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In this paper the authors raise the issue of automatic discrimination of atherosclerotic plaques within an artery lumen based
on numerical and statistical thresholding of Computerized Tomography Angiographic (CTA) images and their advanced
dimensioning as a support for preoperative vessel assessment. For the study, a set of tomograms of the aorta, as well as
the ilio-femoral and femoral arteries were examined. In each case a sequence of about 130–480 images of the artery cut-
off planes were analyzed prior to their segmentation based on morphological image transformation. A crucial step in the
staging of atherosclerotic alteration is recognition of the plaque in the CTA image. To solve this problem, statistical and
linear fitting methods, including the least-squares approximation by polynomial and spline polynomial functions, as well
as the error fitting function were used. Also, new descriptors of atherosclerotic changes, such as the lumen decrease factor,
the circumference occupancy factor, and the convex plaque area factor, are proposed as a means of facilitating preoperative
vessel examination. Finally, ways to reduce the computational time are discussed. The proposed methods can be very useful
for automatic quantification of atherosclerotic changes visualized by CTA imaging.
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1. Introduction

Visual inspection of atherosclerotic changes, based
predominantly on 2D and 3D Computerized Tomography
Angiography (CTA) imaging, plays a significant role
in vascular surgery. Obviously, during the planning of
vascular procedures involving endovascular and hybrid
operations, precise recognition of the indications and
contraindications strictly determined by the pathology
associated with the vascular tree is necessary. Calibrations
of an aortic stentgraft or a peripheral stent are crucial

for the choice of the surgery type. Robust geometric
characterization of the ilio-femoral area may play an
important role in the understanding of the impact of the
geometric factors on the origin and progression of the
vascular disease. The extent of atherosclerotic alteration
and automation of its inspection in the peripheral vessels
may help to make an optimal treatment decision and pay
attention to critical locations in the arterial tree.

This process can be divided into three main steps:
recognition of the vessels (the lumens with plaques),
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Fig. 1. Sample of the delivering system with a clearly visible
broken collar (black arrows) after usage in an endova-
scular intervention.

plaque detection, and parametrization of the detected
abnormalities. The recognition of the vessels can be
accomplished using the mathematical morphology and
artery tracking algorithm to provide data for the next
step of the analysis. In this study we focus on problems
associated with the detection of plaques as well as
numerical description of the plaque and the lumen in
the context of endovascular intervention. Proper artery
evaluation can protect against some complications, e.g.,
a damage to a stent graft delivery system caused by the
atherosclerotic plaques, as shown in Fig. 1.

Accurate discrimination between an artery lumen
and a calcified plaque allows quantifying atherosclerotic
changes. Currently, most systems of artery analysis use
fixed threshold values for the whole artery tree to
distinguish between the lumen and the plaques based
predominantly on colour visualization (e.g., 3DMensio).
This approach is simple and seems to be efficient in
terms of the time of computation, but its precision is
significantly limited. Hence, a more advanced method is
needed for the plaque quantification. Renard and Yang
(2008) applied the Gaussian mixture model to coronary
artery extraction and identification of soft plaques based
on CT images. Unfortunately, the authors presented
their results only in graphical form, without providing
any numerical values. A semi-automatic method of
segmentation of the artery wall and the plaque in in-vitro
vascular MR images was presented by Yang et al. (2003).
Adame et al. (2004) applied model-based segmentation
using contour detection and fuzzy clustering to MR
images, and developed an automatic plaque segmentation
and characterization in the atherosclerotic carotid artery.
A further improvement of the automatic analysis of a
plaque in this artery based on MR images was also
reported by Kerwin et al. (2007). Fuzzy clustering can
be also applied for the detection of the retinal artery
tree (Yang et al., 2008), for the segmentation task in
endoscopic colour images (Frąckiewicz and Palus, 2011)
and in many other cases of medical imaging.

Segmentation of an artery wall and the dimensioning
of plaques based on CTA has also been extensively
discussed in the literature. In one study (Manniesing

et al., 2006), a bone mask obtained from non-contrast
registration, user-defined seed points as the volumes of
interest, a speed function, and a level set evolution method
were used for 3D analysis of the cerebral arteries. In
addition, multiple Gaussian distribution modeling (as a
base of the speed function) was used to find the optimal
threshold value. A fully automatic modification of the
above algorithms with the use of the entropy measure and
the Hough transform was proposed in another publication
by these authors (Manniesing et al., 2008). They also
proposed an approach based on path tracking with the
cost function with the FWMH criterion (Manniesing
et al., 2010). Generally, all these approaches focus on
segmentation of the artery lumen.

Localization of the calcified region in CTA imaging
of the carotid artery was analyzed by Vukadinovic et al.
(2010). Based on the preselected HU range, the candidate
object was extracted to find the calcified regions. Feature
descriptors and the GentleBoost classifier were applied
to recognize the calcification with a 91% accuracy.
The outer vessel wall segmentation obtained by these
authors is unique and commendable. Also, in this study,
CTA-based automated segmentation of the atherosclerotic
carotid plaque volume and components was statistically
compared with the manual results. However, none of these
studies have aimed at comparing different regions of the
peripheral vessel tree.

Based on the analysis of the ilio-femoral region
visualized by CTA, we discovered a specific distribution
of the sorted pixel intensities. In this sorted sequence, the
border between the lumen and the plaque is seen as a
bending point on the distribution curve. A range of the
nearly horizontal distribution curves represents the lumen
pixels while a range with a highly increased slope refers to
the plaque area. In the present study check this hypothesis
for the aorta and the femoral arteries. The results indicate
that the hypothesis is true for the aorta, but in the femoral
arteries the distribution curve is more variable and has
a steeper slope, also for the lumen area. To illustrate
the distribution of the pixel intensities in the aorta, the
ilio-femoral and the femoral arteries (some examples) are
shown in Fig. 2.

