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In this paper, we discuss a method of auxiliary controlled models and its application to solving some robust control problems
for a system described by differential equations. As an illustration, a system of nonlinear differential equations of the
fourth order is used. A solution algorithm, which is stable with respect to informational noise and computational errors, is
presented. The algorithm is based on a combination of online state/input reconstruction and feedback control methods.
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1. Introduction: Problem statement

A dynamical model connecting the main economic and
climatic indices was suggested by Nordhaus (1994). This
model consists of various components:

(i) Constant parameters (Nordhaus, 1994, Tables 2.3
and 2.4, p. 21).

(ii) Functions that are considered (for simplicity of the
analysis) exogenous with respect to the model and
are given a priori.

(iii) Inner functions that are connected to one another
and to exogenous parameters by means of some
algebraic and differential equations (Nordhaus, 1994,
Tables 2.3 and 2.2).

Consider the following functions: μ(t), the rate of
emission reduction with respect to uncontrollable
emissions; E(t), the amount of emissions of
Greenhouse Gases (GHGs) (CO2 (carbonic acid gas) and
chlorine-fluorine carbons only); M1(t) = (M(t) − 590),
the excess of the mass of GHGs in the atmosphere
with respect to the pre-industrial period; T0(t), the

average atmospheric temperature (on the Earth’s surface);
T1(t), the average deep-ocean temperature; I(t), a gross
investment; K(t), a capital stock; F (t), an atmospheric
radiative forcing from GHGs; O(t), a forcing of
exogenous GHGs (i.e., of gases which are considered as
uncontrollable; these are all GHGs except CO2 (carbonic
acid gas) and chlorine-fluorine carbons); A(t), the level
of technology; σ(t), the ratio of GHGs emissions to
global output; L(t), the population at time t, also equal to
labor inputs; Q(t), the gross world product.

If we pass from the discrete-time model suggested
by various authors to the “continuous” one, then the
corresponding equations of the model Σ take the form

Ṫ0(t) = c1T0(t) + c2T1(t) + c3F (t),

Ṫ1(t) = c4(T0(t) − T1(t)),

Ṁ1(t) = βE(t) − δMM1(t),

K̇(t) = −δKK(t) + I(t), t ∈ [0, ϑ],

(1)

where t is time, ϑ is the terminal time instant,

F (t) = 4.1 · log2

(
1 +

M1(t)
590

)
+O(t),
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E(t) = (1 − μ(t))σ(t)Q(t),

Q(t) =
(1 − b1μ(t)b2)
(1 + θ1T0(t)θ2)

A(t)K(t)γL(t)1−γ .

Refer to the work of Nordhaus (1994) for more
details on model description (Ch. 2) as well as on the
physical meaning of coefficients in system (1) (Table 2.3,
p. 20).

An initial state of Σ, x(0) = {T0(0), T1(0),M1(0),
K(0))}, is assumed to be known and given a priori.
It is natural to set T0(0) > 0, T1(0) > 0, and
K(0) > 0. Functions μ(·) and I(·) are considered control
inputs determining a strategy of global control of climate
and economy. The numerical analysis of the model is
performed by Nordhaus (1994). In that work, the direct
problem is solved, namely, possible strategies (rules of
forming μ(·) and I(·)) are specified, and the system’s
dynamics are computed. In what follows, functions μ
and I , according to Nordhaus (1994), are treated as
controls and are denoted by the symbol u, i.e., u = {μ, I}.
We transform the system (1) to the following form (setting
small values of b1 = 0.0686 and ϑ1 = 0.00144 to zero):

Ṫ0(t) = c1T0(t) + c2T1(t)

+ c5 log2

(
1 +

M1(t)
590

)
+ c3O(t),

Ṫ1(t) = c4(T0(t) − T1(t)),

Ṁ1(t) = E1(t)(1 − μ(t)) − δMM1(t),

K̇(t) = −δKK(t) + I(t), t ∈ [0, ϑ],

(2)

where c5 = 4.1 c3,

E1(t) = E1(t,K) = βσ(t)A(t)K(t)γL(t)1−γ .

In the sequel we consider the system Σ of the form
(2). The symbol x(·) = x(·;x(0), u(·)) stands for the
solution of the system (2) with an initial state x(0) and a
control u(·) = {μ(·), I(·)}.

Our aim differs from that of Nordhaus (1994).
We consider an “inverse” problem consisting in the
following. Some system dynamics, i.e., a function
x∗(·) = {T0∗(·), T1∗(·),K∗(·),M1∗(·)} generated by
some unknown controls μ = μ∗(·) and I = I∗(·)
are given. These controls may be program or feedback
controls; the latter is formed, for example, by the rule
μ∗(t) = μ(t, x∗(t)), I∗(t) = I(t, x∗(t)). Thus, the
functions x∗(·) = {T0∗(·), T1∗(·),K∗(·),M1∗(·)} satisfy
the system of equations

Ṫ0∗(t) = c1T0∗(t) + c2T1∗(t)

+ c5 log2

(
1 +

M1∗(t)
590

)
+ c3O∗(t),

Ṫ1∗(t) = c4(T0∗(t) − T1∗(t)),

Ṁ1∗(t) = E1∗(t,K∗)(1 − μ∗(t)) − δMM1∗(t),

K̇∗(t) = −δKK∗(t) + I∗(t), t ∈ [0, ϑ],

(3)

where, we emphasize it once again, the functions μ∗(·)
and I∗(·) are unknown. It is known only that they are
subject to restrictions of the form

I∗(t) ∈ [I−, I+], μ∗(t) ∈ [f−, f+] for t ∈ [0, ϑ]. (4)

Here

−∞ < f− < f+ < +∞, 0 ≤ I− < I+ < +∞.

