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Drinking Water Distribution Systems (DWDSs) play a key role in sustainable development of modern society. They are
classified as critical infrastructure systems. This imposes a large set of highly demanding requirements on the DWDS
operation and requires dedicated algorithms for on-line monitoring and control to tackle related problems. Requirements
on DWDS availability restrict the usability of the real plant in the design phase. Thus, a proper model is crucial. Within
this paper a DWDS multi-species quality model for simulation and design is derived. The model is composed of multiple
highly inter-connected modules which are introduced to represent chemical and biological species and (above all) their
interactions. The chemical part includes the processes of chloramine decay with additional bromine catalysis and reaction
with nitrogen compounds. The biological part consists of both heterotrophic and chemo-autotrophic bacteria species. The
heterotrophic bacteria are assumed to consume assimilable organic carbon. Autotrophs are ammonia oxidizing bacteria
and nitrite oxidizing bacteria species which are responsible for nitrification processes. Moreover, Disinfection By-Products
(DBPs) are also considered. Two numerical examples illustrate the derived model’s behaviour in normal and disturbance
operational states.

Keywords: multi-species, chloramine, quality, drinking water distribution system, critical infrastructure system.

1. Introduction

Water is a critical factor conditioning the existence of life
on Earth. It also became a fundamental resource without
which the modern society could not develop or even
maintain its current lifestyle. Guaranteeing a common
access to safe water is one of the most important tasks
in each society. This point of view is strongly supported
within the European Union and is guided by the European
law (EU Council Directive, 1998).

Providing access to safe water is not a trivial task.
Drinking Water Distribution Systems (DWDSs) belong
to the group of so-called Critical Infrastructure Systems
(CISs), which are recognised as a source of fundamental
resources, guaranteeing a sustainable development of
the society. It is obvious that to achieve the
above-mentioned goal, appropriate monitoring, control
and security structures as well as algorithms are required.
A DWDS-CIS in general is a large scale complex

system usually spatially distributed over a large area.
The development of mechanisms able to handle such a
dynamical system is not something that can be easily done
at the plant site, which is why having a proper model is
essential.

In the literature several groups of models regarding
DWDS quality may be found. The first type is empirically
derived black box models with parameters laboriously
fit to measurement data in order to obtain a good
measurement explanation and prediction capabilities.
These models are utilised both to explain the process
variables or technological outputs. In the work of
Sadiq and Rodriguez (2004) a comprehensive set of
this type of models was gathered. The second group
consists of dynamic models of first (e.g., Rossman
et al., 1994) or second order (e.g., Clark et al., 2002;
Kohpaei and Sathasivan, 2011). Both groups are broadly
utilised to model the disinfectant decay. The third
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group consists of more sophisticated nonlinear dynamic
models. These are usually utilised to model biological
processes (e.g., the Monod kinetic model—a simplified
structure often used to model biological regrowth). Also
the Disinfection By-Products (DBPs) formation model
belongs to this group. DWDS quality processes most
commonly addressed in literature are the decomposition
of disinfectant (e.g., Rossman et al., 1994; Clark
et al., 2002; Helbling and VanBriesen, 2009), biological
regrowth (e.g., Jegatheesan et al., 2003; Digiano and
Zhang, 2008; Liu et al., 2005b; Shang et al., 2008),
corrosion (Frateur et al., 1999). However, most of
the works that may be found address a single group
of a chemical compound or a biological species with
measurable interaction from other groups.

Joint chemical and biological models of DWDS
quality processes are still rather modestly addressed
in the literature. An example of this type of model
is an aggregated multi-species transportation model of
microorganisms, disinfectant and substrates in water pipes
based on mass balance equations presented by Lu et al.
(1995). However, it lacked some of the key components
perused in this work, e.g., the formation of DBPs.

Shang et al. (2008) studied a chloramine decay
model (originally introduced by Vikesland et al. (2001))
in simulation utilising the EPANET-MSX environment.
Extensive research on chlorine aqueous chemistry may be
found in a review paper by Deborae and von Guten (2008).
A chlorine decay model and the formation of haloacetic
acids in drinking water were addressed by, e.g., Liu and
Qi (2010).

A complex biological regrowth model (based on
Monod kinetics) and its calibration were addressed by
Jegatheesan et al. (2003). A sensitivity analysis of simple
biological regrowth model was performed by Digiano and
Zhang (2008) by applying sensitivity equations. Finding
a numerical solution to a model of bacterial regrowth
in the DWDS environment was studied by Zhang et al.
(2004). Nitrification processes in chloraminated drinking
water were investigated by Liu et al. (2005a; 2005b)
based on a pilot DWDS. Aspects related to biofilm
formation in drinking water were addressed in the context
of Assimilable Organic Carbon (AOC) and Dissolved
Organic Carbon (DOC) impact on the process kinetics in
the work of van der Kooij et al. (1995). A full scale study
on multiple DWDSs towards identifying factors related to
coliform regrowth was presented by LeChevallier et al.
(1996). A combined planktonic and biofilm growth model
was obtained as a result of the TECHNEAU project
(Hammes et al., 2007).

DBP formation was addressed by, e.g., Nokes et al.
(1999), Muellner et al. (2007), Chowdhury et al. (2009) or
Liu and Qi (2010). The cancerogenous effects of DBPs on
human health were discussed by, e.g., Hrudey (2009), Bull
et al. (2011) and the World Health Organisation (2005).

In this work a grey box biochemical model
for simulation and design purposes is developed by
aggregating multiple chemical and biological models
into one highly interconnected structure. The goal of
constructing this model is to derive a dynamic model
structure which will inherit the characteristic of both
chemical and biological dynamics and will introduce a
strong interaction between these two groups (resembling
natural interconnections). It is not the main goal of
the research to obtain a model which could be easily
calibrated and directly applied to solve problems related
to monitoring or control of DWDS quality, but good care
of model parameter validity and some means of obtaining
them are necessary and as such this is addressed in this
work. The main goal of the paper is to capture the class of
dynamics that resembles the DWDS environment and by
doing so will serve as a tool for deriving and verifying
simplified model structures more suitable for solving
tasks related to DWDS on-line monitoring, control (e.g.,
Łangowski and Brdys, 2007; Nowicki et al., 2012). The
authors assume that, if the derived simplified structure can
be tuned to handle tasks in the environment simulated by
utilising the derived ‘full scale’ model, it is very likely
to obtain similar results in practice. This most certainly
will require strong robustness from the derived algorithms
based on simplified structures as the model presented in
this work is defiantly not ‘perfect’. Moreover, exploiting
such a rich dynamic structure can be used to capture (in a
single simulation model) a transition between normal and
disturbance operational states (see Brdys, 2010). This can
prove to be crucial for the development of monitoring and
control mechanisms able to handle the DWDS dynamics
in a wide range of operational conditions.

The original contribution of this work is integration
of chemical and biological models by introduction of
appropriate interactions between them in order to obtain
a biochemical multi-species quality model of the DWDS
environment that maintains the internal stoichiometric
relationships. Moreover, a module accounting for DBP
formation is added as one of the key components.
Furthermore, the so-called technological outputs (e.g.,
total chlorine, DBPs, biomass, DOC, alkalinity, pH)
are introduced as model measurement outputs. The
resulting model has an open structure (Arminski and
Zubowicz, 2011) which makes it relatively easy to add
new mechanisms if necessary.