In the present paper we compare numerical and
statistical approaches to the problem of thresholding
atherosclerotic plaques. Based on the assumption that the
values of the pixels from our image represent multimodal
density, we used Gaussian Mixture Models (GMMs)
thresholding as the statistical method (Demirkaya et al.,
2009). After verification on the arteries of the ilio-femoral
region, we found that other popular methods such as
Otsu, the minimum error, or clustering are not useful
for this purpose. The original idea of the present study
consists in the use of numerical methods of linear fitting.
These methods allow detecting bending points on the
distribution curves based on the analysis of the derivatives.
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Fig. 2. Examples of the CTA images (1), extracted artery areas (2), and their intensity distribution curves (3). Cases (a) and (b) represent
the aorta region, (c) and (d)—the ilio-femoral region, and (e) and (f)—the femoral region of the vessel tree. Case (g) illustrates
healthy arteries without calcified plaques.
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The applicability of these methods for the examination of
three different arteries (aorta, ilio-femoral, and femoral)
as well as the analysis of the computational time are
presented.

After discrimination between the lumen and the
plaque, numerical descriptors of both should be applied
to support the diagnosis and treatment. We propose a
set of measures based on the presence of the plaque, its
space distribution and the surface of the artery lumen.
The descriptors of the decrease of the lumen area and
the circumference occupancy by the plaque as well as of
the maximal elliptic area of the lumen are proposed and
discussed here.

2. Material and methods

2.1. Material. The investigated recognition methods
were evaluated based on ten tomograms of three arterial
regions: the aortic, the ilio-femoral, and the femoral
region. CTA images were obtained from patients with
different stages of atherosclerosis. The patients were
candidates for the endovascular or open surgery at
the Department of Vascular and Endovascular Surgery,
Military Institute of Medicine in Warsaw. Only the
arteries whose lumens were continuous on multi-slice
CT imaging were included in the investigation, while
those with occlusions or aneurysms were disregarded. All
images were obtained using a 64-slice General Electric
(Fairfield, CT, USA) MSCT. Each CTA was performed
with a standardized optimized contrast-enhanced protocol
(120 kVp, 180 mAs, collimation 64 × 0.625 mm, pitch
0.5). All the patients were injected with 150 ml of
the contrast medium (Iomeron Bracco, UK, 400 mg/ml)
with SmartPrep. The obtained images were reconstructed
for the 250-mm field, 512 × 512 matrix size, 0.625
mm slice thickness, 0.625 increment, with the standard
reconstruction filter applied. The obtained CT images
were stored in the DICOM format ver. 3. The actual
number of images depended on the investigated region
and anatomical conditions of the patient. Average image
numbers for the aorta, the ilio-femoral artery, and the
femoral artery were 132, 236, and 483, respectively. Thus,
the total numbers of the analyzed images equalled 1324,
2359, and 4833, respectively.

2.2. Artery recognition and tracking. In the analysis
of the spatial arrangement of arteries visualized with the
use of a contrast agent, the artery lumen (filled with blood
and the contrast medium) is expected to be lighter than
the artery wall and the nearby organs (only atherosclerotic
plaques and the bone will be lighter than the artery
lumen). This suggests that appropriate recognition of the
artery planes relies on the extraction of the locally lighter
regions from the image. To achieve this aim, we use
a mathematical morphology operation such as extended

regional maxima (Soille, 2003). With this transformation,
any object with the intensity value higher than those of
the borders by at least a selected threshold (in this case
40) can be extracted. We noted that the application of the
extended regional maxima can extract the artery lumens
with atherosclerotic plaques on their borders that have
higher intensities than the regular artery lumens.

To select artery planes in a CTA image after the
extended regional maxima transformation, we built a
tracking algorithm starting from the point of division of
the femoral artery into its superficial and deep branches.
This starting point must be selected manually on the
artery area by marking the planes of the left and the right
artery. The same is required for the algorithms used by
other authors (e.g., Manniesing et al., 2007; Vukadinovic
et al., 2012). The markings are then used to select
the appropriate objects (segmented by a morphological
operation) on the artery planes in subsequent CTA
images. An analysis of the next image in the CTA
sequence is performed by the extended regional maxima
transformation and filtered by the opening and closing
transformations. The binary image thus obtained shows
not only the markers in the artery areas, but also other
separate objects such as bones and smaller arteries. To
select the artery planes, the previous image is used as
a reference for reconstruction of the appropriate objects.
The artery areas extracted from any slide form the basis
for the analyses presented in this paper.

2.3. Plaque recognition. One of the crucial steps in
computerized evaluation of atherosclerosis is recognition
of the plaques in CTA images. Appropriate detection
of the plaque area affects each measure used by us as
well as qualification for endovascular intervention. In this
study we took into account both the statistical and linear
fitting methods which are based on a completely different
interpretation of the image data. The main ideas of the
investigated methods are described briefly in the following
section.

2.3.1. Statistical methods. The first group of the
investigated methods used for image thresholding
consisted of between class variances, minimum error
thresholding, K- and C-means clustering as well as
mixture-modeling-based thresholding. All these methods
are well recognized and have been previously used in
different applications of image processing (Demirkaya
et al., 2009). However, the variable number of classes
present in the image, their disproportionality and
distribution significantly restrict the utility of these
methods. Since only the mixture-modeling-based
thresholding yielded acceptable results, we utilized this
method in the present study. It is based on the assumption
that pixel values covering the examined area in the
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image represent multimodal density. The mode is a data
value whose frequency is not less than the frequency
of neighbouring values. In practice, the modes are
identified as peaks in the histogram. They correspond to
certain regions of the image when the number of pixels
attaining those values is relatively high. By identifying
the probability density function (pdf ) of the pixel values,
we can define the probability of any pixel value belonging
to different classes (modes) or regions of the image. Let
x be a pixel value and f(x) its pdf, which can be roughly
estimated as the frequency of occurrence of the grey
level in the histogram of the image. If we have k modes
(classes) in the pdf of the pixel values, we may say that
x may come from any of those k classes with a different
probability. This means that the multimodal multivariate
pdf function f(x) can be expressed as (Demirkaya
et al., 2009)

f(x) =
k∑

i=1

ωifi(x|Θi), (1)

where ωi is the prior class probability of the i-th
component of pdf and fi(x|Θi) represents the class
conditional pdf of pixel x associated with a set of
parameters Θi. If we assume the Gaussian components in
our model, we can represent fi(x|Θi) as a multivariable
normal pdf (Demirkaya et al., 2009),

fi(x|Θi) = N(x|μiSi), (2)

where μi is the d × 1 mean vector and Si is the d × d
covariance matrix.

