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Speech segmentation is an essential stage in designing automatic speech recognition systems and one can find several
algorithms proposed in the literature. It is a difficult problem, as speech is immensely variable. The aim of the authors’
studies was to design an algorithm that could be employed at the stage of automatic speech recognition. This would make
it possible to avoid some problems related to speech signal parametrization. Posing the problem in such a way requires the
algorithm to be capable of working in real time. The only such algorithm was proposed by Tyagi et al., (2006), and it is
a modified version of Brandt’s algorithm. The article presents a new algorithm for unsupervised automatic speech signal
segmentation. It performs segmentation without access to information about the phonetic content of the utterances, relying
exclusively on second-order statistics of a speech signal. The starting point for the proposed method is time-varying Schur
coefficients of an innovation adaptive filter. The Schur algorithm is known to be fast, precise, stable and capable of rapidly
tracking changes in second order signal statistics. A transfer from one phoneme to another in the speech signal always
indicates a change in signal statistics caused by vocal track changes. In order to allow for the properties of human hearing,
detection of inter-phoneme boundaries is performed based on statistics defined on the mel spectrum determined from the
reflection coefficients. The paper presents the structure of the algorithm, defines its properties, lists parameter values,
describes detection efficiency results, and compares them with those for another algorithm. The obtained segmentation
results, are satisfactory.

Keywords: automatic speech segmentation, inter-phoneme boundaries, Schur adaptive filtering, detection threshold deter-
mination.

1. Introduction

Segmentation is the process of dividing a speech signal
into discrete, non-overlapping fragments. This is usually
a division into units of speech such as sentences, words,
syllables, phonemes or even smaller phonetic units. When
it comes to recordings containing numerous speakers’
utterances, segmentation can consist in attributing pieces
of utterances to particular speakers. The term segmen-
tation is also sometimes used to refer to a division of
the speech signal into frames before its parametrisation.
The frames do not need to have the same length. Usages
of segmentation include speech analysis and synthesis,
speech quality improvement, speaker recognition or
Automatic Speech Recognition (ASR). As for ASR
systems, segmentation can be performed (i) at the system
training stage, when segmentation is applied to the
training set recordings, or (ii) at the recognition stage. In
the former case, segmentation can be manual, automatic

or semi-automatic, i.e., with manual correction of
decisions prepared automatically. For recognition-stage
segmentation, it must be performed automatically.

Regardless of the method used, speech segmentation
is an important task, but it is a serious challenge to
the executors, too. As for manual segmentation, it is
a very laborious task, as designing high-quality speech
recognition systems requires a huge amount of training
data. In such a situation, it is difficult to avoid errors or
inaccuracies, as manual segmentation is encumbered with
subjectivity. At the same time, recognizing boundaries
between phonetic units is not obvious, as changes in the
geometry of the voice tract shaping the speech signal are
fluid. This applies to a lesser extent to transitions to
fricative and affricate phonemes. Moreover, sometimes
a transition between phonemes takes place at different
moments for different frequencies, which is connected
with different inertness of different parts of the speech
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tract. Inside fricative and affricate phonemes, signal
variance may strongly fluctuate. Basically, only vowels,
semivowels and nasal consonants have a stable form.
Additionally, speech can contain, e.g., breaths or tongue
clicks. Some phonemes may consist of spectrally different
sounds or may be preceded by vocal cord activation.
Moreover, speech changeability is immense. All this
makes automatic segmentation a complicated task, and the
literature does not provide fully satisfactory solutions.

The algorithms known from the literature could
be divided into two basic groups: (i) those using
information about the phonetic content (supervised
segmentation) and (ii) those performing segmentation
regardless of the phonetic content (unsupervised
segmentation). Algorithms in the first group require
signal parameterisation before they start recognition.
If a phoneme sequence is known, the task consists in
matching a set of observation vectors, resulting from
parametrisation, to that sequence. These algorithms
require at least the presence of a model composed of an
acoustic speech model and a model of interphonemic
transitions. Thus, these algorithms are computationally
consuming. This group includes algorithms using
recognition with Hidden Markov Models (HMMs) (e.g.,
Brugera, 1993; Tolenado, 2003; Mporas, 2008), Dynamic
Time Warping (DTW) (e.g., Gomez, 2011) or Artificial
Neural Networks (ANNs) (e.g., Schwarz et al., 2006).
The algorithms of this group are employed only in the
ASR system training stage.