This paper is organised as follows. In Section 2
a general introduction to mechanisms utilised to model
chemical and biological processes within network
environments of DWDSs is presented. Section 3
addresses the proposed model structure. In Section 4
model formulation is given. Section 6 presents the
simulation experiments, results and discussion. Finally,
Section 7 concludes the paper.
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2. Modelling DWDS quality processes

2.1. Processes implied by the DWDS structure.
The network structure of the DWDS implies that the
processes to be regarded in the model not only change
with time but also depend on the position in space. The
mechanism that guides this phenomenon is represented
by an advective-reactive scheme (e.g., Zhang et al., 2004)
and in general is given by

∂tC
i
j =

{ −vj∂xj C
i
j + Ξi

p, in bulk flow,
Ξi

p, at pipe wall,
(1)

where vj
Δ= vj(t) is the medium velocity, xj is the

distance from the beginning of the j-th pipe, xj ∈[
0; xmax

j

]
, xmax

j is the length of the j-th pipe, Ci
j

Δ=
Ci

j(t, x, vj) is the i-th species concentration in the j-th

pipe, Ξi
p

Δ= Ξi
p(Cj , vj , sj) are the quality processes

dependent on all species concentrations, sj is the contact
surface of the pipe wall, t is time; i iterates the state
variables and j the pipes of the network.

Note that the interaction between the bulk and wall
species is integrated into Ξi

p.
Since DWDS consists also of tanks, the following

model needs to be considered:

dt

(
Ci

jVl

)
= FinCi

inl − FoutC
i
l + VlΞi

l , (2)

where Fin and Fout are the inflow and outflows,
respectively, Ci

inl is the concentration of the i-th species in

the tank inflow, Vl
Δ= Vl(t) is the volume of the medium

contained in the l-th tank, Ξi
l

Δ= Ξi
l(Cl) are the quality

processes dependent on all species concentrations and it
is assumed that they may be different from Ξi

p. Here l -
iterates the tank number.

The quality reaction processes for the pipes can be
described in general as

Ξp = Λ× rp, (3)

where Ξp =
[
Ξ1

p, Ξ
2
p, . . . , Ξ

n
p

]T
and n is the total

number of processes and state variables as well, Λ is

the stoichiometric coefficient matrix, rp
Δ= rp(Cl, vl, sl)

is the fundamental process rate vector and rp =
[r1

p, r2
p, . . . , rz

p]T and z denote the processes involved in
the model. The tanks are treated analogously.

Also the following assumption is made: the
transportation mechanisms are considered only in the
axial direction of the pipe; mixing in the tanks and at
the nodes of the network is considered to be ideal. As
the quality model is highly dependent on the quantity, that
is, the flows and pressures in the DWDS, complimentary
equations are required to obtain a full-scale model. To
keep this work compact, the authors omit this part, which
may be found in, e.g., the work of Brdys and Ulanicki
(1994).

2.2. Chemical reactions. Two types of mathematical
models are utilized to represent chemical reactions,
(Davis and Robert, 2003), namely, kinetic (dynamic) and
equilibrium (static) models. Let us consider a dissociation
reaction

asAs

k1�
k−1

bsBs + csCs, (4)

where As is the reactant, Bs, Cs are the reaction
products, as, bs, cs are reaction coefficients, k1 and
k−1 yield the reaction kinetic constants, which can differ
depending on the direction of the reaction occurrence.

The kinetic model of (4) yields

v = −a−1
s dt [As] = b−1

s dt [Bs] = c−1
s dt [Cs] , (5)

where [·] is the molar concentration of given chemical
species. On the other hand,

v = k1 [As]
ao − k−1 [Bs]

bo [Cs]
co , (6)

where ao, bo, co represent the kinetics order. Note that
if the process is decomposed to elementary reactions
then ao, bo, co representing the kinetics order will be
considered equal to stoichiometric coefficients. Higher
orders are utilised when an approximation of single
or multiple reactions is made due to a fully identified
structure and/or parameters. Utilising (5) and (6) results
in the kinetic model of the substances involved in (4).

Taking v = 0 yields the equilibrium model

K = k1 (k−1)
−1 = [Bs]

bo [Cs]
co [As]

−ao , (7)

where K denotes the ratio of reaction products to reaction
substrate concentrations in a steady state. In chemical
engineering, equilibrium models are parametrized by the
equilibrium constant pK defined as pK = − log10 (K).
This notation is convenient when the influence of pH on
the reaction kinetics is be taken into consideration.

2.3. Biological species. The biological regrowth
model considered in this work is based on the Monod
type kinetics. It is assumed that the bacteria undergo in
general the processes of growth, death, lysis and inhibition
in the presence of disinfection substances. The core model
structure utilised in this study was adopted from the work
by Jegatheesan et al. (2003). It considers of following
specific processes: attachment of live bacteria to pipe
walls, attachment of dead bacteria to pipe walls, detach-
ment of live biofilm bacteria from pipe walls, detachment
of dead biofilm bacteria from pipe walls, free bacteria
growth; biofilm growth, free bacteria mortality, biofilm
mortality, lysis of dead free bacteria, lysis of dead biofilm,
carbohydrates extracellular biosynthesis, protein extra-
cellular biosynthesis, (AOC) bio-hydrolysis, which are
formulated respectively by

dtX
γ
L|attachment = kγ

aXγ
L

(
1 − Xγ

LbX
γ
sat

−1
)

, (8)
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dtX
γ
D|attachment = kγ

aXγ
D

(
1 − Xγ

DbX
γ
sat

−1
)

, (9)

dtX
γ
L|detachment = kγ

dXγ
Lb, (10)

dtX
γ
Db|detachment = kγ

dXγ
Db, (11)

dtX
γ
L|growth = μspecX

γ
L, (12)

dtX
γ
Lb|growth = μγ

spec−bioXLbγ , (13)

dtX
γ
L|mortality = μγ

deathXγ
L, (14)

dtX
γ
Lb|mortality = μγ

death−bioX
γ
Lb, (15)

dtX
γ
D|lysis = (Xγ

D − Xγ
D0) , (16)

dtX
γ
Db|lysis = (Xγ

Db − Xγ
Db0) , (17)

dtXC = k1CXLb
SAOC

k2C + k3CStot
Cl

− kdCXC , (18)

dtXP = k1P XLb
SAOC

k2P + k3P Stot
Cl

− kdP XP , (19)

dtCAOC |hydrolysis = khXL, (20)

where Xγ
L, Xγ

D, Xγ
Lb, Xγ

Db, Xγ
C , Xγ

P are the bacterial
regrowth model state variables given for the γ-th bacterial
species kγ

a and kγ
d are the attachment and detachment

coefficients, respectively, Xγ
sat is the bacteria saturation

concentration, μγ
spec and μγ

spec−bio are the specific growth
rates of the free bacteria and biofilm, respectively, μγ

death

and μγ
death−bio are the mortality rates of the free bacteria

and the biofilm, respectively, kγ
l is the lysis rate constant,

Xγ
D0 and Xγ

Db0 denote dead cells in bulk flow and
biofilm, respectively, k1C , k2C , k3C , kdC and k1P ,
k2P , k3P , kdP are the constants used for carbohydrate
and protein production rates within biofilm of AOC
consuming bacteria, respectively; Stot

Cl denotes the total
disinfectant concentration (chlorine/chloramine); kh is the
SAOC hydrolysis rate constant.

Note that the processes (18)–(20) are only considered
in the case of AOC consuming bacteria. Moreover,
by assumption the processes (10), (11), (13), (15) and
(17)–(19) are not considered in the case of the tank
reactions.

3. Model structure

The quality model derived in this work is conceptually
divided into two main substructures representing the
chemical reactions of the DWDS and the biological
regrowth (Fig. 1).

The quality of water entering the DWDS as well
as changes in the transportation mechanism constitute
the disturbance inputs. Both are denoted by bold
arrows entering the structure. The state variables are
the concentrations of the chemical and biological species
considered in the model. Two distinct types of outputs are
to be defined. The first one constitutes the model state.

Fig. 1. DWDS quality model structure.

The second is the so-called technological output vector
built-up of aggregated measurement accessible quantities
(total chlorine, total DBPs, total biomass, alkalinity and
pH). Both are designated by bold line arrows leaving
the structure. A dotted line arrow entering this structure
represents the initial quality state of the model. A
dashed line arrow crossing the structure indicates the pH
variability.