However, it should be noted that the choice of using a
normal distribution in the mixture model may or may not
be appropriate, depending on how the histogram looks.
The most favourable situation is when each class has a
normal distribution and the histogram can be precisely
decomposed into a set of normal distribution parts.
Unfortunately, in the problem under study, the distribution
of the pixel intensities is close to normal only in the lumen
area. If the artery slide includes calcified plaques, the right
part of the histogram related to these plaques has a totally
different distribution. In this case, the convergence of
the optimization algorithm towards the expected solution
depends on the domination of the lumen pixels in the data
set. For the solution of the Gaussian mixture modeling,
the log-likehood function is defined as

L(Θ) = log
n∏

j=1

f(xj |Θ) =
n∑

j=1

log f(xj |Θ). (3)

The practical way to estimate the unknown
parameters Θ of a mixture model is to select them in
a way that maximizes the log-likehood function. Thanks
to the logarithm transformation, finding the maximum is

usually much simpler and can be done numerically using
various optimization algorithms. We used implementation
based on the Expectation Maximization (EM) iterative
method. The initialization of the classes is usually
brought about by applying K-means clusterization.
Compared with random initialization, such clusterization
improves the convergence of the EM algorithm. After the
initialization, the expectation of the posterior probability
that an observation belongs to a specific class and the
maximization of the likelihood function are used one by
one in the iterative process. Once a mixture model is fitted
to image pdf, we can assign pixels to different classes
on the basis of the final estimated posterior probabilities,
i.e., assigning the pixel xj to the class that produces the
highest value of probability P (Θi(xj)). The details of this
approach can be found in the work of Demirkaya et al.
(2009). This method of segmentation we will henceforth
call the Gaussian mixture model.

As shown in Fig. 2, some pixel intensity distributions
include a fixed component which significantly restricts the
proper Gaussian modeling of the data. The cases in which
the fixed component is included are limited mainly to the
imaging of narrow arteries, e.g., in the femoral region,
as indicated in Fig. 2. Elimination of this component
from the distribution curve should increase the accuracy.
However, statistical determination of this fixed component
is very complicated due to the unstable character of the
curve and its local slope variability. As an alternative,
prior to the use of the GMM, in our study we applied
the linear regression model to eliminate the potentially
existing fixed component.

A primary question in GMM application is how
many classes exist in the data set. Let us consider the
division of an artery plane into three classes: the lumen,
the calcified plaques, and the non-calcified plaques. If
the variance of the pixels belonging to the class of the
largest mean is smaller than 3,000, then the calcified
atherosclerotic plaques are not present in this region and
all the pixels represent the artery lumen (i.e., only one
class region). The value of 3,000 was chosen as most
accurate based on the set of the tested images (i.e., 56
images representing different regions of the vessel tree
obtained from 8 tomograms). Otherwise, pixels of this
class represent the calcified atherosclerotic plaques. In the
latter cases the variance of the pixels belonging to the
class of the next largest mean should be estimated and
two possibilities considered: (a) the artery area contains
only the lumen and the calcified plaques, and (b) the
artery area contains the lumen, the calcified plaques and
the non-calcified plaques. In case (a), the middle class
can represent either the lumen or the calcified plaque
area. When the variance of the pixel intensity is greater
than 10,000, it represents the calcified plaque; when it is
less than 10,000, it refers to the lumen area. When the
middle class represents the plaque area, the class of the
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lowest mean represents the lumen. However, when the
middle class is interpreted as the lumen, the class with the
lowest mean value should be statistically evaluated and
then recognized either as the lumen or the non-calcified
atherosclerotic plaque area, according to the variance of
the latter.

2.3.2. Linear fitting methods. Analysis of the shape
of the distribution curve allows us to hypothesize that
its parts with different slopes represent specific cut-off
areas of the artery: the lumen and the calcified plaques.
A bending point of that curve probably well indicates
the border between intensities of the pixels representing
the recognized regions. This observation suggests that
detection of bending points can be suitable for the
thresholding of the pixel intensities for artery cut-off area
segmentation into the lumen and the calcified plaques. The
bending point should be localized as the first point on the
right side of the curve with a value of the derivative (first
or second) lower than the selected level. This approach
was used by us for each linear fitting method. The task
is converted into the analysis of the derivative(s) of the
curve. However, numerical calculation of the derivative
based on the finite difference methods or a differential
rule (e.g., the Gear rule) cannot adequately solve this
problem due to the influence of the local variability of
curve values. Before the calculation of the derivative,
linear fitting should be applied.

In the present study we used the following
linear fitting methods: polynomial approximation, various
spline-family methods, the piecewise cubic Hermite
interpolating polynomial, and the error fitting function.
These methods are described briefly in the following
section.

Least-square approximation by the polynomial func-
tion. One of the simplest methods of linear fitting
is least-squares approximation by the fixed degree
polynomial. The benefits of this method include a simple
function form, a unique system of linear equations used to
calculate the function coefficients, and easy determination
of the derivatives. The polynomial in the form

p(x) = anxn + an−1x
n−1 + · · · + a1x

1 + a0 (4)

has the first derivative

dp(x)
dx

= nanxn−1 + n − 1an−1x
n−2 + · · · + a1 (5)

also in the polynomial form obtained directly from the
previously calculated coefficients.

Analysis of the type of the observed distribution
curves leads to the conclusion that a low degree
polynomial can be inadequate for linear fitting of the
data due to the presence of long linear sections of the

curves. Simultaneously, increasing the degree worsens the
conditioning of the linear equation system. In practice, we
used the 12-th degree polynomial function as a suboptimal
solution. The threshold is defined as four times the
polynomial derivative taken from the right side of the
curve. This value was selected in the initial test based on
complete slide sequences for ten patients. The examined
values of the derivatives were from 2 to 6 with the step
of 0.2 and the minimum plateau on the curve was from
4 to 5 (2.2–2.3% of MAE). The value of 4 was selected
as the minimum false negative which protects against
underestimating the plaque area.