The other automatic segmentation group consists of
algorithms which do not require any knowledge about the
phonetic content and are based mostly on statistical signal
analysis (e.g., Tyagi et al. 2006; Almanidis et al., 2008,
2009; Scharenborg et al., 2010; Rudoy et al., 2011). Tyagi
et al. (2006) employed speech signal modelling based
on the autoregressive process. This is a variant of the
Brandt algorithm (Brandt, 1983). It starts with defining
prediction filter coefficients for three frames: x0(n) =
[t − N0, . . . , t − 1], x1(n) = [t, . . . , t + N1 − 1] and
x(n) = [t − N0, . . . , t + N1 − 1], so x(n) is a joint of
x0(n) and x1(n). For these frames, predictive filtering
error variances are defined. These variances are a basis for
formulating a Generalized Likelihood Ratio Test (GLRT)
related to a change in the signal power spectrum density
over the analysed period of time. Almanidis et al. (2008;
2009) presented a hybrid algorithm known as the Model
Selection Criterion (MSC), using a Bayesian Information
Criterion (BIC) and Kullback–Leibler information. This
method requires MFCC parameterisation of the speech
signal, constructing a model of speech signal segments
and performing boundary detection. The whole is
referred to as the DISTBIC algorithm (Delacourt et al.
2000). In the work by Scharenborg et al. (2010),
the first step is also MFCC parameterisation, followed
by segmentation based on the principle of finding the

maximum distances between observation vectors in the
selected subset, performed with the use of a method
known as Maximum Margin Clustering (MMC). Finally,
Rudoy et al. (2011) used stochastic modelling employing
the standard AutoRegressive (AR) and Time-Varying
AutoRegressive (TVAR) models. Detection is performed
with the use of a classic GLRT test based on determining
which model is more adequate for a particular segment of
the signal. Except for the solutions presented by Tyagi et
al. (2006) and Rudoy et al. (2011), the above-mentioned
algorithms are computationally complicated.

The efficiency of defining interphonemic transitions
by means of supervised algorithms, with the assumed
tolerance of up to 20 ms, reaches 93%, while for
unsupervised algorithms it is up to 75%, with the false
acceptance error of 2% (Almanidis et al., 2008; 2009).
This advantage of supervised algorithms is a consequence
of using information about the phonetic content.

The present article focuses on segmentation of
speech into phonemes performed to the use in ASR
systems. It proposes a segmentation algorithm whose
starting point is estimation of the reflection coefficients
with the use of an adaptive Schur algorithm. This
algorithm is characterized by rapid adaptation to the
changing signal, stability and robustness (Lee et al., 1981;
Lopatka et al., 2005; 2006; Makowski and Zimroz, 2013).
Based on Schur coefficients, a parametric time-varying
spectrum is defined and subsequently converted to
time-varying signal powers in subbands with the use of
mel frequency scale. Based on these powers, a GLRT
test is formulated. It is commonly acknowledged that
a mel or bark spectrum is the signal statistic on which
speech recognition performed by the human hearing organ
and the brain is based. Detection of boundaries between
speech sounds (phonemes and other sounds) performed
by the proposed algorithm is based exclusively on the
signal. Besides, this algorithm is relatively uncomplicated
computationally and it can operate in real time. Thus, it
can be used in ASR systems at the recognition stage.

Any definite and relevant information about
automatically recognized speech signal is valuable. Even
an incomplete division into phonemes would allow, e.g.,
avoiding problems related to estimation of the observation
vector. One problem connected with such estimation
is incorrect recognition of frames containing pieces of
two adjacent phonemes, particularly in transitions from
affricates to most other phonemes.

Section 2 of this work provides a description of the
proposed algorithm, an analysis of its properties as well
as a general plan of boundary processing and detection.
Section 3 contains a description of the inter-phoneme
boundary detection procedure allowing for speech signal
properties. Section 4 discusses the values of the
employed processing parameters, the defined measures of
detection effectiveness, as well as the results of automatic
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segmentation performed by using the proposed algorithm
obtained for a recording corpus for the Polish language,
also comprising manual segmentation of utterances. The
obtained results are compared with those achieved by
using a modified algorithm by Tyagi et al. (2006). Finally,
Section 5 summarizes the main points of the work.