The core element of the chemical module is the
chloramine decay model and its related interactions
resulting from bromine catalysis and reactions with
nitrogen compounds. The biological model substructure
consists of both heterotrophic (AOC consuming bacteria)
and chemo-autotrophic bacteria species (Ammonia
Oxidizing Bacteria (AOB; Nitrosomonas), and Nitrite
Oxidizing Bacteria (NOB; Nitrobacter)). The latter
are responsible for nitrification processes and their
presence in the model is due to chloramine (the source
of nitrogen) chosen as disinfectant. The interaction
layer constitutes mainly of nutrients and growth limiting
chemical/biochemical substances for the biological
regrowth model and above all DBPs formation processes.
The knowledge of the latter is considered crucial for
proper DWDS quality control.

For the legibility of concept presentation, the DWDS
quality model structure illustrated in Fig. 1 is given
for a single flow independent time-space point of a
DWDS pipe. The full scale quality model formulation is
introduced in Section 4.

4. Model formulation

4.1. Chemical module. Applying chemical
engineering theory (Section 2.1) to modelling practice is
not a trivial task due to the nonlinear nature of phenomena
and their time-varying parameter dependencies such as
temperature and pH (cf., e.g., Pope, 2006).

In this work effort is made to a build dynamic
(kinetic) model describing these dependencies. Although
aqueous chemistry regarding the species of interest
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(Section 3) was investigated in the past (Section 1) not all
the works aim at quantifying these relationships towards
obtaining a dynamic model. The main contributors to this
section are Vikesland et al. (2001) and Duirk et al. (2002).

Note that in aqueous chemistry the dissociation
reactions fall under this category due to their
fast reaction rates, undeniably faster than other
processes. Nevertheless, a consequence of steady-state
approximation is a certain structure error. Therefore
caution is required.

In the following, formulations of the chemical
sub-modules considered (Section 3) are given.

Chloramine. The aqueous chloramines reaction set
(Vikesland et al., 2001) is given by

HOCl + NH3
kCl1−→ NH2Cl + H2O, (21)

NH2Cl + H2O
kCl2−→ NOCl + NH3, (22)

HOCl + NH2Cl
kCl3−→ NHCl2 + H2O, (23)

NHCl2 + H2O
kCl4−→ HOCl + NH2Cl, (24)

2NH2Cl
kCl5−→ NHCl2 + NH3, (25)

NHCl2 + NH3
kCl6−→ 2NH2Cl, (26)

NHCl2 + H2O
kCl7−→ I + 2HCl, (27)

I + NHCl2
kCl8−→ HOCl + N2 + HCl, (28)

I + NH2Cl
kCl9−→ N2 + H2O + HCl, (29)

NH2Cl + NHCl2
kCl1−→ N2 + 3HCl, (30)

where the reaction kinetic constants are as follows:
kCl1 = 1.5 · 1010 M−1 h−1, kCl2 = 7.6 · 10−2 h−1

(Morris and Isaac, 1981), kCl3 = 1.0 · 106 M−1 h−1,
kCl4 = 2.3 · 10−3 h−1 (Margerum et al., 1978), kCl5 =
kCl5,1[H+] + kCl5,2[H2CO3] + kCl5,3[HCO−

3 ] with
kCl5,1 = 4.0 · 104 M−2 h−1, kCl5,2 = 8 · 102 M−2 h−1,
kCl5,3 = 2.5 · 107 M−2 h−1 (Vikesland et al., 2001),
kCl6 = 2.2 · 108 M−2 h−1 (Hand and Margerum, 1983),
kCl7 = 4.0 · 105 M−1 h−1 (Jafvert and Valentine, 1987),
kCl8 = 1.0 · 108M−1h−1, kCl9 = 3.0 · 107 M−1 h−1,
kCl10 = 55.0 M−1 h−1 (Leao, 1981).

The resulting disinfectant (chloramine) sub-module
(Fig. 1) is represented by state vector CCl(t) defined as

CCl (t)
Δ=

[
[HOCl] +

[
OCl−

]
, [NH3] +

[
NH+

4

]
,

[NH2Cl] +
[
NH3Cl+

]
, [NHCl2] , [I]

]T
,

(31)

where monochloramine [NH2Cl], dichloramine
[NHCl2], their cations [NH3Cl] and hypochlorous
[HOCl] acid as well as [OCl−] ions constitute the group

of disinfecting species, [NH3] denotes ammonia, [NH+
4 ]

represents ammonia cations, [I] is an artificial compound.
The disinfectants are formed in a set of dichloramine

decay reactions where at each stage chlorine reduction
occurs. Two exceptions are hypochlorous ions and
dichloramines cations. The former are a result
of dissociation of hypochlorous acid. The latter
result of the absorption of dissolved protons. The
dichloramines are formed in the reaction of disproportion
of monochloramine. The omitted reactions paths are
compensated within the overbalance by introducing the
artificial compound [I] (Vikesland et al., 2001).

Hydrogen ions. (Accounting for pH variability) To
account for the pH changes in the DWDS environment,
a hydrogen ion count was implemented. Due to different
speeds of contributing reactions, an equilibrium model
was proposed as in the work of Snoeyink and Jenkins
(1980). It consists of the following dissociation reactions:

HOCl
K1

� H+ + OCl−, (32)

NH+
4

K2

� NH3 + H+, (33)

H2CO3

K3

� HCO−
3 + H+, (34)

HCO−
3

K3

� CO2−
3 + H+, (35)

where K1 = 10−7.5 M−1, K2 = 10−9.3 M−1, K3 =
10−6.3 M−1, K4 = 10−10.3 M−1 (Snoeyink and Jenkins,
1980).

Although this group does not introduce explicitly
new state variables, implicitly an assumption on the
existence of a state variable defined by CH arises:

CH
Δ=

[[
H+

r

]
, [H2CO3] +

[
HCO−

3

]
+

+
[
CO2−

3

]
, 2

[
Ca2+

]
+ other

]T
,

(36)

where [H+
r ] are the hydrogen ions resulting from

reactions, [H2CO3], [HCO−
3 ],[CO2−

3 ] represent
carbonates, [Ca2+] + other denotes cations of carbonate
species.

Since it would be hard to account for all the hydrogen
ions in even the smallest DWDS, an incremental model
is proposed. [H+

r ] denotes the difference in the number
of hydrogen ions introduced due to quality processes
thus resulting in pH variability. The existence of the
second and third state variable is required to describe
the carbonate buffer resulting from the dissociation
mechanism given by (32)–(35).

Inorganic carbon. The InOrganic Carbon (IOC)
fraction in the model is composed of the carbonate acid
and carbonate ions (36), the second variable in CH . It
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has a broad influence on the model internal dynamics as
it affects the pH levels, the mechanism of disproportion
reaction within the monochloramine group (25) and
the bacteria assimilation processes during nitrification
(Section 4.2).

Nitrogen ions. The main contributors to nitrogen
ion formation are biological nitrification processes
(Section 4.2). Nitrogen ions are responsible for
decomposition of chloramines and, by doing so, for
disrupting the their disinfection potential. This is why
the concentration of this species should be kept as low
as possible to prevent biological instability. Keeping track
of this group’s behaviour is one of the crucial indicators
during the development of DWDS control strategies.