Spline polynomial function. The spline technique has
been widely applied for problems with a large number of
interpolation data or knots in the approximation task. A
solution to the interpolation task is usually defined as the
spline function set from sub-intervals of the third-degree
polynomials (Stoer and Bulirsch, 2010),

S[xi,xi+1](x) = a
(i)
0 + a

(i)
1 x + a

(i)
2 x2 + a

(i)
3 x3. (6)

The spline function should have a continuous derivative
up to the second degree and knots in all the data points.
This type of spline will be called cubic spline interpolation
and we will use its second derivative to define the intensity
threshold value. Based on the preliminary tests, we set the
value of the second derivative at 0.5. It should be noted
that this solution is very sensitive to the local variability of
the curve values may sometimes produce an inflated value
of the threshold. This can result in undersegmentation of
the calcified plaque. The value of 0.5 was selected in the
same way as in the previous method.

In order to avoid the influence of local data
variability, we can use the smoothing of the data. The
smoothing can be performed with an averaging filter of
size 8. This can be a useful procedure before application of
the linear fitting method without the averaging of the data
inside the algorithm. Results of the data preprocessing are
shown in Section 3.

The linear fitting can also be defined in the
approximation task by the B-form of least-squares spli-
ne approximation with the set of knots. The distance of
the function f from the given data yj which represent
the values for j = 1, 2, . . . , n of the n-th abscissae xj

is measured by

E(f) =
n∑

j=1

ωj|yj − f(xj)|2 (7)

with the default choice of weights ω making E(f)
the composite trapezoidal rule approximation. When the
number of the knots is lower than that of the data, data
points which are similarly related to the knots are replaced
by their average.
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A more sophisticated form of least-squares spline
approximation is the smoothing spline (De Boor, 2001).
The smoothest means that the following functional is
minimized:

F (Dmf) =
∫ max(x)

min(x)

λ(t)|Dmf |2 dt, (8)

where Dmf denotes the m-th derivative of f and λ
is a smoothing parameter. When one uses the second
derivative and λ as the constant value of 1, this formula
transforms into the cubic smoothing spline.

There are at least two variants of smoothing splines.
The first one minimizes F (Dmf) over all f functions for
which the error measure E(f) is no bigger than the given
tolerance (e.g., 0.5). The second one, by introducing the
smoothing parameter ρ and the converted aim function, is
defined as

ρ

n∑

j=1

ωj|yj −f(xj)|2 +(1−ρ)
∫

λ(t)|D2f(t)|2 dt. (9)

The summing is done through the entries of x with the
weight function ω and the piecewise constant weight
function λ, both selected as constant functions equal to
1. Furthermore, D2f denotes the second derivative of the
function f and ρ is the smoothing parameter.

Another approach in the spline family is the Piece-
wise Cubic Hermite Interpolating Polynomial (PCHIP)
(Fritsch and Carlson, 1980). This method is based on
spline functions in the Hermite polynomial form of
the third order. This interpolation is realized for each
subinterval between the sequential data points with
satisfying their values and the continuity of the tangents.
For the unit interval x ∈ [0, 1] the interpolation
polynomial can be defined as

p(x) =(2x3 − 3x2 + 1)y0 + (x3 − 2x2 + x)M0 (10)

+ (−2x3 + 3x2)y1 + (x3 − x2)M1,

where y0, y1 are given values of the interval border points
and M0, M1 are the relevant moments. The moments are
chosen in such a way that p(x) preserves the shape of the
data and respects monotonicity. If the data are not smooth,
a practical effect of PCHIP application is that it has no
overshoots and oscillates less.

Another significant point in the linear fitting task is
the basic spline function (B-splines). This function of the
k-th degree for the given knots K is defined as

f(x) =
n∑

j=0

Bj,k(x, K)yi, (11)

where Bj,k is the j-th basic function degree k.
An extension of the B-spline is the Non-Uniform

Rational Basis Spline (NURBS) (Piegl and Tille, 1997).
However, in our case there is no way to differentiate
between the weights of the data points.

Error function fitting. A monotonous (although not
strictly) character of the pixel intensity distribution line
may serve as a starting point for the next method.
Imposition of such a restriction on the solution may lead
to better results of the linear fitting of the examined data.
Here, our approach is based on a set of error functions
(Andrews, 1997). In mathematics, the error function (also
called the Gauss error function) is a non-elementary
sigmoidal function defined as

erf(x) =
2√
π

∫ x

0

e−t2 dt. (12)

When x is negative, the integral is interpreted as the
negative of the integral range from x to zero. In practice,
the error function of the negative argument value is
calculated for its opposite and obtained with a minus.

To the linear fitting, we build the set of Ci(x)
functions for i = 1, 2, . . . , k in such a away that

Ci(x) = erf(
x − Ki

σ
), σ =

√
2

k
(xn − x0), (13)

where x0, xn are the interval bordering points and k is a
number of knots K . In this case, the following conditions
occur:

• all Ci(x) functions are monotonously in the x range;

• the first function C1(x) has a value between 0 and 1,
the last Ck(x) has a value between −1 and 0;

• the rest of the Ci(x) functions have values closely
to the range [−1, 1] with the bending point at an
appropriate knot with a value equal to 0.

The solution of the linear fitting can be obtained by
solving the constrained linear least squares problem. The
set of Ci(x) functions is supplemented with a bias value
and a linear function, and the solution of linear fitting f(x)
can be expressed as

f(x) = bias + a0x +
k∑

i=1

aiCi(x). (14)

The linear least squares problem has lower constraints on
coefficients a0, a1, . . . , ak in the form of zero values. This
assumption allows obtaining the solution in monotonic
form.