The initial state of the system (3), x∗(0) = {T0∗(0),
T1∗(0),M1∗(0),K∗(0)}, is assumed to be x(0).

The control problem under discussion may be
formulated in the following way. At time instants frequent
enough

τi ∈ Δ = {τi}m
i=0, τi+1 = τi +δ, τ0 = 0, τm = ϑ,

values of T0(τi), T1(τi), and K(τi) are inaccurately
measured. Results of measurements (vectors {ξh

1i, ξ
h
2i,

ξh
3i} ∈ R

3) satisfy the inequalities

{(T0(τi) − ξh
1i)

2 + (T1(τi) − ξh
2i)

2

+ (K(τi) − ξh
3i)

2} ≤ h, (5)

where h ∈ (0, 1) is the level of informational noise. A
number ε > 0 is given. It is required to construct an
algorithm for forming a feedback control,

u = uh
i = u(τi;x∗(·), ξh(·)),

t ∈ [τi, τi+1), i ∈ {φ, . . . ,m− 1},
that ensures a prescribed quality of the controlled
system (2). Namely, the algorithm is to implement
the following condition. Whatever unknown possible
Lebesgue measurable functions μ∗(·) and I∗(·) with the
properties (4) may be, the distance between xh(t) and
x∗(t) at all moments t ∈ [0, ϑ] should not exceed the value
of ε provided the values of h and δ are sufficiently small.

Here xh(·) = x(·;x(0), uh(·)) = {T h
0 (·), T h

1 (·),
Mh

1 (·),Kh(·)} is the trajectory of Σ generated by the
control uh(·) which is formed according to the feedback
principle, i.e., xh(·) is the solution of the system (2) with
the feedback controls μ(·) = μh(·) and I(·) = Ih(·).

This is an informal statement of the problem
discussed in the present paper.

In what follows, the symbol U stands for the set of
admissible controls, i.e., the set of Lebesgue measurable
functions u(·) = {μ(·), I(·)} such that μ(t) ∈ [f−, f+],
I(t) ∈ [I−, I+] for a.a. t ∈ [0, ϑ].

Note that the system (1) is “well-posed”. Under this
term, we mean the following. First, as is easily seen, in the
domain 1 +M1/590 > 0, the Carathodory solution of the
system (1) is uniquely defined for any {μ(·), I(·)} ∈ U
and any initial state. Second, the discrete-time model of
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Nordhaus (1994, p. 19) can be obtained from (1) by the
discretization of our system via the Euler method with an
appropriate step.

One of the approaches to solving the problems
of guaranteed control (they are also called positional
differential games) for dynamical systems described
by ordinary differential equations was developed
by Krasovskii and Subbotin (1988). In the work cited
above, the cases when the full phase state of a system is
inaccurately measured at frequent enough time instants
are considered. In the present work, using the approach
described by Osipov and Kryazhimskii (1995), the
problems of guaranteed control under the measurement of
a “part” of a system’s phase state (a “part” of coordinates)
are investigated (see also Osipov and Kryazhimskii, 1995;
Blizorukova and Maksimov, 2006).

To form a control u being a solution to our problem,
along with the information on the “part” of coordinates
of the solution of the system Σ (namely, on the values
ξh
i satisfying the inequalities (5)), it is necessary to

obtain some additional information on the coordinate M1

which is missing. To get such a piece of information
during the control process, it is reasonable, following the
approach developed by Osipov and Kryazhimskii (1995),
Maksimov (2010) as well as Osipov et al. (2011), to
introduce an auxiliary controlled system M . This system
is described by a differential equation (its form is specified
below). The equation has an output wh(t) and an input
vh(t). The input vh(·) is some new auxiliary control; it
should be formed by the feedback principle in such a way
that vh(·) “approximates” the unknown coordinate M1(·)
in the mean uniform metric. Thus, along with the block of
forming the control in the real system (it is called a con-
troller), we need to incorporate into the control contour
one more block (it is called an identifier) allowing us to
reconstruct the missing coordinate M1(·) in a real time
mode. The scheme of algorithms for solving the problem
is given in Fig. 1.

M V

U Σ

�� vh(t)

wh(t)

x∗(t)� �μh(t)
�

Ih(t)
�ξh(t)

vh(t)�

�

�

CONTROLLER

IDENTIFIER

Fig. 1. Scheme of solution algorithms.

To start with an auxiliary dynamical system M (a
model) is introduced. This model functioning on the time
interval [0, ϑ] has an input vh(t) and an outputwh(t). The
model M with its control law V forms the identifier.