The nitrogen ions reaction paths are as follows
(Vikesland et al., 2001):

H+ + NH2Cl + NO−
2 −→ NH3 + NO2Cl, (37)

NH3 + NO2Cl −→ H+ + NH2Cl + NO−
2 (38)

NO2Cl + NO−
2 −→ N2O4 + Cl−, (39)

N2O4 + Cl− −→ NO2Cl + NO−
2 , (40)

N2O4 + OH− −→ NO−
3 + NO−

2 + H+, (41)

NO2Cl −→ NO+
2 + Cl−, (42)

NO+
2 + Cl− −→ NO2Cl, (43)

NO+
2 + OH− −→ NO−

3 + H+, (44)

Due to limited knowledge of the kinetic constants, a
steady state approximation has been utilised as in the work
of Vikesland et al. (2001). The integrated reaction rate is

RN =kN1

[
NO−

2

] [
H+

]
[NH2Cl]

×
[
NO−

2

]
kN2 + 1

kN3 [NH3] + kN2

[
NO−

2

]
+ 1

,
(45)

where RN denotes the aggregated nitrogen group reaction
rate with the following set of constants: kN1 = 4.90 ·
1010 M−2 h−1, kN2 = 217 M−1 (Margerum et al.,
1994), kN3 = 5.5 · 105 M−1 (Johnson and Margerum,
1991).

In consequence, a new state variable CN is
introduced:

CN
Δ=

[
NO−

2

]
. (46)

Incorporating nitrogen ions into the model structure
enables keeping track not only of the normal, but also of
disturbance operational condition (Section 3).

Bromine ions. Bromine ions constitute catalysing
species for the chloramine decomposition. The set of
reactions paths considered for this group is as follows:

NH2Cl + H+ KBr1� NH3Cl+, (47)

NH3Cl+ + Br− kBr1−→ NH2Br + Cl− + H+, (48)

NH2Cl + NH3Br+ fast−→ NHBrCl + NH+
4 , (49)

HOCl + Br− kBr2−→ HOBr + Cl−, (50)

HOBr + NH2Cl
kBr3−→ NHBrCl + H2O, (51)

OBr− + NH2Cl
kBr4−→ NHBrCl + OH−, (52)

NHBrCl + NH2Cl
fast−→ N2 + Br− + 2Cl− + 3H+,

(53)

HOBr
KBr2

� OBr− + H+, (54)

where kBr1 = 1.8 · 108 M−1 h−1 (Trofe et al., 1980),
kBr2 = 5.1 ·105 M−1 h−1 (Bousher et al., 1986), kBr3 =
7.92·107 M−1 h−1, kBr4 = 1.03·109 M−1 h−1, KBr2 =
M−1 (Gazda and Margerum, 1994), KBr1 = 28 M−1

(Gray et al., 1978).
The corresponding state vector CBr is defined as

CBr
Δ=

[[
Br−

]
, [HOBr] +

[
OBr−

]]T
. (55)

The bromine ions are considered to be persistent species
having a catalytic effect on the decay of monochloramine.
It is assumed that their concentration depends on the
quality of water entering the DWDS and, as such it
regarded to be a disturbance input.

Finally, the chemical module of the derived model is
described by a state vector CCh defined as

CCh
Δ=

[
CT

Cl,C
T
H ,CT

N ,CT
Br

]T
. (56)

The presented chemical module in its current shape
omits the reactions with the pipe walls.

4.2. Biological regrowth. In order to specify the
biological regrowth model (Section 3.2), γ needs to

be identified. Therefore, γ ∈ Γ and Γ Δ=
{AOC, AOB, NOB}. Moreover, for each γ the specific
growth and death rates need to defined, which will be done
in the sequel.

AOC consuming bacteria. Heterotrophic bacteria
species (assumed to consume AOC) follow the
general mechanisms given in Section 2.3 acquired
from Jegatheesan et al. (2003). To specify this general
mechanism, the specific growth rates (μγ

spec and
μγ

spec−bio) and death rates (μγ
death and μγ

death−bio) need
to be defined for both planktonic and biofilm forms.
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Based on Jegatheesan et al. (2003), with γ = AOC,
μAOC

spec and μAOC
spec−bio are given as follows:

μAOC
spec

Δ=
μAOC

max

kgClStot
Cl

SAOC

SAOC + KAOC
, (57)

μAOC
spec−bio

Δ=
μAOC

max−bio

kgClStot
Cl

SAOC

SAOC + KAOC
, (58)

where μAOC
max and μAOC

max−bio are the maximum growth
rates of bulk and biofilm species, respectively, and
μAOC

max = 0.528 d−1, μAOC
max−bio = 0.0528 d−1

(Jegatheesan et al., 2003), SAOC is the assimilable
organic carbon concentration in [mg-C/L], KAOC is the
half-saturation constant and KAOC = 0.1mg-C/L, kgCl

is the inhibition kinetic constant due to disinfection and
kgCl = 1.5L/mg-Cl, Stot

Cl is the total disinfectant in
[mg-Cl/L], whereas μAOC

death and μAOC
death−bio are defined as

μAOC
death

Δ=
(
km + kmClStot

Cl

)

× exp
(
− kmAOCSAOC

SAOC + KmAOC

)
, (59)

μAOC
death−bio ≡μAOC

death, (60)

where km, kmCl, KmAOC and kmAOC are kinetic
constants building up the bacteria death rate and km =
0.04 d−1, kmCl = 0.25 · km, KmAOC = 0.5mg-C/L,
kmAOC = 1.0. To complete the specification, the
following set of constants (Jegatheesan et al., 2003)
needs to be in place: kAOC

a = 0.00082 d−1, kAOC
d =

0.00097 d−1, kAOC
l = 0.01 d−1, k1C = 6.3 ·

10−7 m3 d−1, k2C = 27.3, k3C = 0.055 m3 g−1, kdC =
1.43 g · m−2 d−1, k1p = 5.81 · 10−8 m3 d−1, k2p = 8.54,
k3p = 41.5 m3 g−1, kdp = 9.92 g · m−2 d−1, kh =
1 · 10−12 g · cell−1 d−1, XAOC

sat = 4 · 1010cells · m−2,
XAOC

D0 = 0 cells ·m−3 d−1, XAOC
Db0 = 0cells ·m−2d−1.

The contribution of the regarded bacteria group to the
global state vector is as follows:

CAOC
X

Δ=
[
XAOC

L , XAOC
Lb , XAOC

D ,

XAOC
Db , XAOC

c , XAOC
p

]T
.

(61)

Ammonia and nitrate oxidizing bacteria. The specific
growth rates characterising the AOB and NOB species
(γ = AOB and γ = NOB respectively) are as follows
(Liu et al., 2005a; 2005b):

μAOB
spec

Δ= μAOB
max

SNH3

SNH3 + KNH3

× KNH2Cl

KNH2Cl + SNH2Cl

SDO

KO2 + SDO
,

(62)

μAOB
spec−bio

Δ= μAOB
max−bio

SNH3

SNH3 + KNH3

× KNH2Cl

KNH2Cl + SNH2Cl

SDO

KO2 + SDO
,

(63)

μNOB
spec

Δ= μNOB
max

SNO2

SNO2 + KNO2

× KNH2Cl

KNH2Cl + SNH2Cl

SDO

KO2 + SDO
,

(64)

μNOB
spec−bio

Δ= μNOB
max−bio

SNO2

SNO2 + KNO2

× KNH2Cl

KNH2Cl + SNH2Cl

SDO

KO2 + SDO
,

(65)

where μAOB
max , μAOB

maxbio, μNOB
max , μNOB

max−bio are the
maximum planktonic and biofilm growth rates for AOB
and NOB bacteria and μAOB

max−bio = 0.4 d−1 (Antonious,
1989), μNOB

max−bio = 0.55 d−1 (Metcalf et al., 1978),
μAOB

max = 10μAOB
max−bio, μNOB

max−bio = 10 (Jegatheesan
et al., 2003), SNH3 is the ammonia concentration in
[mgN/L], KNH3 is the ammonia half-saturation constant
and KNH3 = 0.2mg-N/L (Antonious, 1989), SNH2Cl

is chloramines concentration in [mg Cl/L], KNH2Cl is
the chloramines half-saturation constant and KNH2Cl =
0.5mg-Cl/L (Liu et al., 2005a), SDO is the dissolved
oxygen concentration in [mg/L]; KO2 is the oxygen
half-saturation constant and KO2 = 0.4mg/L (Williamson
and McCarty, 1976); SNO2 is the nitrite concentration in
[mgN/L]; KNO2 is the nitrite half-saturation constant and
KNO2 = 1.2mg-N/L (Metcalf et al., 1978).