2.4. Descriptors of atherosclerotic changes. One of
the most important practical aspects of plaque recognition
is evaluation of the atherosclerotic alterations in the artery
prior to endovascular intervention. For the intervention to
be possible, it is necessary to determine the feasibility of
stent or stentgraft insertion into the vessel. Any location
significantly occupied by plaques should be examined
in this regard. Here, we propose a set of quantitative
measures to formalize this examination in the future.
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Lumen decrease factor. One of the measures is the
Lumen Decrease Factor (LDF). This quantity, together
with the plaque-free lumen area, indicates the site of a
critical stenosis in the vessel tree. When the plaque area is
separated from the lumen based, e.g., on the thresholding
method presented in the previous subsection, the LDF can
be calculated as

LDF =
lumen_area

lumen_area + plaque_area
. (15)

The analysis of the thresholding demonstrated a
problem with interpretation of the part of the artery area
located between the plaque and the artery wall. Pixels of
this area have the intensity corresponding to the lumen
and, as a result, their classification overestimates the LDF.
Thus, before the calculation of this factor, it is necessary to
correct the lumen area mask through elimination of such
pixels. The following morphological formula can be used
to detect these pixels located between the plaque and the
artery wall:

[δSE(BWp) ∩ BWC
p ] ∩ [BWa ∩ (εSE(BWa))C ], (16)

where δ and ε are the dilation and erosion, SE is
the structuring element, BWp and BWa refer to the
black-and-white masks of the plaque and the artery, and
C refers to the image complementation. The type and size
of SE, which is a parameter of the dilation and erosion,
must be determined. We used a disk-shaped element with
the radius of one pixel. An example of lumen and plaque
area detection taking account of the above correction is
presented in Fig. 3.

Circumference occupancy factor. The Circumference
Occupancy Factor (COF) can be expressed as the portion
of artery circumference occupied by atherosclerotic
plaques. For image processing, the most adequate
approach is to check for the presence of the plaques in
different directions starting from the center of the artery
cross-section. For this purpose, we used directions tilted
by 5◦ each time to cover the full angle. The COF is
calculated as follows:

COF =
px

72
, (17)

where px is the number of radia that hit the plaques.
Owing to the problem of discretization, calculation

of the COF is not a trivial task. Creation of a discrete
representation of a radius with the selected direction
requires selection of the radius length, determination of
the pixels of the representation according to 4- or 8-point
connectivity (e.g., based on the Bresenham algorithm),
and comparison of the spatial distribution of the pixels
with the plaque mask. This is not easy and we propose to
invert this task by calculating the directions represented

(a) (b)

(c) (d)

Fig. 3. Illustration of the problem of bordering between the pla-
que and the artery wall in CTA imaging: original image
(a), recognized artery area (outlined by black) (b), seg-
mented plaque area (outlined by black) (c) and corrected
artery area according to Eqn. (15) (d). The narrow region
between the plaque and the artery wall on the right and
bottom sides was eliminated.

by the pixels of the plaque. However, because of the
discrete representation of the plaque, the pixels identified
by coordinates of their centers cover only some directions,
as shown in Fig. 4(a). Labeling the plaques and analyzing
them in the iteration process can solve this problem. For
each plaque one can determine maximum and minimum
angle directions of its pixels and then correct these values
by half of the pixel size to cover all the directions in this
range. After rounding to a set of 72 directions, the result of
the determination of the directions pointing to the plaque
is shown in Fig. 4(b).

Convex plaque area factor. To expand the description
of the plaque position on the artery wall, we define the
Convex Plaque Area Factor (CPAF), representing a ratio
between the convex area of the plaque and the whole
area of the artery cross-section. Thus, the CPAF can be
calculated as follows:

CPAF =
convex_plaque_area

artery_area
. (18)

The convex plaque area is defined as the minimal convex
polygon described on the plaque and obtained from
the built-in Matlab function. This factor determines the
part of the artery cross-section surrounded by plaque
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(a) (b)

Fig. 4. Illustration of the discretization problem in COF calcu-
lation. When only some directions (light grey) are cove-
red by the coordinates of the pixel centers (a), using the
extreme pixels from any plaque to cover the direction
range gives a continuous result (b).

and indicates which part of the artery lumen may be
inaccessible during potential intervention.

To illustrate the difference between the COF and
CPAF, two cases are presented in Fig. 5. In case A
(Fig. 5(a)), the COF and CPAF are similar (0.39 and 0.44,
respectively), while in case B (Fig. 5(b)), COF equals
0.625 and the CPAF 0.92. In the latter case, the CPAF
better describes the complexity of the plaque distribution.

Ellipse inscribed in the lumen area. During the
planning of endovascular intervention, it is necessary to
evaluate the artery lumen area in terms of its accessibility
for the delivery system and stentgraft deployment. In view
of the round shape of the system and possible adaptation
of the artery wall, we propose to search for the highest
ellipse inscribed in the lumen area.

One approach used in the detection of predefined
shapes in binary images is the Hough transform.
This transform is commonly used for determination of
image lines based on the angular-distance representation
of the discrete points. The obtained two-dimensional
accumulative matrix is analyzed to find the local
maxima corresponding to the existing lines. To detect
the circular shape based on the Hough transform, the
three-dimensional accumulative matrix is used or, as a
more practical approach, a double Hough transformation
of the image.

Finally, the transform can be used to detect the
ellipses (Davies, 1989), but this requires advancing the
5-dimensional accumulative space which, obviously, is
difficult to construct and analyze. This task can be divided
into a few simpler steps and we have focused on the
approach aimed at the direct detection of the inscribed
ellipse. In this case, any pair of the antipodal points from
the set of the object points is first taken into account. Such
a pair uniquely defines the four parameters of the ellipse:

(a)

(b)

Fig. 5. Two examples to illustrate the difference between the
COF and the CPAF. Upper left: original images, upper
right: outlined whole artery (light grey line) and plaque
(dark gray), bottom left: COF results with the bright ra-
dia pointing to the plaque and dark radia pointing to the
plaque-free lumen, bottom right: CPAF with the plaque
convex area outlined by medium grey bottom right.

center coordinates as well as the length and orientation
of the major axis. Thus, only the length of the minor
axis remains to be found. This way we obtained only the
one-dimensional accumulative space which is calculated
through the object points. To calculate this space, we used
the ellipse equation in the form

x2

a2
+

y2

b2
= 1. (19)

The equation connects the dimensions of semi-axes a and
b with coordinates of each ellipse point in the Cartesian
system originating at the center of the ellipse. Coordinates
of these points can be also defined by direction τ and
distance d from the ellipse center as described below:

{
x2 = d2 cos2 τ,

y2 = d2 sin2 τ.
(20)
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Next, the cosine of the angle is defined by

cos τ =
a2 + d2 − f2

2ad
, (21)

where f is the distance from the ellipse point to the closest
antipodal point. This set of equations leads to the formula
for the semi-minor axis length

b =

√
a2d2 sin2 τ

a2 − d2 cos2 τ
, (22)

restricted by any ellipse point lying outside the end of the
major axis.