Before the algorithm starts, the value h and the
partition Δ with the step δ, as well as the model M ,
are fixed. The process of synchronous feedback control
of the systems Σ and M is organized on the interval
[0, ϑ]. This process is decomposed into m − 1 identical
steps. At the i-th step carried out during the time interval
δi = [τi, τi+1), the following actions are fulfilled. First,
at the time instant τi, according to the chosen rules U and
V , the functions

vh(t) = vh
i ∈ V (τi, ξh

i , w
h(τi)), t ∈ δi, (6)

uh(t) = uh
i = {μh

i , I
h
i } ∈ U(τi, vh

i , ξ
h
i , x∗(τi))

⊂ [I−, I+] × [f−, f+],
(7)

are calculated by measurements ξh
i and wh(τi). Then (till

the moment τi+1) the control u = uh(t), τi ≤ t < τi+1,
is fed onto the input of the system Σ and the control v =
vh(t), τi ≤ t < τi+1, onto the input of the model M . The
values ξh

i+1 and wh(τi+1) are the results of the work of
the algorithm at the i-th step. The procedure stops at the
moment ϑ.

Thus, the complexity of solving these problems is
reduced to an appropriate choice of a model M as well
as functions U and V . Consequently, a mathematical
statement of the problem may be formulated as follows.
In the sequel, a family of partitions

Δh = {τi,h}mh

h=0, τi+1,h = τi,h + δ(h),

τ0,h = 0, τmh,h = ϑ,

of the interval [0, ϑ] is assumed to be fixed.

Problem of robust control. It is required to specify
differential equations of the modelM in the form

ẇh(t) = f1(ξh
i , w

h(τi), vh(t)), (8)

t ∈ δh,i = [τi, τi+1), τi = τi,h,

wh(0) = wh
0 , wh(t) ∈ R,

and the rule of choosing controls vh
i (t) in the model (8)

and uh
i (t) in the system (2) at the moments τi being a

mapping of the form (6), (7) such that the inequality

max
t∈[0,ϑ]

‖xh(t) − x∗(t)‖ ≤ ε (9)

holds for h ∈ (0, h∗(ε)) and δ = δ(h) ∈ (0, δ(h∗(ε)).
Here, the symbol ‖ · ‖ denotes the Euclidean norm of

a vector, xh(·) = x(·;x(0), uh(·)) is the trajectory of Σ
generated by the control uh(·) that is formed according to
the feedback principle (6), (7).

After writing down the model equations (8) and the
rules for forming controls (6) and (7), the sequence of
actions which should be performed to provide “closeness”
of a trajectory of system (2) and a given trajectory
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x∗(·) (i.e., the inequality (9), is similar to the sequence
described above (see also the end of Section 3, where the
corresponding algorithm is presented).

From the above scheme, it follows that one of the
important steps of the algorithm is the reconstruction of
the unmeasured coordinate M1 in “real-time” mode. It
should be noted that the problems of online reconstruction
of states/inputs were considered from the position of
the approach above by Keesman and Maksimov (2008),
Blizorukova and Maksimov (2010) as well as Osipov
et al. (2011) for some classes of systems described
by ordinary differential equations of the second and
third orders. The algorithms designed in these works
allowed reconstructing the corresponding characteristics
in the L2-metric. The algorithm for reconstructing the
coordinate M1 described in Section 2 allows us to get an
approximation of M1 in the uniform metric (the metric of
space C of continuous functions).

Let the symbolX(·) denote the set of solutions of the
system (2), i.e., X(·) = {x(·) : x(·) = x(·;x(0), u(·)) =
{T0(·), T1(·),M1(·),K(·)}, u(·) ∈ U}. We assume that
the following condition is fulfilled.

Condition 1.

d∗ = inf
{

min
t∈[0,ϑ]

(
1 +

M1(t)
590

)
:

x(·) = {T0(·), T1(·),M1(·),K(·)} ∈ X(·)
}
> 1.

In addition, the functions σ(t), A(t), L(t), and O(t)
are considered to be known and continuous.

2. Algorithm for reconstructing M1(·)
First, we specify the algorithm for reconstructing M1(·),
which will be applied for solving the problem in question.
Namely, we describe the identifier (see Fig. 1), i.e.,
specify the equation of the modelM and its control law V .
To substantiate this algorithm, we use ideas of Osipov and
Kryazhimskii (1995), Osipov et al. (2011), Blizorukova
and Maksimov (2006) as well as Maksimov (2013).

Introduce the notation

T (t) = {T0(t), T1(t)},

f(t, T (t)) = c1T0(t) + c2T1(t) + c3O(t),

ũ(t) = log2

(
1 +

M1(t)
590

)
.

Here x(·) = {T0(·), T1(·),M1(·),K(·)} is an arbitrary
element of the set X(·). In this case, the first equation of
the system (2) is rewritten in the form

Ṫ0(t) = f(t, T (t)) + c5ũ(t).

Note that one can specify a number M∗ > 0 such
that the following inequalities are valid:

‖Ṫ (t)‖ ≤M∗ for a.a. t ∈ [0, ϑ], (10)

|f(t, T (t)) − f(τi, ξh
i )| ≤M∗(δ + h+ ω(δ)) (11)

for t ∈ δi = [τi, τi+1). Here the symbol | · | stands for
the absolute value of a number, τi = τi,h, ω(δ) is the
continuity modulus of the function t → O(t), t ∈ [0, ϑ],
i.e.,

ω(δ) = sup{|O(t) −O(t− δ)| : t ∈ [δ, ϑ]}.
The inequality (11) is a consequence of (5) and (10).