It is assumed that the die-off mechanism of AOB and
NOB species is analogous to the case of AOC species. The
same assumption holds for kinetic constants related to the
mechanisms such as attachment, detachment etc.

Introducing AOB and NOB bacteria species requires
defining the following state vectors:

CAOB
X

Δ=
[
XAOB

L , XAOB
Lb , XAOB

D , XAOB
c , XAOB

p

]T
,

(66)

CNOB
X

Δ=
[
XNOB

L , XNOB
Lb , XNOB

D , XNOB
c , XNOB

p

]T
.

(67)

Finally, the following holds:

CBio
Δ=

[
CAOC

X

T
,CAOB

X

T
,CNOB

X

T
]T

. (68)

4.3. Biochemical interactions. The interactions
between the chemical and biological modules within the
model constitute the biochemical interface layer (see
Section 3). This specific group consists of all substrates
utilised by bacteria as nutrients as well as the substances
limiting their growth and those being the products of
biochemical reactions catalysed by bacteria.

Inhibition. The inhibition process limits the bacterial
growth by blocking the transportation mechanisms of
nutrients into their cells. The rate of this process
is controlled by the disinfectant concentration levels.
It is considered to be a control input of the DWDS
quality model to be exploited by the control algorithms
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being derived. During this process, chlorine/chloramines
concentration is not directly affected. Nevertheless, by
increasing the bacterial die-off the disinfectant present in
the medium reacts with the organic matter released from
the dead bacteria. This is why the presence of bacteria
in the DWDS deteriorates the disinfectant levels. The
influence of disinfectant concentration on the lifecycle of
AOC, AOB and NOB bacteria species was introduced in
Section 4.2 (see (57)–(60) and (62)–(65)).

Two step nitrification process. Since chloramine is a
source of nitrogen, it serves as a nutrient source for
AOB and NOB species. Therefore, the nitrification
process is a very important interaction to account for
when considering this disinfectant (Section 4.2). The
implemented two-step nitrification mechanism interacts
with aqueous chemistry according to Liu et al. (2005a;
2005b):

NH3 + CO2 + 1.5O2
AOB−→ NO−

2 + H2O + H+, (69)

NO−
2 + CO2 + 0.5O2

NOB−→ NO−
3 . (70)

The AOB bacteria increase the nitrite (NO−
2 ) levels,

which results in a faster decay of chloramine. This
produces ammonia (NH3) which is a nutrient for AOB
species. Also NOB species are affected by increased
levels of nitrite. Both bacteria species interact with the
multi stage reaction of the chloramines and nitrogen group
(Section 4.1). In unfavourable circumstances this can
trigger positive feedback between both groups, resulting
in bacterial destabilisation—transition from the normal to
the disturbance operational state.

Nutrients. Nutrient count, crucial for the bacterial
regrowth module, is modelled by mass balance equations.
This requires the following constants to be defined:
bacterial cell to carbon count B1 = 0.5 · 1013cell/mg-C
(Bitton, 1998), volatile suspended solids (VSS) to
cell count B2 = 3.70 · 109cell/mg-C (McKinney,
2004)) and a set of yield coefficients: YAOC =
0.2mg/mg-C (Jegatheesan et al., 2004), YNH3 =
0.19mgVSS/mgNH3 − N (Metcalf et al., 1978), YNO2 =
0.2mg VSS/mgNO2 − N (Poduska and Andrews, 1974),
which determine the increase in the bacteria mass per unit
of the substrate utilised. This mass balance relationships
result in additional state vector elements defined as

CSubs
Δ= [SAOC , SBDOC , SnBDOC , SDO]T , (71)

where SAOC , SBDOC , SnBDOC are the assimilable
organic carbon, biodegradable organic carbon and
non-biodegradable organic carbon (counted as [mg-C/L])
respectively.

Disinfection by-products. DBPs formed during
drinking water chlorination/chloramination most widely
addressed in the literature consist of compounds
such as TriHaloMetanes (THMs), HaloAcetic Acids
(HAAs), HaloAcetoNitrils (HAN) (e.g., Nokes
et al., 1999; Muellner et al., 2007; Chowdhury
et al., 2009; Liu and Qi, 2010). The importance of
accounting for DBPs results from the impact that
these compounds exert on human health. Most of
them are recognised to have strong cancerogenous
effects. According to Hong et al. (2008) during water
chloramination the dominant DBPs formed are HAAs.
The effects of dihaloacetic acids (component of HAAs)
on human health have been widely discussed in the World
Health Organisation (WHO) Guidelines for Drinking
Water Quality report (World Health Organisation, 2005).

Modelling the HAA formation is not an easy task due
to numerous reaction paths, some of which remain still
non fully identified.

Hence, a simplified model based on the work of
Duirk et al. (2002) was utilised for this purpose:

NH2Cl + DOCr1
kD1−→ products, (72)

NH2Cl + DOCr2
kD2−→ products, (73)

where DOCr1 and DOCr2 denote the fast and slow
reacting DOC fractions, respectively, kD1 = 0.9 ·
104 M−1 h−1 (Duirk et al., 2002); kD2 = kD2,2 pH2 −
kD2,1 pH + kD2,0, kD2,2 = 75.89 M−1 h−1, kD2,1 =
−1272 M−1 h−1, kD2,0 = 5389 M−1 h−1are acquired
as an quadratic interpolation of the results presented by
Duirk et al. (2002).

In order to implement the pH variability, a quadratic
interpolation mechanism was proposed to extend the
results of (Duirk et al., 2002).

The additional state variables are as follows:

CDBPs
Δ= [[DOCr1] , [DOCr2] , [HAA]]T , (74)

where CDBPs is the state vector of the DBP module,
[HAA] is the total molar haloacetic acids concentration.

At this point it is clear that, to couple the DBPs
formation model with the overall structure, a proper
fractioning mechanism is required to divide DOC into
[DOCr1]and [DOCr2], which is quite different from the
fractioning required by the biological regrowth model.
For the sake of legibility the mentioned mechanism is
addressed in the forthcoming paragraph.

Dissolved organic carbon fractioning. Keeping model
mass balance implies that the stoichiometric relationships
within the model should be respected. Since both
biological and biochemical species require different DOC
fractioning, a proper mechanism needs to be designed.
Biochemical group (DBPs formation) fractions the DOC
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Fig. 2. DOC double-side fractioning mechanism scheme.

based on the reactivity into two groups of fast and slow
reacting DOCs. The bacterial regrowth model requires
that the DOC be fractioned into three groups: AOC,
BDOC and nBDOC (Fig. 2). A direct implementation of
this mechanism would result in obtaining a time-varying
structure of DOC, which could be hard to implement. This
is why the information is kept as a sum of each fraction
separately with a proper balance handling mechanism
in place. An assumption is made here that the newly
formed compounds are proportionally distributed among
the fractions according to S1 and S2. The consumption of
DOC reduces the fraction content proportionally to their
concentration according to

dt [DOCr1] =S1dt

(
Stot

DOC

)
+
− RDBP1

− [DOCr1]Stot
DOC

−1
dt

(
Stot

DOC

)
− ,

(75)

dt [DOCr2] =S2dt

(
Stot

DOC

)
+
− RDBP2

− [DOCr2]Stot
DOC

−1
dt

(
Stot

DOC

)
− ,

(76)

where S1 = 1.66 · 10−1mol/mg, S2 = 1.25 · 10−5mol/mg
(Duirk et al., 2002), RDBP1 and RDBP2 are the (72) and
(73) reaction rates, respectively, Stot

DOC is a sum of the
DOC mass [mg/l], dt(Stot

DOC)− and dt(Stot
DOC)+, [mg/h],

are the positive and negative variations in chemical DOC
fractioning exerted by the bacterial regrowth module.