2. Description of the proposed algorithm

2.1. Innovation adaptive filter. A method of
modelling the speech signal with the use of autoregressive
process, i.e., describing it with a predictive filter
coefficients or reflection coefficients, has been widely
used, e.g., by Rabiner and Yuang (1993). In the present
work, such modelling will be employed for detecting
changes in the speech signal spectrum and subsequently
for its segmentation. The speech signal is non-stationary,
although its local stationarity is assumed. It will be
analysed with the use of the innovation adaptive filter
(Schur filter). For every discrete time instant t, the
Schur reflection coefficients describing the autoregressive
process will be estimated optimally in a mean square
sense. This means that the filter is capable of following
changes in the second order statistics (the autocovariance
function in this case) of the analysed signal. The ladder
realization of the innovation adaptive filter is shown in
Fig. 1 (Lee et al., 1981; Lopatka et al., 2005; 2006).

The innovation filter is composed of P sections.
Each section is completely described by the time-varying
Schur coefficient ρ(n, t), n = 1, . . . , P . The inputs of
each section are the subsequent samples of the forward
e(n, t) and backward r(n, t) prediction error signals, and
for the first section these are normalized signal samples.
The Schur coefficients are updated every time instant t.
This updating is in fact a procedure of minimizing the
mean-square prediction error. All the computations are
summarized in the following three equations based on the
recursive orthogonalization principle (Lee et al., 1981;
Lopatka et al., 2005; 2006):

ρ(n + 1, t)

= ρ(n + 1, t − 1)
√

1 − e2(n, t)
√

1 − r2(n, t − 1)
− e(n, t)r(n, t − 1),

Fig. 1. Ladder-form realisation of the adaptive innovation filter.

e(n + 1, t) =
e(n, t) + ρ(n + 1, t)r(n, t − 1)

√
(1 − ρ2(n + 1, t))

√
1 − r2(n, t − 1)

,

(1)

r(n + 1, t) =
ρ(n + 1, t)e(n, t) + r(n, t − 1)

√
1 − ρ2(n + 1, t)

√
1 − e2(n, t)

.

The Schur filter requires an initialization.
Simultaneously, the analysed signal is normalized
in order to provide its good numerical properties.
Specifically (Lee et al., 1981; Lopatka et al., 2005; 2006),

• the first sample of the registered signal xd(0) is
normalized according to the relation

x(0) =
xd(0)
√

c(0)
, (2)

where c(0) is an estimate of the signal variance,

c(0) = xd
2(0) + δ, (3)

while δ is a small-value constant preventing the
occurrence of a division by zero;

• the successive signal samples are normalized
according to the principle

x(t) =
xd(t)√

c(t)
, (4)

where c(t) is an estimate of the signal variance at
time instant t,

c(t) = λc(t − 1) + x2
d(t), (5)

while λ is a forgetting factor.

The key role in the Schur algorithm is normalization
expressed by the relations (4) and (5). The forgetting
coefficient, λ ∈ (0, 1) is a significant parameter in this
normalization. This coefficient balances the influence of
a new signal sample both on the variance and covariance
function values, and it determines the quality of estimators
and the inertial properties of the algorithm.

After initialization, the two parameters of the
algorithm are essential: the filter order P and the value
of the forgetting factor λ. Selection of the filter order
depends on the signal frequency structure and it should
ensure a satisfactory model of the signal. It is worth
remembering that every local maximum of the spectral
power density of the process is represented by a pair
of reflection coefficients. Thus, assuming that a speech
signal spectrum contains 4–5 formants, it will usually be
satisfactory to assume P = 10 to P = 14. On the other
hand, the adopted value of the forgetting factor should
depend on the rate of the signal change and should change
adaptively (Makowski and Zimroz, 2013), but such an
approach is difficult to realize. Therefore, a constant value



262 R. Makowski and R. Hossa

of λ is employed here. The equivalent rectangular window
length T in samples, corresponding to an exponential
window related to the forgetting factor λ, is provided
by the relation T = 1/(1 − λ). The length T should
approximately be equal to the period of local stationarity
of the speech signal.