We fix a family Δh of partitions of the interval [0, ϑ]
and some auxiliary function α(h) : (0, 1) → (0, 1). As
the model M , we take a linear system described by a
scalar differential equation of the form

ẇh(t) = f(τi, ξh
i ) + c5v

h(t) (12)

for a.a. t ∈ δi = [τi, τi+1), i ∈ {0, . . . ,m− 1}, τi = τi,h,
m = mh, with the initial condition

wh(0) = T0(0).

Let

vh(t) = vh
i

∈ V (τi, ξh
i , w

h(τi))

= − 1
α
c5[wh(τi) − ξh

1i] (13)

for a. a. t ∈ δi. The control vh(t) in Eqn. (12) is found
from (13). Thus, the model control is specified by the
feedback principle (see (6)). Consequently, Eqn. (12)
takes the form

ẇh(t) = f(τi, ξh
i ) − 1

α
c5

2[wh(τi) − ξh
1i] (14)

for a.a. t ∈ δi.
Let us describe the algorithm for reconstructing the

unmeasured coordinate M1(·) in real time mode. Before
the algorithm starts, we fix a value h ∈ (0, 1) and a
partition Δh. The work of the algorithm is decomposed
into m − 1 identical steps. At the i-th step carried out
during the time interval δi = [τi, τi+1), τi = τi,h, the
following actions are made. First, at the moment τi,
the control vh(t) is calculated by (13). This control
is fed to the input of the model (12) on the interval
[τi, τi+1). Under the action of this control, the model
passes from the state wh(τi) to the state wh(τi+1) =
wh(τi+1; τi, wh(τi), vh

i ). The work of the algorithm stops
at the moment ϑ.

Denote by Ξ(x(·), h) the set of admissible
measurements, i.e., the set of all piece wise constant
functions ξh(·) → R

3, ξh(t) = ξh
i for t ∈ [τi, τi+1),

τi = τi,h, satisfying the inequalities (5). Here
ξh
i = {ξh

1i, ξ
h
2i, ξ

h
3i}.
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Lemma 1. Let the conditions

α(h) → 0, δ(h) → 0, (15)

δ(h)α−1(h) → 0, hα−1(h) → 0 as h→ 0

be fulfilled. Then, uniformly in all x(·) ∈ X(·), h ∈ (0, 1),
ξh(·) ∈ Ξ(x(·), h), i ∈ {0, . . . ,mh − 1}, the inequalities

τi+1∫
τi

|ẇh(s)| ds ≤ Cδ (16)

are valid. Here C = const > 0, δ = δ(h), and τi = τi,h.

Proof. Taking into account (14), we deduce

d
dt

[wh(t) − T0(t)]

= f(τi, ξh
i ) − 1

α
c5

2[wh(τi) − ξh
1i]

− f(t, T (t)) − c5ũ(t)

= − 1
α
c5

2[wh(t) − T0(t)] + Ψ(1)
h (t)

for a. a. t ∈ δi, and

wh(0) = T0(0),

where

Ψ(1)
h (s) = Ψh(s) +

1
α
c5

2[wh(s) − wh(τi)],

Ψh(s) = − 1
α
c5

2[T0(s) − ξh
1i] + [f(τi, ξh

i )

− f(s, T (s))] − c5ũ(s) for a.a. s ∈ δi.

Here, by virtue of (5), (10), (11) and (15), the family
of functions Ψh(·) is bounded,

|Ψh(s)| ≤M (1) for a.a. t ∈ [0, ϑ], (17)

uniformly with respect to all h ∈ (0, 1). Further, we have

wh(t) − T0(t)

=

t∫
0

e−
1
α c5

2(t−s)Ψ(1)
h (s) ds, t ∈ [0, ϑ]. (18)

Let

μ(t) = max
0≤τ≤t

|wh(τ) − T0(τ)|,

fh(t) = f(τi, ξh
i ) for t ∈ δi.

Then the following estimations are true:

1
α
c5

2

τi+1∫
τi

|ẇh(s)| ds

≤ K0

α

τi+1∫
τi

|fh(s) − 1
α
c5

2[wh(τi) − ξh
1i]| ds

≤ K1
δ

α
+K2

δ

α2
(μ(τi) + h),

μ(τi) ≤ μ(τi+1). (19)

Note that

|Ψ(1)
h (t)|

≤ |Ψh(t)| + 1
α
c5

2

τi+1∫
τi

|ẇh(s)| ds for t ∈ δi.
(20)

Thus, taking into account (18)–(20), we obtain

μ(t) ≤ K3

( δ
α

+
δ

α2
μ(τi) +

δh

α2

) t∫
0

e−
1
α c5

2(t−s) ds

+

t∫
0

e−
1
α c5

2(t−s)|Ψh(s)| ds, t ∈ δi.

(21)

Using (17), we derive

t∫
0

e−
1
α c5

2(t−s)|Ψh(s)| ds ≤ K4

t∫
0

e−
1
α c5

2(t−s) ds.

(22)
It is easily seen that

t∫
0

e−
1
α c5

2(t−s) ds

=
α

c52
e−

c5
2

α (t−s)
∣∣∣t
0

=
α

c52
(1 − e−

c5
2

α t) ≤ K5α. (23)

Using (22) and (23), we obtain

t∫
0

e−
1
α c5

2(t−s)|Ψh(s)| ds ≤ K6α. (24)

Taking into account (21), (17), (24) and assuming t = τi,
we have

(
1 − K3K5δ

α

)
μ(τi) ≤ K7

(
α+ δ +

δh

α

)
.
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Therefore, for sufficiently small h (for example, such
that 1 −K3K5δ/α ≥ 1/2), we obtain

μ(τi) ≤ K8

(
α+ δ +

δh

α

)
≤ K9(α+ δ) (25)

(see (15)). From (19) it follows that

τi+1∫
τi

|ẇh(s)| ds ≤ K10

{
δ +

δ

α
(μ(τi) + h)

}
.

