist
of (a) the system state x1(t) and the estimated state x̂1(t),
(b) the system state x2(t) and the estimated state x̂2(t),
and (c) the error states e1(t) and e2(t). Applying the tradi-
tional VSO derived by Walcott and Żak (1987) to the sys-
tem without considering the state delayed term, one gets
the state trajectory evolution shown in Fig. 1. However,
for Case 2, when applying the traditional VSO derived
by Walcott and Żak (1987) to the system with consider-
ing the state delayed term, it does not ensure the stability
of the uncertain system with time-varying delay, and the
poor performance is shown in Fig. 2. For Cases 3 and 4,
the system and error states are shown in Figs. 3 and 4,
respectively.

Fig. 1. SISO system without considering the time-varying delay
term controlled by the traditional VSO (Walcott and Żak,
1987): x1(t) and x̂1(t) (a), x2(t) and x̂2(t) (b), e1(t)
and e2(t) (c).
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Fig. 2. SISO system with considering the time-varying delay
term controlled by the traditional VSO (Walcott and Żak,
1987): x1(t) and x̂1(t) (a), x2(t) and x̂2(t) (b), e1(t)
and e2(t) (c).

From these simulation results, one can see that the
proposed VSO law can work effectively for a class of
uncertain systems with or without considering the time-
varying delay. However, the traditional VSO is not appli-
cable to the uncertain system with considering the time-
varying delay term. �

Example 2. In Example 1, a single-input single-output
VSO is shown for comparison with the existing literature.
Now, we consider the following uncertain time-varying
delay systems with multiple inputs, multiple outputs and
a more complex delay term:

ẋ(t) =

⎡
⎣ 1 0 0

0 −5 1
2 −3 1

⎤
⎦ x(t) +

⎡
⎣ −1 1 −1

1 0 1
0 1 0

⎤
⎦xd(t)

Fig. 3. SISO system without considering the time-varying delay
term controlled by the proposed VSO: x1(t) and x̂1(t)
(a), x2(t) and x̂2(t) (b), e1(t) and e2(t) (c).

+

⎡
⎣ −1 0

1 1
0 1

⎤
⎦u(t) +

⎡
⎣ −1 0

1 1
0 1

⎤
⎦ f(t)

with the output equation

y(t) =
[

1 0 0
0 0 1

]
x(t),

where

ẋ(t) =

⎡
⎣ ẋ1(t)

ẋ2(t)
ẋ3(t)

⎤
⎦ , x(t) =

⎡
⎣ x1(t)

x2(t)
x3(t)

⎤
⎦ ,

xd(t) =

⎡
⎣ x1(t − τ)

x2(t − τ)
x3(t − τ)

⎤
⎦ , u(t) =

[
u1(t)
u2(t)

]
,

y(t) =
[

y1(t)
y2(t)

]
, f(t) =

[
sin(x1)
cos(x3)

]

and the time-varying delay τ = 0.5| sin(t)|.
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Fig. 4. SISO system with considering the time-varying delay
term controlled by the proposed VSO: x1(t) and x̂1(t)
(a), x2(t) and x̂2(t) (b), e1(t) and e2(t) (c).

One can easily check that the nominal system (A, C)
is observable, and hence a gain matrix K can be found as
follows:

K =

⎡
⎣ 4 0

0 1
1 5

⎤
⎦ ,

such that the eigenvalues of A = A − KC turn out to be
{−3,−4,−5}.

From the system (11), we have that the VSO under
consideration is of the form

ẋ(t) =

⎡
⎣ −3 0 0

0 −5 0
1 −3 −4

⎤
⎦ x̂(t) +

⎡
⎣ −1 0

1 1
0 1

⎤
⎦ u(t)

+

⎡
⎣ 4 0

0 1
1 5

⎤
⎦ y(t) +

⎡
⎣ −1 0

1 1
0 1

⎤
⎦N(t),

where

x̂(t) =

⎡
⎣ x̂1(t)

x̂2(t)
x̂3(t)

⎤
⎦ , N(t) =

[
N1(t)
N2(t)

]
.

The switching surfaces are chosen as

σ1(t) = y1 − ŷ1, σ2(t) = y2 − ŷ2.