2.2. Parametric spectrogram and signal powers
in mel bands. The analysis of reflection coefficient
trajectories ρ(n, t) is not easy for many reasons including
their complicated relation to the signal spectrum. The
hearing organ is a spectrum analyser. Therefore, speech
signal analysis in the frequency domain is commonly
applied. Having defined the Schur coefficients, we can
convert them to an innovation filter in accordance with the
following relation (e.g., Kay, 1988):

b(n, t) = a(n, P, t), n = 0, . . . , P, (6)

where a(i, j, t) are determined by iteration for successive
p and n, p = 0, . . . , P − 1 and n = 1, . . . , p,

a(p + 1, n, t) = a(p, n, t)
+ ρ(p + 1, t)a(p, p + 1 − n, t), (7)

a(p + 1, p + 1, t) = ρ(p + 1, t). (8)

Then, by using innovation filter coefficients, a parametric
signal spectrum, referred to as maximum entropy
spectrum, can be defined for each time instant t:

S(f, t) = |1 −
Nf−1∑

n=1

b(n, t)e−j2πnf |−2, (9)

where Nf is the length of the Fourier transform. This
transformation produces a parametric time-frequency
signal transform. It is worth mentioning that some
difficulties with speech analysis/synthesis are observed
due to the pitch periodicity (e.g., Kroon and Deprettere,
1988), particularly for high pitched part of the speech.
Fortunately, we analyze the changes in the vocal tract
by means of observing the spectrum defined by Eqn. (9),
based on the innovation filter coefficients. This spectrum,
due to the relatively low filter order, has a smoothed form
with strongly suppressed influence of the pitch periodicity.

Then, by using such a transform, we can determine
time-varying signal powers L(k, t) in the subbands with
index k, defined by the relation

L(k, t) =
fhk∑

f=flk

S(f, t), k = 1, . . . , K, (10)

where flk and fhk are band cutoff frequencies taking into
account the mel scale of sound perception, fl0 = 0,
fl,k+1 = fhk.

Averaging in frequency bands enables reducing the
sizes of the analysed functions and estimator variances,
while employing a mel frequency scale makes it possible
to take the properties of the human hearing organ into
account. L(k, t) for the preset t is the mel spectrum,
well-known in ASR issues though determined in a
different way.

2.3. Normalized power difference and the error vari-
ance ratio. In order to simplify the criterion of signal
spectrum change detection, let us introduce a normalised
signal power difference for each band k

R(k, t) =
L(k, t + d) − L(k, t)

0.5 [L(k, t + d) + L(k, t)]
, (11)

where d is the distance between the mel spectra. R(k, t)
is then a measure of the mel spectrum change at the
time interval d, determined from spectral slices. Figure 2
illustrates this with sample plots of function R(k, t)
defined by the formula (11) for the word zapamjentaj.

In functions R(k, t) shown in Fig. 2, one can see
local maxima and minima reflecting signal power changes
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Fig. 2. Sample course of function R(k, t) defined by the for-
mula (11) for the signal zapamjentaj shown in Fig. 7,
for P =10, λ ≈ 0.9917 and d =90, for several mel
bands.
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in subbands within time intervals d. If the speech signal
in a frequency band with index k does not change over a
time interval d, then with an accuracy of the estimation
error the value of R(k, t) is zero. If the above condition is
valid for all the k bands, this will mean that within a time
interval from t to t + d the signal does not change (H0

hypothesis). As a result, one can conclude that a given
signal segment comprises the same phoneme, but it could
be a different speech-related sound, e.g., a breath, a tongue
click or a piece of a phoneme. To simplify the description,
all these sounds will be referred to as phonemes.

Otherwise, when the function R(k, t) exceeds a
given threshold Θ for any k band, this will mean
that the signal spectrum changes over this interval
(hypothesis H1). Consequently, finding the local maxima
of the function R(k, t) which exceed the value of the
detection threshold Θ enables acknowledging, with a
given probability, that this is the boundary between
different phonemes. A few problems remain to be solved,
the most important of them being defining the values of
the adaptation factor λ and detection threshold Θ.

In order to increase of the effectiveness of boundary
detection, let us introduce another statistic, being the ratio
of estimators of the prediction error variance for time
instances spaced at g intervals, i.e.,

G(t) =
σ2

P (t + g)
σ2

P (t)
, (12)

where σ2
P (t) is the estimator of the prediction error

variance from the final section of the Schur filter for time
t, defined by the relation

σ2
P (t) =

1
M

t∑

s=t−M+1

e2(P, t). (13)

Linear prediction errors are used in the algorithm
described by Tyagi et al. (2006). As the prediction
error is defined in the Schur algorithm, too, adding a
statistic defined by the relations (12) and (13) only slightly
increases the computation time.

Figure 3 shows an example evolution of function
G(t) for g = M = 240. There are distinct local extrema
related chiefly to speech termination or initiation.