In addition, by virtue of (25), we derive

δ +
δ

α
(μ(τi) + h) ≤ δ +K8

δ

α

(
α+ h+ δ +

δh

α

)

≤ K11δ.

Therefore,

τi+1∫
τi

|ẇh(s)| ds ≤ K12δ.

The inequality (16) is established and the lemma is
proved. �

Lemma 2. Let the conditions (15) be fulfilled. Let
δγ(h)α−1(h) → +∞ (for some γ ∈ (0, 1)) as h → 0
and

uh
e (t) =

{
ũ(0), t ∈ [0, δγ),

vh(t), t ∈ [δγ , ϑ].

Then the inequality

sup
t∈[0,ϑ]

|uh
e (t) − ũ(t)|

≤ d0
1α(h) + d0

2(h+ δ(h))α−1(h) + d0
3ω(δ(h))

+ d0
4α(h)δ−γ(h) + d0

5δ
γ(h)

is valid. Here the constants d0
j , j ∈ 1, . . . , 5, do not de-

pend on h ∈ (0, 1).

Proof. It is easily seen that the equality

1
α
c5

2[wh(t) − T0(t)]

=

t∫
0

( d

ds
e−

1
α c5

2(t−s)
)
Ψ(1)

h (s) ds

= −
t∫

0

( d
ds
e−

1
α c5

2(t−s)
)
c5ũ(s) ds

+
3∑

j=1

t∫
0

( d
ds
e−

1
α c5

2(t−s)
)
γ

(j)
δ (s) ds

(26)

is true. Here

γ
(1)
δ (s) =

1
α
c5

2[wh(s) − wh(τi)],

γ
(2)
δ (s) = − 1

α
c5

2[T0(s) − ξh
1i],

γ
(3)
δ (s) = f(τi, ξh

i ) − f(s, T (s))

for a.a. s ∈ δi. Using (16) we conclude that

|γ(1)
δ (s)| ≤ C1

δ

α
, s ∈ [0, ϑ]. (27)

From (5) and (10) it follows that

|γ(2)
δ (s)| ≤ C2

δ + h

α
, s ∈ [0, ϑ]. (28)

Using (11) we have

|γ(3)
δ (s)| ≤M∗(δ + h+ ω(δ)), s ∈ [0, ϑ]. (29)

In this case, from (27)–(29), (23), (24) we deduce that

∣∣∣
3∑

j=1

t∫
0

( d
ds
e−

1
α c5

2(t−s)
)
γ

(j)
δ (s) ds

∣∣∣

≤ �(h, α, δ) = C3

(
δ + h+ ω(δ) +

δ + h

α

)
. (30)

Integrating by parts the first term on the right-hand
side of (26), we obtain

−
t∫

0

( d
ds
e−

1
α c5

2(t−s)
)
c5ũ(s) ds

= e−
1
α c5

2tc5ũ(0) − c5ũ(t)

+

t∫
0

e−
1
α c5

2(t−s)c5 ˙̃u(s) ds.

(31)

From (5), (10), (16) (see Lemma 1), we have that for a.a.
t ∈ δi

∣∣∣ 1
α
c5

2{[wh(t) − T0(t)] − [wh(τi) − ξh
1i]}

∣∣∣ (32)

≤ C4

α

{ τi+1∫
τi

|ẇh(s)| ds+ h+ δ
}
≤ C5

h+ δ

α
.

By virtue of the boundedness of ˙̃u(·) ( ˙̃u(·) ∈
L∞([0, ϑ]; R) (see Condition 1), using (24), we derive the
inequality

∣∣∣
t∫

0

e−
1
α c5

2(t−s)c5 ˙̃u(s) ds
∣∣∣ ≤ C6α.
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Therefore, using this inequality as well as (26), (30)–(32)
and (15), we obtain for t ∈ δi

∣∣∣ 1
α
c5

2[wh(τi) − T0(τi)] − c5ũ(t)
∣∣∣

≤ �(h, δ, α) + C5
h+ δ

α

+ C6α+ |e− 1
α c5

2tc5ũ(0)|.

(33)

Note that

e−c∗ δγ

α ≤ α

c∗δγ
for c∗ > 0.

The statement of the lemma follows from (33), since,
by virtue of the boundedness of M1(·), the inequalities

|ũ(t) − uh
e (t)| ≤ cδγ for a.a. t ∈ [0, δγ),

|ũ(t) − uh
e (t)| ≤ d0

1α+ d0
2

h+ δ

α
+ d0

3ω(δ)

+ d0
4

α

δγ
for a.a. t ∈ [δγ , ϑ]

are valid. The lemma is proved. �
Introduce the notation

ũh
∗(t) = 590(2uh

e (t) − 1).

The following theorem is true.