Finally, the following holds:

CInter
Δ=

[
CT

DBPs,C
T
Subs

]T
, (77)

where CInter is the interaction state vector.

4.4. Model internal state, inputs and outputs. Since
by now all the modules have been introduced, a proper
definition of the state vector, inputs and outputs is
possible.

Let us start by defining a single space point quality
vector:

C Δ=
[
CT

Ch,CT
Bio,C

T
Inter

]T
. (78)

The derived model output is composed of two parts. The
first is the part given by the internal state. The second
are the technological outputs that aggregate the internal
process:

Υ Δ=
[
ΥT

state,Υ
T
tech

]T
, (79)

where
Υstate ≡ C (80)

and

Υtech
Δ=

[
Stot

Cl , SDBPs, SX , SDOC , Alk, pH
]T

, (81)

Stot
Cl is the total chlorine concentration, in [mg Cl/L],

calculated as a sum of all chlorine ions at the
first oxidation level, SDBPs is the total disinfection
by-products concentration in [mg Cl/L], SX is the total
biomass concentration in bulk flow [mg C/L], SDOC is
the dissolved organic carbon concentration in [mg C/L],
Alk is alkalinity calculated as Alk = [HCO3−] +
2[CO2

3−] + [NH3]. There are two types of inputs. The
first one is the control input which is the dosing of the
disinfectant. The second one is the disturbance input, in
the form of water quality entering the DWDS.

The overall model can be formulated by taking Eqns.
(1) and (2) with definitions of processes presented in
Sections 4.1–4.3 (according to general mechanisms given
in Section 2) and (75)–(81) combined with the hydraulic
model given, e.g., by Brdys and Ulanicki (1994).

5. Note on uncertainty

In this section a brief introduction of key elements that
contribute to the model uncertainty levels is made. Some
preliminary hints on model parameter identification are
given as well.

Chemical module uncertainty results in general from
reaction path determination. Even a single chemical
reaction may consist of a series of transformations (e.g.,
Deborae and von Guten, 2008). Determining these
requires usually well prepared laboratory experiments.
Finding a unique solution is not guaranteed as these
mechanisms strongly depend on the environmental
conditions such as temperature and pH. In chemical
engineering, when the reactions are very fast or their
paths are not well identified, a steady state (equilibrium)
approximation (based on the reaction rates) is usually
applied. As a result, a simplified model structure is
obtained. Although the resulting model is easier to handle
both analytically and computationally, it comes at the
cost of introducing additional uncertainty. Nevertheless,
coupled handling of this simplified structure along with
remaining dynamic equations still enables the model to
work in a wide range of conditions with only some
imprecision during a rather short period of transients
due to differences in time constants. Therefore, factors



580 K. Arminski et al.

influencing the uncertainty of the chemical module result
from the structural error due to omitted reaction paths
(considered unknown according to the state of the art),
equilibrium simplifications and neglected temperature
effects. This is also the case of the biochemical part,
namely, DBPs.

In the case of the biological module, the Monod
kinetic model was applied. The advantage is that it
remains less computationally demanding (in the context
of DWDS environment simulation) than the precise cell
models of life processes (e.g., Myszor and Cyran, 2013).
However, this comes at the cost of structural uncertainty
and has also a consequence for parameter identification.

Regarding the parameter identification, two different
approaches can be applied: to perform a laboratory test
to determine precise structure and identify its parameters
(e.g., Vikesland et al., 2001), to propose the structure
a priori and then tune its parameters (e.g., Clark et al.,
2002). This results in white and grey box models,
respectively. The derived chemical module is composed
of a hybrid of both these types. Therefore, parameter
tuning is actualy crucial in the case of sub-modules of
the latter type. The biological module is represented by
models derived based on the second approach. Therefore,
parameter identification should be performed for each
DWDS individually (e.g., LeChevallier et al., 1996).
Since a DWDS is usually distributed over a large area,
to obtain a more accurate model, one can consider
the parameter identification process to be performed
regionally throughout a given DWDS.

To decrease the level of uncertainty in the derived
model parameter values, an extensive literature study was
conducted to acquire parameters from works with rich
experimental background.

6. Simulation experiments

In this section two numerical examples are given to
illustrate the model behaviour in normal and disturbance
operational conditions. The latter is considered to occur
due to bacteriological instability.

Example 1. This example illustrates the model behaviour
during the DWDS (Fig. 3) normal operation. To reduce
the influence of the initial conditions, the results shown in
this experiment are displayed after the period of around 20
days of simulation. In Fig. 4 the time trajectories of the
total chlorine SCl−tot, disinfection by-products DBPs,
the total biomass X and pH for two distinct disinfection
scenarios are given.

The two scenarios are characterised by constant
chloramine dosing at the level of SNH2Cl = 1.7mg-Cl/L
and SNH2Cl = 0.34mg-Cl/L, respectively. The injection
point is the network node 1 (Fig. 3). The higher
disinfectant dosing profiles are clearly visible in the total
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Fig. 3. EPANET DWDS layout example.
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Fig. 4. Normal operational conditions.

chlorine and DBPs trajectories. The considerable increase
in the concentration of the latter is clearly visible (Fig. 4).
On the other hand, an increase in disinfectant levels lowers
the total biomass concentration due to inhibition. The
variations in pH levels are due to changes in oxidising
properties of the disinfectant. The obtained results are
consistent with the experimental knowledge reported in
the literature.

In all the plots (Fig. 4) the abrupt changes in the
trajectories illustrate the impact of the transportation
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mechanism (mainly tank operation).

Example 2. This example illustrates bacterial instability
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Fig. 6. Bacterial instability within Gdynia DWDS.

within the Gdynia DWDS (Fig. 5) due to a nitrification
event based on the tank quality measurements. For
comparison, the nitrification results are plotted against
the ones obtained with the input scenarios 1 and 2. The
chlorine input node and the monitoring node are indicated
in Fig. 5.

In Fig. 6 a comparison of disinfectant decomposition
is shown. Although the initial concentration of
disinfectant in the current trial was higher than in
Example 1, it was swiftly decreased to an even lower level.
This is a consequence of newly triggered processes of
nitrification being a part of the model internal dynamics.

As illustrated in Fig. 6, the first step of the
nitrification process is triggered at around the 5-th hour.
At this time, ammonia concentration reaches levels high
enough to accelerate multiplication of AOB bacterial
strain. This event decreases the disinfectant concentration
due to the nitrite being produced as a product of a
biochemical reaction carried by AOB species. Nitrite

causes the chloramine decay rate to accelerate, although
the latter concentration in the influent water is still kept at
a high level. The rate of nitrate reactions with chemical
species is much faster than with NOB bacteria, which
actually reduces the population of the latter. Ultimately,
the significantly lowered levels of disinfectant result in
triggering the AOC bacteria species to accelerate their
growth as well.

In Fig. 6 a comparison of the total biomass
trajectories obtained in a normal operational state against
the nitrification scenario trajectory is presented. Clearly,
the inhibitory effect of chloramine in the case of highly
active nitrification is significantly reduced although its
input concentration is kept at higher a level than in the
normal operational conditions.

A consequence of the nitrification processes being
triggered is the undesired (regarding DWDS operational
objectives) decrease in pH levels (see Fig. 6).

The obtained results are consistent with the
observation made during daily operation of the DWDS
reported, e.g., by Liu et al. (2005a; 2005b).

This example illustrates the derived model’s
capabilities to handle also disturbance operational
states. The experiment clearly indicated that nitrification
occurrence indeed has impact on the pH levels that affect
all the aqueous chemistry by shifting the reaction kinetics.
This shows that the application of linear kinetic models
with stationary parameters is not a valid solution to handle
a wide range of operational states. This has a significant
consequence for the development and verification of
monitoring, control and security algorithms.