In the upper plot in Fig. 3 one can observe the
influence of a pitch on the prediction error signal in
voiced parts of the speech. Our attempts to filter out
the pitch from the signal before inputting it to the Schur
filter input failed due to estimation problems of pitch
parameter values. Fortunately, the use of the averaging of
the prediction error in the window of length M effectively
suppresses the influence of pitch periodicity (see the lower
graph of Fig. 3). Similarly, the pitch periodicity affects
the function R(k, t) (see Fig. 2), but the influence is small
and decreases with an increase in λ.

2.4. Theoretical discussion.

2.4.1. Signal change detection based on the gener-
alized maximum likelihood method. Let us consider
a situation when changes in the signal x(t) are to be
detected by analysing signals in two moving windows
with identical lengths M , shifted in time by g samples:
x(t) and x(t + g). It is assumed here that the signal is
modelled by means of the Gaussian AR process of order
P described by the vector of coefficients

b(t) = [b(1, t) b(2, t) · · · b(P, t)].

As a result of such assumptions, the following hypothesis
tests will be considered:

• Hypothesis H0: no changes in signal x(t) over the
distance of g samples; coefficients b(t) and variance
σ2

P (t) do not change;

• Hypothesis H1: changes occur in signal x(t) over
the distance of g samples; there are changes in
coefficients b(t) and variance σ2

P (t).

In order to solve the detection problem thus
formulated, a log-likelihood ratio function between two
hypothesis will be created (Barkat, 1991; Puig, 2010;
Jamouli et al., 2012):

log(U(x(t), g))

= log
(

p(x(t + g)|b(t + g), σ2
P (t + g))

p(x(t)|b(t), σ2
P (t))

)
, (14)

where

p(x(a)|b(a), σ2
P (a))

=
1

(2πσ2
P (a))M/2

exp

(
−1

2σ2
P (a)

M−1∑

i=0

e2
P (a − i)

)

(15)
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Fig. 3. Sample evolution of the function G(t) defined by the
formula (12) for the signal zapamjentaj presented in Fig.
7, for g = M = 240 (on a logarithmic scale).
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and

σ2
P (a) =

1
M

M−1∑

i=0

e2
P (a − i), (16)

where

eP (a) = x(a) −
P∑

i=1

b(i, a)x(a − i). (17)

In the next step, we will use a generalized GLRT
rule based on independent maximisation of the numerator
and denominator of the likelihood function in relation to
unknown parameters (Kay, 1998):

log(U(x(t), g)

= log
(

maxb(t+g) p(x(t + g)|b(t + g), σ2
P (t + g))

maxb(t) p(x(t)|b(t), σ2
P (t))

)

=
M

2
log

(
σ2

P (t + g)
σ2

P (t)

)
, (18)

which leads to the formula

log(U(x(t), g) =
M

2
log

(
σ2

P (t + g)
σ2

P (t)

)
. (19)

Since the prediction errors have normal distributions,
i.e., eP (t) ∼ N (0, σ̄2

P (t)) and eP (t + g) ∼ N (0, σ̄2
P (t +

g)), the statistic

η(a) =
σ2

P (a)
σ̄2

P (a)
=

1
M

M−1∑

i=0

e2
p(a − i)/σ̄2

P (a) (20)

has a chi-squared distribution with M degrees of freedom,
i.e., η(a) ∼ χ2(M). In the relation (20), σ̄2

P (a) denotes
the precise variance value. In the next step, the following
statistic will be defined:

g(t) =
η(t + g)/M

η(t)/M
=

σ2
P (t + g)
σ2

P (t)
σ̄2

P (t)
σ̄2

P (t + g)

= G(t)
σ̄2

P (t)
σ̄2

P (t + g)
∼ F (M, M)

(21)

where F (M, M) is the F-Snedecor distribution with
(M, M) degrees of freedom. As a result, at the preset
confidence level 1 − α for hypothesis H0, F-Snedecor
distribution tables can be used to find critical values Θa

and Θb for a two-tailed test:

Θa ≤ g(t) = G(t)
σ̄2

P (t)
σ̄2

P (t + g)
≤ Θb, (22)

or, in the equivalent form, for statistic G(t),

Θa
σ̄2

P (t + g)
σ̄2

P (t)
≤ G(t) ≤ Θb

σ̄2
P (t + g)
σ̄2

P (t)
. (23)

If we assume that the maximum value defining the
variance change over the distance of g samples is

Γmax = max
t

σ̄2
P (t + g)
σ̄2

P (t)
, (24)

then, in order to ensure the assumed confidence level, the
following inequalities should be satisfied:

Θa

Γmax
≤ Θa

σ̄2
P (t + g)
σ̄2

P (t)
≤ G(t)

≤ Θb
σ̄2

P (t + g)
σ̄2

P (t)
≤ ΘbΓmax

(25)

For instance, if the confidence level for statistic G(t) is
preset at 98%, then the values obtained for M = 240
will be Θa = 0.74 and Θb = 1.35. Observation of
prediction error variances of the analysed speech signals
demonstrates that the variance over distance d = 240 does
not exceed 4.2 times, i.e., Γmax ≈ 4.2. Due to signal
normalization, before being fed to the Schur filter, Γmax

does not depend on a signal scaling or a local intensity of
the signal xd(t). Bearing in mind the above estimation of
Γmax, the following decision rule for testing hypothesis
H0 is obtained:

0.176 ≤ G(t) ≤ 5.670, (26)

or, on a logarithmic scale,

− 0.754 ≤ log G(t) ≤ 0.753. (27)

2.4.2. Signal change detection in the spectral do-
main. Let us accept the assumption (Rabiner and Gold,
1975) that normalized spectral power density components
SF (f, t)/σ2

S(f, t) of the analysed speech signal have a
chi-squared distribution with two degrees of freedom, i.e.,
SF (f, t)/σ2

S(f, t) ∼ χ2(2), where σ2
S(f, t) is a variance

of spectral power density for preset f and t. In such a
case, time-varying powers L(k, t) defined by the relation
(10) and normalized in relation to the variance σ2

L(k, t)
also have a chi-squared distribution with Jk degrees of
freedom:

L(k, t)
σ2

L(k, t)
∼ χ2(2Jk), (28)

where Jk is the number of spectral lines in subband k and
σ2

L(k, t) = σ2
S(f, t) within the analysed subband.

At the next stage of the discussion, let us introduce
the statistic

r(k, t) =
L(k, t + d) / 2Jkσ2

L(k, t)
L(k, t) / 2Jkσ2

L(k, t)
, (29)

which has the F-Snedecor distribution with (Jk, Jk)
degrees of freedom, and it can be assumed that the power
variance σ2

L(k, t) for subband k with a shift by d samples
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does not change its value, so σ2
L(k, t) = σ2

L(k, t+ d). For
the preset confidence level 1−αk, let us define the critical
values for hypothesis H0:

βa,k ≤ r(k, t) ≤ βb,k. (30)

Statistic R(k, t) introduced by the relation (11) could
be expressed with r(k, t) in the form

|R(k, t)| =
|L(k, t + d) − L(k, t)|

0.5 [L(k, t + d) + L(k, t)]

=
|r(k, t) − 1|

0.5 [r(k, t) + 1]
.

(31)

If decision thresholds βa,k and βb,k are adopted
in statistic (31), the following condition for testing
hypothesis H0 will be obtained:

0 ≤ |R(k, t|

≤ max
( |βa,k − 1|

0.5(1 + βa,k)
,

|βb,k − 1|
0.5(1 + βb,k)

)
= Θk.

(32)

When an additional requirement for the simultaneous
absence of a power change in all the subbands (hypothesis
H0) is introduced, the probability of such an event,
with the assumed independence of events in particular
subbands, can be described with the formula

P (H0) =
K∏

k=1

Pk(H0) =
K∏

k=1

P (|R(k, t)| ≤ Θk). (33)

Subsequently, one can observe that probability P (H0)
defined in (33) fulfils the inequality

[Pk,min(H0)]
K ≤ P (H0) ≤ [Pk,max(H0)]

K
, (34)

which enables estimating the confidence interval for
hypothesis H0.

For example, if we assume that Θk =1.76, and Θk

is identical for all the subbands, then the corresponding
threshold values are βa,k =0.0638 and βb,k =15.66,
respectively. Moreover, for a case where Jk = 5, tables
for the F-Snedecor distribution with (10,10) degrees of
freedom can be used to find the corresponding critical
values Pa,k = Pb,k=0.00008, which demonstrates that
1 − αk = 0.00016 while Pk(H0) = Pk,min(H0) =
1−αk =0.99984. Finally, by adopting K =16, we obtain

P (H0) ≥ (Pk,min(H0))
K = 0.9998416 = 0.997, (35)

which demonstrates that α for hypothesis H0 does not
exceed the value of 0.02.