Theorem 1. Under the conditions of Lemma 2, the in-
equality

sup
t∈[0,ϑ]

|ũh
∗(t) −M1(t)| ≤ ν(h, δ(h), α(h))

= d1α(h) + d2(h+ δ(h))α−1(h) + d3ω(δ(h))

+ d4α(h)δ−γ(h) + d5δ
γ(h)

holds. Here the constants dj , j ∈ {1, . . . , 5}, do not de-
pend on h ∈ (0, 1).

The theorem follows from Lemma 2 and the
inequality

|ũh
∗(t) −M1(t)| ≤ 590|2uh

e (t) − 2ũ(t)|.

3. Algorithm for the control problem

Let us turn to the description of the algorithm for solving
the control problem in question. From the above, it is
necessary to specify the model (8) and control laws U (7)
and V (6), providing the inequality (9).

We fix a family Δh of partitions of the interval [0, ϑ]
and some function α(h) : (0, 1) → (0, 1). Let the family
Δh and the function α(h) be such that the following
condition holds

Condition 2. We have

α(h) → 0, δ(h) → 0, δ(h)α−1(h) → 0,

hα−1(h) → 0, α−1(h)δγ(h) → +∞ as h→ 0

for some γ ∈ (0, 1).

Let the model (8) be of form (12), i.e.,

ẇh(t) = f(τi, ξh
i ) + c5v

h(t) (34)

for a.a. t ∈ δi = [τi, τi+1), i ∈ {0, . . . ,m − 1}, τi =
τi,h, m = mh, with the initial condition

wh(0) = T0(0).

Let rules U (7) and V (6) for forming the controls uh
i and

vh
i be as follows:

vh
i = V (τi, ξh

i , w
h(τi)) = − 1

α
c5[wh(τi) − ξh

1i], (35)

uh
i = {μh(τi), Ih(τi)} = U(τi, vh

i , ξ
h
i , x∗(τi))

for t ∈ δi. Here

Ih(τi) = argmin{(ξh
3i−K∗(τi))I : I ∈ [I−, I+]}, (36)

μh(τi) = argmin{E1(τi,K∗)

× (M1∗(τi) − ũh
∗(τi))μ : μ ∈ [f−, f+]}, (37)

ũh
∗(τi) = 590(2uh

ε (τi) − 1),

uh
ε (τi) =

{
log2

(
1 + M1(0)

590

)
if τi ≤ δγ(h),

vh
i otherwise.

In what follows, we need the lemma given below.

Lemma 3. (Maksimov, 2011) Let the function ε(t) be
nonpositive for t ∈ T and, for all i ∈ {0, . . . ,m − 1},
satisfy the inequalities

ε(τi+1) ≤ ε(τi)(1 + βδ) +

τi+1∫
τi

|ϕ(t)| dt,

where τi ∈ Δ, β = const > 0, and ϕ(·) ∈ L1(T ; R).
Then

ε(τi) ≤
(
ε(t0) +

τi∫
t0

|ϕ(t)| dt
)

exp(β(τi − t0)).

Introduce the following condition.

Condition 3. The inequalities

0 < C(1) < K∗(t) < C(2) < +∞ for t ∈ [0, ϑ]

are valid.
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Theorem 2. For any ε > 0, one can specify h∗(ε) ∈ (0, 1)
such that, for all h ∈ (0, h∗(ε)) and δ(h) ∈ (0, δ(h∗(ε))),
the inequality (9) holds, if the model M is given by
Eqn. (34), the strategies V and U are taken in the form
(6), (7), (35)–(37).

Proof. First, estimate the variation in the value

ε1(t) = |K∗(t) −Kh(t)|2, t ∈ [0, ϑ].

It is easily seen that for t ∈ δi = [τi, τi+1) the following
inequality is true:

ε1(t) ≤ ε1(τi) + δ(h)

t∫
τi

|K̇∗(τ) − K̇h(τ)|2 dτ

+

t∫
τi

νi(τ) dτ.

(38)

Here

νi(τ) = 2(K∗(τi)−Kh(τi))(K̇∗(τ)−K̇h(τ)), τ ∈ δi.

Consider the value νi(t). We have for t ∈ δi

νi(t) =
4∑

j=1

νji(t), t ∈ δi, (39)

where

ν1i(t) = 2β(1)
i δK (K∗(τi) −K∗(t)) ,

ν2i(t) = 2β(1)
i δK

(
Kh(t) −Kh(τi)

)
,

ν3i(t) = 2δKε1(τi),

ν4i(t) = 2β(1)
i δK

(
I∗(t) − Ih(τi)

)
,

β
(1)
i = K∗(τi) −Kh(τi).

Estimate each term on the right-hand side of the equality
(39). From (2) and (4) it follows that

ν1i(t) ≤ C1δ, ν2i(t) ≤ C1δ, t ∈ δi. (40)

Taking into account the inequality

|Kh(τi) − ξh
3i| ≤ h

(see (5)) and the rule for choosing the control Ih(·) (36),
we obtain for a.a. t ∈ δi

ν4i(t) ≤ C2h, C2 = 2δK max{|I−|, |I+|}. (41)

From (39)–(41) it follows that for a.a. t ∈ δi

νi(t) ≤ 2C1δ + C2h+ C3ε1(τi). (42)

Consequently, due to (38) and (42), we have for i ∈
{0, . . . ,m− 1} the estimate

ε1(τi+1) ≤ (1 + C3δ)ε1(τi) + C4δ(δ + h). (43)

From (43) and Lemma 3, we derive (for all i ∈
{0, . . . ,m− 1}) the inequalities

ε1(τi+1) ≤ ε1(0) + C5(δ + h). (44)

In this case,
ε1(t) ≤ C∗(δ + h). (45)

Here C∗ > 0 is a constant that does not depend on h, δ
and can be written explicitly. Now estimate the variation

ε2(t) = |M∗1(t) −Mh
1 (t)|2, t ∈ [0, ϑ].