The presented approach requires evaluation of the
accumulative space simultaneously for any pair of the
antipodal points and determination of its maximum.
Comparison of this measure between the pairs allows
us to find the ellipse with the highest accumulative
value. However, this method is dependent on the image
and accumulative space discretisations used, which may
sometimes yield similar high accumulation values for
the totally different ellipses (Fig. 6(a) and (b)), whereas
for the ellipse which better fills out the object the
accumulation value will be lower (Fig. 6(c)).

In this paper we propose to use another approach
also based on pairs of the antipodal points. In this case,
we calculate the maximum b value of the inscribed
ellipse for any such pair based on the surrounding points
which restrict the ellipse. In practice, these points can be
obtained through dilation or, easier, by the extension of
the object minimal window by one line in each direction.
Recalculation of these points based on (21) and selection
of the minimal value can be done. Due to the introduced
reduction of a distance between the surrounding point
and the ellipse centre by half of the pixel dimension,
it is necessary to replace the original value with dr =
d2−d+0.25. Instead of (21), the following formula should
be used:

b =

√
a2d2

r sin2 τ

a2 − d2
r cos2 τ

. (23)

Finally, for each pair of the antipodal points we obtain the
maximal b value. Comparison of the ellipse area between
the pairs leads to the best result, as shown in Fig. 6(d).

3. Results

Based on the analyzed CT images we assessed the
applicability of the methods of thresholding the artery
area into the lumen and the plaque. We also compared
the numerical results with the threshold value established
manually by a team of experts composed of two vascular
surgeons and a radiologist. For each slide, the threshold
value was selected manually with the accepted final value
to obtain the best segmentation results. To compare the

(a) (b)

(c) (d)

Fig. 6. Example of the detection of the maximal ellipse inscri-
bed in the lumen area. Two results ((a) and (b)) with the
highest accumulation value (equal to 32) based on the
Hough transform give totally different results. The more
appropriate result (c) has the value of only 16. For com-
parison, (d) shows the result obtained based on the pixel
excluding criterion.

results, the level of the decreased lumen area in the artery
cut-off plane was calculated. The mean absolute error of
this measure and its standard deviation were calculated for
the three artery segments: aortic, ilio-femoral and femoral.

These results are shown in Table 1. The following
abbreviations were used: 1D and 2D—first and second
derivative, GMM—Gaussian mixture modeling,
GMM+R—Gaussian mixture modeling with linear
regression, LLA—first derivative of the 11-fold local
linear approximation, APX—12-th order polynomial
approximation, APX+RMV—12-th order polynomial
approximation with reduction of the minimum value,
APX+DA—12-th order polynomial approximation with
data averaging, CS—cubic spline, CS+DA—cubic spline
with data averaging, S5+DA—spline of the 5-th order
polynomial with data averaging, LSSS1—least squares
smoothing spline ver. 1, LSSS2—least squares smoothing
spline ver. 2, LSSS2+DA—least squares smoothing
spline ver. 2 with data averaging, PCS6—piecewise cubic
spline with six knots, PCS12—piecewise cubic spline
with twelve knots, PCHIP—piecewise cubic Hermite
interpolating polynomial, ERFIT—error function fitting.

The threshold values were calculated in two ways: (i)
for a single image, and (ii) with averaging in the sequence
of the CTA images. Upper indexes (in bold) indicate three
methods which yielded results most closely corresponding
to those obtained with the manual threshold evaluation.
The results are presented graphically in Fig. 7. In the
first case (a), the GMM detects a threshold value of
590, which results in the narrowest outline of the plaque.
LLA detects a threshold of 515 and now the plaque is
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Table 1. Mean absolute error of automatic estimation of the decreased lumen area relative to manual selection of the threshold value.

Aorta Ilio-femoral Femoral
Method Single With averaging Single With averaging Single With averaging