2.5. General processing and detection plan. Bearing
in mind the fact that phoneme lengths vary a lot and range
from a few to a few hundred milliseconds, the authors

propose segmentation based on two sets of functions:
R1(k, t) and R2(k, t), defined for various values of λ1

and λ2, and consequently for various d1 and d2 as well
as Θ1 and Θ2. The diagram of the proposed automatic
segmentation algorithm is shown in Fig. 4.

The sampling frequency fs of the analysed signals is
12 kHz. At first, boundary detection, based on functions
R1(k, t), is performed for λ1 ≈ 0.9917 (T1 = 120),
P1 = 10 and d1 = 90. For such parameters, the function
R1(k, t) enables detection of mostly fast changes in the
mel spectrum of the signal. In the next step, detection
using R2(k, t) is performed for λ2 ≈ 0.9979 (T2 = 480),
P2 = 14 and d2 = 360. A larger distance between
spectral slices enables detecting slower changes occurring
in the signal. At the same time, a higher estimation
quality, related to an increase in T and in the order of
the Schur filter, enables a more accurate analysis in the
frequency domain. In detection based on R2(k, t), local
extrema are sought, allowing for the boundaries defined
earlier based on R1(k, t), while maintaining the minimum
distance between particular boundaries (cf. Section 3).
Finally, in the third step, detection based on the function
G(t) is performed, also taking into account the earlier
detection results. The summing operation shown by the
graph in Fig. 4 indicates that the set of inter-phonemic
boundaries detected in Detection 1 is supplemented with
boundaries detected in Detections 2 and 3.

3. Algorithm for signal spectrum change
detection

The proposed spectral change detection algorithm has
restrictions which make it possible to take into account
specific characteristics of the speech signal. Firstly, the
speech signal contains pauses, so defining boundaries
between phonemes in the periods where the speaker
is inactive is pointless. Therefore, a Voice Activity
Detection (VAD) algorithm is applied first. It is based
on the power of successive 20 ms signal frames shifted
with a step of 5 ms. Inter-phoneme boundary detection
is performed exclusively for the activity fragments.
Secondly, inertion of the speech organ results in the fact
that transitions from one phoneme to another take time.

Fig. 4. Diagram of the proposed automatic segmentation algo-
rithm.
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This yields restrictions concerning the minimum distance
between such boundaries. A flow chart of such a detection
for R(k, t) is shown in Fig. 5.

Detection starts with sample tp, which is the onset
of a given activity period or with a sample delayed from
the previously defined boundary by the assumed minimum
distance. Detection finishes with sample tk, which is the
termination of the speaker’s activity. The decision blocks
(1) and (2) determine respectively the local maximum and
minimum. The positions of these extrema are written in
table Mb and their number reaches mb. Owing to the
cyclical nature of pitch excitation (for the voiced segments
of speech), there are often a few local extrema of the
function R(k, t) around the boundary of interphonemic
transitions (cf., e.g., Fig. 2). Therefore, the detected
extrema are first recorded in an auxiliary table Mb, and it
is only after meeting the conditions defined in the decision
block (3), the most important of which being that the
distance between the extrema must be larger than dm,
that the ultimate choice is made. When mb = 1, the
boundary position is copied to table M . When mb > 1,
the arithmetic mean Rs(t) of the absolute values of all
the functions R(k, t) in the range of the occurrence of

Fig. 5. Flowchart of the detection algorithm.

the boundary group Mb is calculated and the position of
the defined boundary is established at the point of the
maximum of the function Rs(t).

With a slight delay, another detection, based on
R2(k, t), is performed. The procedure is similar to that
for R1(k, t), the only differences occurring in parameter
values. Finally, after these two detections, the third one,
based on G(t), is carried out in a manner similar to the
former two.

If the distance between the current time t and the
activity onset or the last determined boundary is greater
than da, the threshold value is lowered linearly to a certain
minimum value Θm. This enables detecting parts of
boundaries in these speech segments where interphonemic
transitions run smoothly, so the values of the functions
R1(k, t), R2(k, t) or G(t) are lower. Figure 6 illustrates
the lowering of the detection threshold value.

Finally, for some phonemes, chiefly fricative and
affricate ones, significant local spectral changes occur
within phonemes, which is related to the turbulent nature
of the air flow. Such incorrectly defined boundaries can
be eliminated based on the function

U(t) =

∑Nf /2

f=Nf /4+1 S(f, t)
∑Nf /4

f=0 S(f, t)
, (36)

where Nf is the length of the Fourier transform. The
function U(t) expresses the ratio of the power over fs/4
to the power below fs/4. For fricative and affricate
phonemes, this ratio reaches relatively high values.
The criterion of eliminating such an incorrectly defined
boundary for time t has the following form:

U(t − r/2) > Ω ∧ U(t + r/2) > Ω, (37)

where r is the distance between the verified points U(t)
and Ω is the elimination threshold.