It is easily seen that for t ∈ δi = [τi, τi+1) the
following inequality is true:

ε2(t) ≤ ε2(τi) + δ(h)

t∫
τi

|Ṁ∗1(τ) −Mh
1 (τ)|2 dτ

+

t∫
τi

μ
(1)
i (τ) dτ, (46)

μ
(1)
i (t) = 2(M∗1(τi) −Mh

1 (τi))(Ṁ∗1(t) − Ṁh
1 (t))

for t ∈ δi. Note that

Ṁ∗1(t) = E1(t,K∗)(1 − μ∗(t)) − δMM∗1(t),

Ṁh
1 (t) = E1(t,Kh)(1 − μh(t)) − δMMh

1 (t),
(47)

|K̇h(t)| ≤ C0 (48)

for a.a. t ∈ [0, ϑ]. Consider the value μi(t). By virtue of
(47), we have for t ∈ δi

μi(t) =
6∑

j=1

λji(t), t ∈ δi, (49)

where

λ1i(t) = 2β(2)
i (E1(τi,K∗) − E1(t,K∗))μ∗(t),

λ2i(t) = 2β(2)
i

(
E1(t,K∗) − E1(t,Kh)

)
,

λ3i(t) = 2β(2)
i

(
E1(t,Kh) − E1(τi,Kh)

)
μh(t),

λ4i(t) = 2δMβ
(2)
i

(
Mh

1 (t) −M∗1(t)
)
,

λ5i(t) = 2β(2)
i E1(τi,K∗)

(
μh(t) − μ∗(t)

)
,

λ6i(t) = 2β(2)
i (E1(τi,Kh) − E1(τi,K∗))μh(t),

β
(2)
i = M∗1(τi) −Mh

1 (τi).

Now, we estimate each term on the right-hand side of
the equality (49). From (2), (3) and (48), it follows that

λ1i(t) ≤ C6(δ + ω�(δ)),

λ3i(t) ≤ C7(δ + ω�(δ)), t ∈ δi,
(50)
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|E1(t,K∗) − E1(t,Kh)|
≤ �(t)|Kγ

∗ (t) − (Kh)γ(t)|, t ∈ [0, ϑ], (51)

where
�(t) = βσ(t)A(t)L1−γ(t),

ω�(δ) is the continuity modulus of �(t), i.e.,

ω�(δ) = sup{|�(t) − �(t+ δ)| : t, t+ δ ∈ [0, ϑ]}.
By virtue of Condition 3, we obtain

|Kγ
∗ (t) − (Kh)γ(t)| ≤ Kγ

∗ (t)|1 − (Kh(t)/K∗(t))γ |
≤ (C(2))γ |1 − (1 + ψh(t))γ |,

where

ψh(t) =
Kh(t) −K∗(t)

K∗(t)
.

Taking into account (45), we conclude that the estimate

|ψh(t)| ≤ ε
1/2
1 (t)
C(1)

≤ C
1/2
∗ (h+ δ)1/2

C(1)

is valid. Let us choose δ∗ ∈ (0, 1) and h∗ ∈ (0, 1) in such
a way that the inequality

C
1/2
∗
C(1)

(h1/2
∗ + δ

1/2
∗ ) < 1

is valid. Then, for h ∈ (0, h∗) and δ ∈ (0, δ∗) we have

sup
t∈[0,ϑ]

|Kγ
∗ (t) − (Kh)γ(t)| ≤ C8(h1/2 + δ1/2), (52)

where the constantC8 does not depend on h and δ. Using
(51) and (52), we obtain for δ∗ ∈ (0, 1) and h∗ ∈ (0, 1)

λ2i(t) ≤ C9(h1/2 + δ1/2),

λ6i(t) ≤ C10(h1/2 + δ1/2), t ∈ δi.
(53)

Furthermore, we have for t ∈ δi

λ4i(t) ≤ C11ε2(τi) + C12δ, (54)

λ5i(t) ≤ λ
(1)
i (t) + λ

(2)
i (t), (55)

where

λ
(1)
i (t) = 2E1(τi,K∗)(M1∗(τi) − ũh

∗(τi))

× (μh(t) − μ∗(τi))

λ
(2)
i (t) = 4|Mh

1 (τi) − ũh
∗(τi)||E1(τi,K∗)|f, t ∈ δi,

f = max{|f−|, |f+|}.

Using the rule of forming the control μh(·) (see
(37)), we get

λ
(1)
i (t) ≤ 0 for a.a. t ∈ δi. (56)

In addition, from Theorem 1 we derive

λ
(2)
i (t) ≤ C13ν(h, δ(h), α(h)) for t ∈ δi. (57)

Taking into account (46), (49), (50), (53)–(57), we
conclude for t ∈ [τi, τi+1] that

ε2(t) ≤ ε2(τi)(1 + C14δ)

+ C15(h1/2 + δ1/2)δ
+ C16ν(h, δ(h), α(h))δ.