To conclude, two distinct simulation examples were
shown to illustrate normal and disturbance operational
states captured within internal model dynamics. For
this purpose, two distinct DWDSs were exploited (each
representing a different level of structural complexity).
The examples illustrate that by utilising the derived model
it can be possible to develop and validate monitoring,
control and security algorithms able to handle a wider
range of operational conditions than in the case of utilising
a standard linear model with stationary parameters.
Moreover, the developed algorithms can be designed
in a manner that will prevent (the usually unpredicted)
transitions to disturbance operational states due to the
inappropriate control applied. Although the structure
of this model is highly complex, which makes its
direct application for monitoring, control and security
model-based algorithms inappropriate, it can serve as
a template to derive structures more suitable for these
purposes. The numerical results were obtained utilising
EPANET 2.0 (Rossman, 2000) multi-species extension
(Shang and Rossman, 2011).
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Monitoring
tank node

Fig. 5. Layout of the Gdynia DWDS.

7. Conclusions

This paper addressed the problem of modelling the
advective transportation of reacting biochemical species
within the DWDS. An integrated model structure was
proposed to incorporate processes of disinfectant decay,
biological regrowth, disinfection by-products formation
and, above all, their complex interactions. This results in
a high nonlinearity of the reactive part. Model parameters
were obtained from experimental results published in the
literature.

The goal of the work was to introduce a proper
means of the development of on-line monitoring, control
and security algorithms and their verification. Although
the direct application of the full scale model proposed
in this paper can be found computationally costly, it
may serve well as a template for deriving reduced model
structures more suitable for these purposes. Nevertheless,
the full scale model itself can be utilised as a simulation
tool for verification the monitoring, control and security
algorithms purposes, as it is capable of simulating
both normal and disturbance DWDS operational states
and some of the possible transitions between them, as
illustrated in Section 6.

The on-going research is to add a sub-module to
account for the security operational states (Brdys, 2010).
This, however, to be done properly, will require a
dedicated simulation environment able to accommodate
features resulting from specific characterisation of the
security operational state, e.g., to enable access to model
internal states and introduce proper inputs and interactions
with the existing modules.
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Bitton, G. (1998). Formula Handbook for Environmental Engi-
neers and Scientists, John Wiley and Sons, New York, NY.

Bousher, A., Brimblecombe, P. and Midgley, D. (1986). Rate
of hypobromite formation in chlorinated seawater, Water
Research 20(7): 865–870.

Brdys, M. (2010). Intelligent monitoring and control
for critical infrastructure systems and application to
integrated wastewater treatment systems, 12th IFAC Sym-
posium on Large Scale Systems: Theory and Ap-
plications, Lille, France, Vol. 9, pp. 2–12, DOI:
10.3182/20100712-3-FR-2020.00003.

Brdys, M. and Ulanicki, B. (1994). Operational Control of
Water Systems: Structures, Algorithms and Applications,
Prentice Hall Int, Upper Saddle River, NJ.

Bull, R.J., Reckhowb, D.A., Li, X., Humpaged, A.R., Joll, C.
and Hrudeyc, S.E. (2011). Potential carcinogenic hazards
of non-regulated disinfection by-products: Haloquinones,
halo-cyclopentene and cyclohexene derivatives,
n-halamines, halonitriles, and heterocyclic amines,
Toxicology 286(1): 1–19, DOI:10.1016/j.tox.2011.05.004.

Chowdhury, S., Champagne, P. and McLellan, P.J. (2009).
Models for predicting disinfection byproduct (DBP)
formation in drinking waters: A chronological review,
Science of the Total Environment 407(14): 4189–4206,
DOI:10.1016/j.scitotenv.2009.04.006.

Clark, R. M., and Sivaganesan, M. (2002). Predicting
chlorine residuals in drinking water: Second order model,
Journal of Water Resources Planning and Management
128(2): 152–151.

Davis, M. and Robert, J.D. (2003). Fundamentals of Chemical
Reaction Engineering, McGraw-Hill, New York, NY.



A biochemical multi-species quality model of a drinking water distribution system. . . 583

Deborae, M. and von Guten, U. (2008). Reactions of
chlorine with inorganic and organic compounds
during water treatment kintetics and mechanisms:
A critical review, Water Research 42(1–2): 13–51,
DOI:10.1016/j.watres.2007.07.025.

Digiano, F. and Zhang, W. (2008). Uncertainty analysis
in a mechanistic model of bacterial regrowth in
distribution system, Environmental Science & Technology
38(22): 5925–5931, DOI:10.1021/es049745l.

Duirk, S., Gombert, B., Choi, J. and L., V.R. (2002).
Monochloramine loss in the presence of humic acid, Jour-
nal of Environmental Monitoring 4(1): 85–89, DOI:
10.1039/b106047n.

EU Cost Action IC0806-IntelliCIS (2008). Memorandum
of Understanding, 7th Framework Program,
http://www.intellicis.eu.

EU Council Directive (1998). Council Directive
98/83/EC of 3 November 1998 on the Quality
of Water Intended for Human Consumption,
http://eur-lex.europa.eu.

Frateur, I., Deslouis, C., Kiene, L., Levi, Y. and Tribollet, B.
(1999). Free chlorine consumption induced by cast iron
corrosion in drinking water distribution systems, Water Re-
search 33(8): 1781–1790.

Gazda, M. and Margerum, D.W. (1994). Reactions
of monochloramine with br2, br-3, hobr, and obr-:
Formation of bromochloramines, Inorganic Chemistry
25(19): 118–123.

Gray, J.E.T., Margerum, D.W. and Huffman, R.P.
(1978). Chloramine equilibria and the kinetics of
disproportionation in aqueous solution, in F.E. Brinckman
and J.M. Bellama (Eds.), Organometals and Organomet-
alloids: Occurrence and Fate in the Environment, ACS
Books, Washington, DC, pp. 264–277.

Hammes, F., Vital, M., Egli, T., Rubulis, J. and Juhna,
T. (2007). Modeling planktonic and biofilm growth
of a monoculture (p. fluorescens) in drinking
water, TECHNEAU Project Deliverable 5.5.9,
http://www.techneau.org/fileadmin/files/
Publications/Publications/Deliverables/
D5.5.9.pdf

Hand, V.C. and Margerum, D.W. (1983). Kinetics and
mechanisms of the decomposition of dichloramine
in aqueous solution, Inorganic Chemistry
22(10): 1449–1456, DOI: 10.1021/ic00152a007.

Helbling, D. and VanBriesen, J. (2009). Modeling
residual chlorine response to a microbial contamination
event in drinking water distribution systems, Jour-
nal of Environmental Engineering 135(10): 918–927,
DOI:10.1061/(ASCE)EE.1943-7870.0000080.

Hong, Y., Liu, S. and Karanfil, T. (2008). Understanding DBP
formation during chloramination, Florida Water Resource
Journal 60(4): 51–53.

Hrudey, S.E. (2009). Chlorination disinfection by-products,
public health risk tradeoffs and me, Water Research
43(8): 2057–2092, DOI:10.1016/j.watres.2009.02.011.

Jafvert, C.T. and Valentine, R.L. (1987). Dichloramine
decomposition in the presence of excess ammonia, Water
Research 21(8): 967–973.

Jegatheesan, V., Kastl, G., Fisher, I., Chandy, J. and Angles,
M. (2003). Water quality modelling for drinking water
distribution systems, International Congress on Modelling
and Simulation, Townsville, Australia, pp. 332–337.

Jegatheesan, V., Kastl, G., Fisher, I., Chandy, J. and Angles,
M. (2004). Modeling bacterial growth in drinking water:
Effect of nutrients, Journal of AWWA (American Water
Works Association) 96(5): 129–141.