GMM 1.4 ± 1.1 0.4 ± 0.21 1.9 ± 1.31 1.6 ± 1.01 3.4 ± 4.3 2.0 ± 2.8

GMM+R 6.0 ± 3.0 2.1 ± 1.2 6.7 ± 5.5 4.4 ± 3.4 4.0 ± 3.4 1.7 ± 1.1

1D LLA 1.3 ± 0.33 1.3 ± 0.43 2.0 ± 0.62 2.4 ± 0.6 3.1 ± 1.7 4.1 ± 2.4

1D APX 3.1 ± 2.6 2.9 ± 2.6 7.2 ± 5.4 6.6 ± 5.2 2.6 ± 2.2 1.8 ± 1.3

1D APX+RMV 1.2 ± 0.82 2.3 ± 5.1 3.5 ± 1.9 2.3 ± 0.73 10.1 ± 8.1 14.3 ± 11.8

1D APX+DA 3.1 ± 2.6 2.9 ± 2.6 7.3 ± 5.4 6.6 ± 5.3 2.7 ± 3.4 2.1 ± 2.5

1D CS 3.5 ± 2.9 3.2 ± 2.8 7.6 ± 5.6 6.9 ± 5.4 2.2 ± 1.9 1.7 ± 1.2

2D CS+DA 3.6 ± 3.0 3.3 ± 2.9 7.7 ± 5.8 7.0 ± 5.6 1.5 ± 1.63 1.4 ± 1.23

2D S5+DA 2.6 ± 2.3 2.3 ± 2.1 5.8 ± 4.2 5.2 ± 4.3 2.1 ± 1.8 1.6 ± 1.1

1D LSSS1 3.5 ± 2.8 3.2 ± 2.8 7.5 ± 5.6 6.8 ± 5.3 2.3 ± 2.0 1.8 ± 1.3

1D LSSS2 3.3 ± 2.7 3.0 ± 2.7 7.4 ± 5.5 6.7 ± 5.3 3.1 ± 4.1 2.7 ± 3.5

1D LSSS2+DA 3.0 ± 2.6 2.9 ± 2.6 7.1 ± 5.5 6.5 ± 5.3 1.4 ± 1.42 1.3 ± 1.02

1D PCS6 3.2 ± 2.8 3.0 ± 2.8 7.3 ± 5.5 6.7 ± 5.4 4.1 ± 6.0 3.5 ± 6.0

1D PCS12 3.0 ± 2.5 2.8 ± 2.5 7.1 ± 5.3 6.5 ± 5.2 2.6 ± 2.3 1.9 ± 1.4

1D PCHIP 3.5 ± 2.9 3.2 ± 2.8 7.6 ± 5.6 6.9 ± 5.4 2.3 ± 2.1 1.7 ± 1.3

1D B-spline 3.5 ± 3.0 3.2 ± 2.9 7.6 ± 5.7 6.9 ± 5.5 1.7 ± 1.6 1.4 ± 1.23

1D ERFIT 1.0 ± 0.61 0.8 ± 0.92 2.4 ± 1.73 2.1 ± 1.52 0.9 ± 0.61 1.3 ± 0.71

the widest. APX+RMV and ERFIT detect the values of
540 and 520, respectively, associated with intermediary
plaque areas. In the second case (b), GMM-thresholding
also produces the most limited results (threshold value of
564), while the remaining methods detect the value of 545
and, consequently, more precisely determine the outline
of the plaque. However, the latter result includes some
small errors on the right side of the artery area. The last
case (c) is the most problematic due to the ambiguous
imaging flow in the artery resulting from the complete
artery blocking by the plaque located just below the test
site. The obtained threshold values are 378 (GMM), 675
(LLA), 688 (APX+RMV), and 702 (ERFIT). This case
may be difficult to assess not only automatically, but
also manually, and the only conclusion is that the GMM
overestimates the plaque area.

The results suggest that no single method can
perfectly estimate the threshold value for all the
investigated regions of the artery. Also, averaging the
threshold value in the CT images sequence has a huge
impact on the precision of thresholding. However, our
results also indicate that only six methods provide data
highly compatible with those of the manual analysis. In
the single threshold estimation approach, ERFIT provided
the most promising results for the aorta and femoral
artery regions, whereas the GMM faired better for the
ilio-femoral region. Slightly better results were obtained
using threshold averaging. With the use of the GMM
method, especially in the aorta region, the mean error
decreased from 1.4 to 0.4%. However, in the case of
the femoral region, threshold averaging decreased the
efficiency of the ERFIT method with the error increasing
from 0.9 to 1.3%. Overall, the best results were obtained

(a) (b) (c)

Fig. 7. Example of the thresholding results for three arteries
(a), (b) and (c). The images from up to down repre-
sent the original image, GMM-based thresholding, LLA,
APX+RMV and ERFIT methods. The recognized plaqu-
es are outlined in dark gray.
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Table 2. Computational time of the various methods.
Computational time [s/100 scans]

Method Aorta Ilio-femoral Femoral

GMM 2.2771 1.7076 1.2211
GMM+R 10.2928* 22.0853* 14.8367*
1D LLA 52.0237 25.4644 14.6024
1D APX 0.1336 0.1267 0.1231

1D APX+RMV 0.1380 0.1306 0.1260
1D APX+DA 0.1738 0.1680 0.1622

1D CS 0.1322 0.1095 0.0986
2D CS+DA 0.3046 0.2683 0.2320
2D S5+DA 0.3435 0.2924 0.2500
1D LSSS1 0.5442 0.4306 0.3678
1D LSSS2 0.2039 0.1501 0.1258

1D LSSS2+DA 0.2607 0.2078 0.1757
1D PCS6 6.7916 6.9502 6.4700
1D PCS12 6.3104 5.8039 6.0117
1D PCHIP 0.0742 0.0665 0.0619

1D B-spline 4.4339 4.3915 4.3589
1D ERFIT 88.2609 55.9565 32.1552

*divergent results

for the aorta and ilio-femoral regions analyzed with use of
the GMM with threshold averaging, and for the femoral
region with the use of ERFIT without the averaging.

Another important practical issue is the time of
computation. In all the methods, the time of estimation of
the threshold for one hundred randomly selected images
was measured with a 2.80 GHz Core Duo, 4GB RAM
PC. The results are shown in Table 2. As indicated, the
computational time of the aorta images was, depending
on the method used, 1.1- to 3-fold longer than the time
of computation of the femoral artery. This prolongation
resulted from the larger area of the analyzed artery
cut-off plane and, consequently, the larger number of the
data. The number of the pixels averaged over the aorta
images was 539, while the ilio-femoral region had, on
average, 289 pixels and the femoral region—184 pixels.
To recapitulate, among the methods we use polynomial
approximations were associated with the shortest time
of computation. In contrast, owing to optimization of
the solution of the constrained linear least squares
problem, the definition of which is necessary to obtain the
monotonical function, the ERFIT method took the longest
to compute the threshold value. To accelerate this process,
we can use a fixed number of knots and coefficients from
the previous image analysis in the artery tracking process
as an initial vector in optimization. Next, the algorithms
addressed to solve the constrained linear least squares
problem with non-negative coefficients can be selected
instead of the default ones. Such tricks allow us to reduce
the time of computation by almost 90%.

From the interventional point of view, in addition
to proper plaque recognition and 3-D visualization, the

Fig. 8. Example of artery reconstruction and measures obtained
for patient 1. First, there is a 3D reconstruction of the
artery lumen (light) with plaques (dark). Below them,
three plots represent the factors under consideration: the
LDF, COF and CPAF through the 66 scans.

factors described Section 2.4 are of utmost importance. To
illustrate changes and differences between these factors
along the course of the artery, two sample cases are
presented in Figs. 8 and 9. In both arteries the occurrence
of plaques varied widely from no plaques at all to the
whole artery wall being covered by them. In patient
no. 1 only 20% of the lumen of the analyzed artery was
occupied by plaques. However, in scans no. 10–15 and
40–60 the CPAF values were high, indicating an increased
risk of endovascular intervention. Obviously, this measure
better than others indicates unfavourable arrangement of
plaques. In patient no. 2 (registered with the highest z
resolution) the CPAF also properly indicated problematic
sites in scans 10–30, 70–90, 185–215, and 260–270. The
highest occupation (about 45%) of the lumen by plaques
was found in scan no. 185, whereas the lowest COF value
was determined for scan no. 5. These differences suggest
that all the measures should be analyzed together. Their
practical clinical value will be estimated in future studies.