(58)

Using Lemma 3, we have for i ∈ {0, . . . ,m}
ε2(τi) ≤ ε2(0) + C17(h1/2

+ δ1/2 + ν(h, δ(h), α(h))).

Then we get for t ∈ [0, ϑ]

ε2(t) ≤ C18(h1/2 + δ1/2 + ν(h, δ(h), α(h))). (59)

The validity of the theorem follows from (45) and (59).
�

Note that proving Theorem 2 we actually prove the
convergence of the algorithm and not (time) convergence
of the estimates.

Concluding, we describe the algorithm for the
problem under consideration. Thus, we have the system
(2) with the control u = {μ, I} and the system (3)
with the unknown control u∗ = {μ∗, I∗}. We choose a
family Δh = {τi,h}mh

i=0 of partitions of the interval [0, ϑ]
with a step δ(h) = τi+1,h − τi,h and a function α(h):
(0, 1) → (0, 1) depending on the parameter h. The family
Δh and the function α(h) satisfy Condition 2. Before
the algorithm starts, we fix some value of measurement
accuracy h, a partition Δ = Δh and a number α = α(h).
The work of the algorithm is decomposed into m − 1,
m = mh, identical steps. At the i-th step carried out
during the time interval δi = [τi, τi+1), τi = τi,h, the
following actions are made. First, at the moment τi, using
the state wh(τi) of the model (34), the result ξh

i (satisfying
the inequality (5)) of calculating the state of the system
(2), we determine three numbers, namely, vh

i and uh
i =

{μh(τi), Ih(τi)}, by the formulas (35)–(37). Then, during
the time interval δi, the constant control vh(t) = vh

i is fed
to the input of the model (34) and the constant control
uh(t) = uh

i is fed to the system (2), respectively. After
these operations, at the moment τi+1 the model state is
recalculated (instead of the number wh(τi), the number
wh(τi+1) = wh(τi+1;wh(τi), vh

i ) is found; in addition,
the vector ξh

i+1 is determined). Analogous actions are
performed till the moment τmh−1,h.

As follows from Theorem 2, if the fixed
measurement accuracy h is sufficiently small, then
the algorithm described above for forming the control
u(·) in the system (2) provides the “tracking” (in uniform
metric) of the solution x∗(·) of the system (3) by the
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solution xh(·) of the system (2). Thus, the algorithm
solves the problem of robust control.

Remark 1. Let us briefly dwell on the reasons that
made us introduce Conditions 1–3. The appearance of
Condition 1 is caused by the two factors: first, the
“physical” (Nordhaus, 1994, Chapt. 2) sense of function
F (t) containing as a summand the value 4.1 log2(1 +
M1(t)/590) and, second, the necessity of boundedness
in L∞([0, ϑ]; R) of the function ˙̃u(·) (see the proof of
Lemma 2). Condition 2 is necessary to prove Theorem 2.
Only under this condition does the right-hand side of the
inequality (59) tend to zero as h → 0. Condition 3
(namely, constants C(1) and C(2) from this condition) is
used to obtain inequality (52).

4. Results of computer modeling

The algorithm described above was tested on a computer.
In Figs. 2–5, the results of computer modeling are
presented for the following case:

c1 = c2 = c3 = 1, σ = 1 + 0.5t,
c4 = 0.5, O(t) = 5 sin t,
δK = 0.65, L(t) = 1,
a1 = 30, a2 = 60,
δM = 0.0833, μ∗(t) = 1 + 0.5t,

β = 0.1, I∗(t) = 1 + 0.15t2,

γ = 0.1, A(t) = 2t1/2.

The parameters are as follows:

f− = 1, f+ = 10, I− = 1, I+ = 2.

0

20

40

1 2

M1, M1∗

t

Fig. 2. Trajectories M1(t) (dashed line) and M1∗(t) (solid line)
in the case of δ = 0.0001, h = 0.001.

-5

0

5

1 2

ũ, uh
ε

t

Fig. 3. Function ũ(t) (solid line) and control uh
ε (t) (dashed

line) in the case of δ = 0.0001, h = 0.001.

The initial conditions for the system are the following:

T0(0) = 1, T1(0) = 0.5,
M1(0) = 35, K(0) = 5.

Equations (2) and (3) were solved by the Euler
method with step δ. During the experiment, we assume

ξh
1i = T0(τi) + h sin(50t),

ξh
2i = T1(τi) + h sin(50t),

ξh
3i = K(τi) + h sin(50t), α = 0.1.

In Figs. 2 and 4, trajectoriesM1(t) (dashed line) and
M1∗(t) (solid line) are presented. In Figs. 3 and 5, control
uh

ε (t) (dashed line) and function

ũ(t) = log2

(
1 +

M1(t)
590

)

(solid line) are presented. Figures 2 and 3 correspond
to the case of δ = 0.0001, h = 0.001; Figs. 4 and 5
correspond to the case of δ = 0.01, h = 0.5.

5. Conclusions

A control problem for a fourth order system was
considered. The problem consists in constructing an
algorithm of stable formation of control characteristics
providing a given quality of the process under conditions
of measuring a part of the phase coordinates and the
action of uncontrolled disturbances. On the basis
of the feedback control method, a solving algorithm
(the reconstruction-control controller) is designed. The
algorithm consists of two blocks: the block of online
reconstruction and the block of positional control.
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