Johnson, D.W. and Margerum, D.W. (1991). Non-metal redox
kinetics: A reexamination of the mechanism of the reaction
between hypochlorite and nitrite ions, Inorganic Chemistry
30(25): 4845–4851.

Kohpaei, A. and Sathasivan, A. (2011). Chlorine decay
prediction in bulk water using the parallel second
order model: An analytical solution development,
Chemical Engineering Journal 171(1): 232–241,
DOI:10.1016/j.cej.2011.03.034.

Leao, S.F. (1981). Kinetics of Combined Chlorine: Reac-
tion of Substitution and Redox, Ph.D. thesis, University of
California, Berkeley, CA.

LeChevallier, M., Welch, N. and Smith, D.B. (1996).
Full-scale studies of factors related to coliform regrowth in
drinking water, Applied and Environmental Microbiology
62(7): 2201–2211.

Liu:2005a Liu, S., Taylor, J., Randall, A.A. and Dietz,
J. (2005a). Nitrification modeling in chloraminated
distribution systems, American Water Works Association
97(10): 98–108.

Liu, S., Taylor, J.S. and Webb, D. (2005b). Water quality
profiles during nitrification in a pilot distribution system
study, Water Supply: Research and Technology—Aqua
54(3): 133–145.

Liu, W. and Qi, S. (2010). Modeling and verifying
chlorine decay and chloroacetic acid formation in
drinking water chlorination, Frontiers of Environmen-
tal Science & Engineering in China 4(1): 65–72,
DOI:10.1007/s11783-010-0010-y.

Lu C., Biswas P., Clark, R.M. (1995). Simultaneous transport
of substrates, disinfectants and microorganisms in water
pipes, Water Research 29(3): 881–894.

Łangowski, R. and Brdys, M.A. (2007). Monitoring of chlorine
concentration in drinking water distribution systems using
an interval estimator, International Journal of Applied
Mathematics and Computer Science 17(2): 199–216. DOI:
10.2478/v10006-007-0019-y.

Margerum, D.W., Gray, E.T. and Huffman, R.P. (1978).
Chlorination and the formation of N-chloro compounds
in water treatment, in F.E. Brinckman and J.M. Bellama
(Eds.), Organometals and Organometalloids: Occurrence
and Fate in the Environment, ACS Books, Washington,
DC, pp. 278–291.

http://www.intellicis.eu.
http://eur-lex.europa.eu.
http://www.techneau.org/fileadmin/files/
Publications/Publications/Deliverables/
D5.5.9.pdf


584 K. Arminski et al.

Margerum, D.W., Schurter, L.M., Hobson, J. and Moore, E.E.
(1994). Water chlorination chemistry: Nonmetal redox
kinetics of chloramine and nitrite ion, Environmental Sci-
ence & Technology 28(2): 331–337.

McKinney, R.E. (2004). Environmental Pollution Control Mi-
crobiology, Marcel Beckher, New York, NY.

Metcalf, E. and Tchobanoglous, G. (1978). Wastewater Engi-
neering Treatment Disposal Reuse, McGraw-Hill, Upper
Saddle River, NJ.

Morris, J.C. and Isaac, R.A. (1981). A critical review of
kinetic and thermodynamic constants for the aqueous
chlorine-ammonia system, in R.L. Jolley, W.A. Brungs,
J.A. Cotruvo, R.B. Cumming, J.S. Mattice, and V.A.
Jacobs (Eds.), Water Chlorination: Environmental Impact
and Health Effects, Ann Arbor Science, Ann Arbor, MI,
pp. 49–62.

Muellner, M.G., Wagner, E.D., McCalla, K., Richardson, S.D.,
Woo, Y.T. and Plewa, M.J. (2007). Haloacetonitriles
vs. regulated haloacetic acids: Are nitrogen-containing
DBPs more toxic?, Environmental Science and Technology
41(2): 645–651.

Myszor, D. and Cyran, K. (2013). Mathematical modeling
of molecule evolution in protocells, International Jour-
nal of Applied Mathematics of Computer Science
23(1): 213–229, DOI: 10.2478/amcs-2013-0017.

Nokes, C., Fenton, E. and Randal, C. (1999). Modelling
the formation of brominated trihalomatanes in chlorinated
drinking waters, Water Research 33(17): 3557–3568.

Nowicki, A., Grochowski, M. and Duzinkiewicz, K. (2012).
Data-driven models for fault detection using kernel PCA:
A water distribution system case study, International
Journal of Applied Mathematics of Computer Science
22(4): 939–949, DOI: 10.2478/v10006-012-0070-1.

Poduska, R.A. and Andrews, F.J. (1974). Dynamics of
nitrification in the activated sludge process, 29th Industrial
Waste Conference, Lafayette, IN, USA, pp. 2599–2619.

Pope, P.G. (2006). Haloacetic Acid Formation During Chloram-
ination: Role of Environmental Conditions, Kinetics, and
Haloamine Chemistry, Ph.D. thesis, University of Texas at
Austin, TX.

Rossman, L.A. (2000). Epanet 2 users manual, Risk Reduction
Engineering Laboratory, US EPA, Cincinnati, OH.

Rossman, L.A., Clark, R.M. and Grayman, W.M. (1994).
Modeling chlorine residuals in drinking-water
distribution-systems, Journal of Environmental Engi-
neering 120(4): 803–820.

Sadiq, R. and Rodriguez, R.J. (2004). Disinfection by-products
(DBPs) in drinking water and predictive models for their
occurrence: A review, Science of the Total Environment
321(1–3): 21–46.

Shang, F. and Rossman, L. (2011). Epanet multi-specie
extention user‘s manual, EPA/600/S-07/021, National Risk
Management Research Laboratory, National Homeland
Security Research Center Office of Research and
Development, US Environmental Protection Agency,
Cincinnati, OH.

Shang, F., Uber, J. and Rossman, L. (2008). Modeling
reaction and transport of multiple species in water
distribution systems, Environmental Science & Technology
42(3): 808–814, DOI: 10.1021/es072011z.

Snoeyink, V.L. and Jenkins, D. (1980). Water Chemistry, John
Wiley and Sons, New York, NY.

Trofe, T.W., Inman, J.G.W. and Johnson, J.D. (1980). Kinetics
of monochloramine decomposition in the presence
of bromide, Environmental Science & Technology
14(5): 544–549, DOI: 10.1021/es60165a008.

van der Kooij, D., Vrouwenvelder, H. and Veenendaal, H.
(1995). Kintetic aspects of biofilm formation on surfaces
exposed to drinking water, Water Science and Technology
32(8): 61–65, DOI:10.1016/0273-1223(96)00008-X.

Vikesland, P.J., Ozekin, K. and Valentine, R. (2001).
Monochloramine decay in model and distribution system
waters, Water Research 35(7): 1766–1776.

Williamson, K. and McCarty, P. (1976). Verification
studies of the biofilm model for bacterial substrate
utilization, Journal of Water Pollution Control Federation
48(2): 1281–289.

World Health Organisation (2005). Guidelines for drinking
water quality. Dichloroacetic acid in drinking-water, Re-
port No. WHO/SDE/WSH/05.08/121.

Zhang, W., Miller, C. and DiGiano, F. (2004). Bacterial regrowth
model for water distribution systems incorporating
alternating split-operator solution technique, Journal of
Environmental Engineering 130(3): 932–941, DOI:
10.1060/(ASCE)0733-39372(2004)130:9(932).

Krzysztof Arminski received his M.Sc. degree
in control engineering in 2009 from the Electri-
cal and Control Engineering Department at the
Gdańsk University of Technology. Soon after he
became a Ph.D. student in this department. Cur-
rently he is member of the project InSIK as a
young researcher.

Tomasz Zubowicz received his M.Sc. degree in
control engineering from the Faculty of Electri-
cal and Control Engineering at the Gdańsk Uni-
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