4. Discussion

Numerical description of arterial vessels based on
advanced imaging aided with appropriate computer
methods is one of the most interesting and promising
trends in medical image processing. Currently, numerical
evaluation of selected parts of the vessels is conducted
mostly manually based on a single CTA image. A
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Fig. 9. Example of artery reconstruction and measures obtained
for patient 2. First, there is the 3D reconstruction of the
artery lumen (light) with plaques (dark). Below them,
three plots represent the factors under consideration: the
LDF, COF and CPAF through 306 scans.

common system for the quantitative evaluation of
atherosclerotic changes in the iliac and femoral arteries
applicable to the sequence of the CTA images is
still under elaboration. The lack of such a system
significantly limits our capacity to assess blood flow in
vessels and impedes diagnostic efficacy for patients with
cardiovascular diseases.

In the present study, we describe and compare a set
of numerical and statistical approaches to the problem
of differentiation between the vessel lumen and the
atherosclerotic plaques. A crucial step in this process is
to make a precise quantitative evaluation of the plaques,
both locally and along the longer course of the artery.
Results of the analysis of the distribution curve of the
sorted intensities of the pixels suggest that the boundary
between the lumen and the plaque intensity is at the
bending point on this curve. This observation inspired us
to use linear fitting methods and the derivatives of the
obtained functions for counting of the threshold value.

In our study we used a pixel intensity graph which
is arranged inversely to the cumulative distribution.
This was necessary because only the polynomial
approximation of such a function is possible with
acceptable accuracy. The polynomial approximation of
the cumulative distribution cannot be established because
the distribution approaches a limit when the argument
increases, which is incompatible with the character of
polynomials.

Notably, as demonstrated by our own preliminary

results indicating local value changes in the pixels
distribution curve, application of differential rules such
as the Gear rules is not useful for estimating the
derivatives. Hence, we used polynomial approximation,
spline functions, and other fitting methods. We are aware
that the 12-th polynomial approximation is associated
with the ill-conditioned system of linear equations, but
can still be successfully solved by Matlab functions. The
default algorithm was based on the Vandermonde matrix
and application of the QR method to abscissa-normalized
data.

The obtained results confirm that some of the
investigated methods are better than others. The best
results were obtained with statistical Gaussian mixture
models and with numerical error function fitting. The
latter method, both with and without threshold value
averaging, appeared to be one of the top three best
suited methods for examination of all the investigated
arterial regions. There are two possible reasons why
Gaussian mixture models yielded higher errors during
examinations of the femoral artery. Firstly, this artery has
a smaller cut-off plane area and the dominant of the lumen
intensity representation is lower compared to the other
investigated arterial regions. Consequently, worse fitting
of the Gaussian distribution is obtained. Secondly, femoral
arteries are thinner and more peripheral in the arterial
tree, resulting in less homogeneous distribution of the
contrast medium in the vessel lumen, as shown by cases
(e3) and (f3) in Fig. 2. In these cases, the segments of the
distribution curves refer to the lumen areas which have
steeper slopes than the ones obtained for cases (a) to (d).

In terms of computational time, both the GMM and
ERFIT appeared to be rather slow: compared with the
fastest least squares approximation methods, the former
was about ten times slower and the latter, the most
time-consuming algorithm, was 30–40 times slower than
GMM. The constrained linear least squares solver is a
crucial part of ERFIT, occupying almost 90% of the total
computational time. In the case of constrained linear least
squares optimization called 300 times the tricks described
in Section 3 may decrease the time of computation from
about 217 sec to only 17 sec. This way, the ERFIT method
can be used without significantly increasing the time of the
analysis.

Quantification of atherosclerotic changes in an
artery is not a trivial task. Determination of the
most useful factors for prediction of possible problems
in endovascular intervention requires application of
various measures capable of adequate evaluation of
the investigated artery lumen and plaque arrangement.
None of the parameters described so far can perfectly
differentiate between different stages of an atherosclerotic
alteration. In this paper we introduced and analyzed two
such parameters: the convex plaque area factor and the
circumference occupancy factor. The presented results
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show the differences between and the usefulness of the
proposed measures. Also, a practical approach to the
detection of the maximum elliptic area inscribed in the
artery lumen was proposed. We suggest that the centre of
the ellipse be used as an initial point for calculation of the
COF. Each of the factors used differently describes the
observed atherosclerotic changes, but only information
provided by all of them can be used to objectively assess
the investigated alterations.

5. Conclusion

In conclusion, the obtained results of the simulations
indicate that, depending on the arterial tree and the
expected time of the analysis, two methods can be
efficiently used for differentiation between the plaque
and the lumen: one of them (GMM, especially with
threshold value averaging) can be recommended for
the analysis of the aorta and the ilio-femoral artery,
another (ERFIT)—for the assessment of the femoral
artery. However, the data shown in Table 2 and discussed
by us suggest that there is no gold standard at present for
unequivocal differentiation between the vessel lumen and
the atherosclerotic plaques.

During intervention planning, various indicators of
the state of the arteries should be considered. In addition
to the obvious estimation of the plaque-free artery lumen,
we introduce here two novel measures: the COF and the
CPAF. The former parameter defines to what extend the
artery circumference is occupied by the calcified plaque:
firstly, it provides information about the quality of artery
wall and, secondly, estimates the possibility of the artery
wall extension which is responsible for artery adaptation
for manipulation during the intraluminal intervention. The
value of this measure higher than 0.5 seems to be critical
in terms of artery wall elasticity. In this case, the surgeon
must be aware that only the free lumen of the artery is
accessible and that such procedures as, e.g., predilatation
should not be performed.

The CPAF defines the spatial distribution of an
atherosclerotic plaque around the artery lumen. It informs
what part of the lumen can be poorly accessible for
endovascular tools. When the plaques are located only on
one side of the lumen, the tool penetrates the artery easier
than when the plaques are located on different lumen
sides. We assume that the CPAF value higher than 0.6
indicates an unfavourable situation.

The examination of arteries proposed in the
present study is based on long-term experience from
and observations carried out during low-invasiveness
surgical procedures. The cut-off values of the defined
parameters proposed by us for such examinations are only
preliminary and should be verified in future investigations.
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