In this numerical simulation, the initial values are
chosen as [x10x20x30]T = [1 −1 0.5]T , and the follow-
ing parameters are given for the computer simulation:

η = 1.2, k1 = 1.1, k2 = 1.2, k3 = 0, k4 = 1.5.

From Eqn. (21), the switching terms are designed as fol-
lows:

N1(t) = 1.2
−σ1

‖σT SB‖ [1.1‖y‖

+ (
√

2 + 1.2)‖yd‖ + 1.5],

N2(t) = 1.2
−σ2

‖σT SB‖ [1.1‖y‖

+ (
√

2 + 1.2)‖yd‖ + 1.5].

Figure 5 shows the time responses of system states and es-
timated states as (a) x1(t) and x̂1(t), (b) x2(t), and x̂2(t)
and (c) x3(t) and x̂3(t). Furthermore, Fig. 6 shows the
time responses of error states e1(t), e2(t) and e3(t).

From these simulation results, it can be seen that
the estimated states are all approaching the correspond-
ing system states, and error states are all asymptotically
stable, that is, the proposed VSO laws can work effec-
tively for uncertain complex time-varying delay systems
with multiple inputs, multiple outputs and with the pres-
ence of lumped perturbations.

5. Conclusions

Design of state observers is an important issue in con-
trol systems and signal processing. In this paper, we have
made an attempt to extend the traditional Luenberger ob-
server to generate a new VSO scheme, which is robust in
the presence of lumped perturbations. The following main
results have been obtained:

(i) It is unnecessary to design the proposed VSO
through the transformed system model. As a con-
sequence, the difficulty in finding a suitable transfor-
mation or the indirect estimated procedure no longer
exists in the proposed observer design, and the pro-
posed VSO synthesizing procedure is simpler than
the VSO design presented in the literature.

(ii) Based on the generalized matrix inverse approach,
the existence of a sliding mode and the attractiveness
to the sliding surface are ensured.
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Fig. 5. Time responses of system states and estimated states in
a MIMO system: x1(t) and x̂1(t) (a), x2(t) and x̂2(t)
(b), x3(t) and x3(t) (c).

(iii) Using the strictly positive real concept, the stabil-
ity of the equivalent error system has been demon-
strated.

(iv) The proposed VSO bears the invariance property in
relation to lumped perturbation as the traditional slid-
ing mode controller does.

Furthermore, two illustrative examples with a series of
computer simulation studies are given to demonstrate the
effectiveness of the proposed design method.

It is expected that the proposed VSO design is ap-
plicable to many practical applications, such as electrical
power systems, electromechanical systems, computer net-
work systems, etc. Further, it is also expected that the
proposed VSO approach can be extended to other more
complex uncertain nonlinear systems, including a class of

Fig. 6. Time responses of error states in a MIMO system: e1(t),
e2(t) and e3(t).

systems with saturation and/or dead-zone nonlinearity.
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Röbenack, K. and Lynch, A.F. (2006). Observer design using
a partial nonlinear observer canonical form, International
Journal of Applied Mathematics and Computer Science
16(3): 333–343.

Shyu, K.K., Liu, W.J. and Hsu, K.C. (2005). Design of large-
scale time-delayed systems with dead-zone input via vari-
able structure control, Automatica 41(7): 1239–1246.

Slotine, J.J.E., Hedrick, J.K. and Misawa, E.A. (1987). On slid-
ing observers for non-linear systems, ASME Journal of Dy-
namic Systems, Measurement, and Control 109: 245–252.

Spurgeon, S.K. (2008). Sliding mode observers: A survey, Inter-
national Journal of Systems Science 39(8): 751–764.

Sun, X.M., Wang, W., Liu, G.P. and Zhao, J. (2008). Stability
analysis for linear switched systems with time-varying de-
lay, IEEE Transactions on Systems, Man, and Cybernetics.
Part B: Cybernetics, 38(2): 528–533.

Unel, M., Sabanovic, A., Yilmaz, B. and Dogan, E. (2008). Vi-
sual motion and structure estimation using sliding mode
observers, International Journal of Systems Science 39(2):
149–161.

Utkin, V.I. (1992). Sliding Modes in Control and Optimization,
Springer-Verlag, Berlin/Heidelberg.
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