4. Algorithm quality evaluation

The values of algorithm and detection parameters have a
crucial effect on the results of automatic segmentation. At
the same time, applications of the proposed algorithm in
the speech domain can be multiple, including

Fig. 6. Illustration of a detection threshold change.
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• manually-assisted speech signal segmentation: in
such a strategy it will be important to detect
all the boundaries between speech sounds while
accepting the fact that some of the boundaries will
be redundant;

• segmentation using information about the number of
phonemes in a given utterance; this is a widely used
segmentation strategy at the stage of ASR system
training;

• segmentation at the speech recognition stage; in this
strategy it will be important to avoid wrong decisions
(redundant boundaries) while accepting the fact that
some boundaries between speech sounds will not be
detected.

This section, presenting experiment results, will focus on
the latter strategy.

4.1. Segmentation quality ratings. Let S denote the
number of boundaries identified by manual segmentation,
J—the number of boundaries determined automatically,
JG—the number of boundaries whose distance from the
manual segmentation boundary is not greater than 10 ms,
JB—the number of boundaries whose distance from the
manual segmentation boundary is greater than 10 ms
but smaller than 20 ms, JR—the number of redundant
boundaries, i.e., those whose distance from the nearest
boundary is greater than 20 ms. In order to obtain a
global statistical evaluation of the results of automatic
segmentation, let us introduce four quality measures:

• rating PG of accurately defined boundaries,

PG =
JG

J
, (38)

• rating PB of inaccurately defined boundaries,

PB =
JB

J
, (39)

• rating PR of redundant boundaries,

PR =
JR

J
, (40)

• rating PU undetected boundaries,

PU =
S − J

S
. (41)

From the point of view of detection theory,
PR represents a probability of false acceptance, i.e.,
P (H1|H0), and PU —a probability of false rejection, i.e.,
P (H0|H1).

Table 1. Values of detection parameters.
Parameter Detect.1 Detect.2 Detect.3

dm[s] 0.014 0.035 0.035
db[s] 0.054 0.075 0.060
dc[s] 0.040 0.060 0.050
Θ0 1.76 1.82 0.75
Θm 1.68 1.60 0.72

4.2. Processing and detection parameter values.
The values of the employed adaptation factors λ1 and λ2,
the numbers of sections P1 and P2, as well as the distances
between mel spectra slices d1 and d2, were discussed
in Section 2.5. In order to reduce estimator variances,
simple smoothing of reflection coefficient trajectories was
applied. Parametric spectra obtained from the relation (9)
were defined with a step of 5 samples. The value of M in
the formula (13) is 240 and g = M . Boundary frequencies
flk from the relation (10) in the range of up to 1 kHz are
distributed linearly (8 bands), and higher up they form
a geometric series with a multiplier of 1.223. The total
number of mel bands is 16. The values of the remaining
parameters are given in Table 1.

The value of the parameter dm1 = 14 ms
corresponds to the minimum assumed pitch frequency
f0 ≈ 71Hz. This is, at the same time, the minimum
distance between definable boundaries. In the section,
devoted to elimination of redundant boundaries from
noise fragments of speech (relation (13)), the adopted
r = 30 ms and Ω = 1.2. The values of thresholds
and other segmentation parameters were defined through
analysis (cf. Section 2.4) and based on speech signal
properties, and then verified through a number of
numerical experiments. The optimization criterion was
established so that the value of PR rating is 2% and the
value of PU be as low as possible.

4.3. Research material and an example segmentation
result. In order to test the effectiveness of the proposed
algorithm, automatic segmentation was performed for
words from the vdITA recording corpus. This is a
corpus of 36 male voices, each uttering 33 words.
These utterances had earlier undergone manual phonemic
segmentation where the list of phonemes comprised 37
entries plus one undescribed speech sound. The total
number of manually defined boundaries was 8353. Before
automatic segmentation was applied, the utterances were
disturbed by noise to the level of SNR ≈ 40 dB. Figure 7
shows an example segmentation result for the word za-
pamjentaj.

The thick lines at the bottom of Fig. 7 mark the
manually designated phoneme boundaries. The thick lines
on top of the drawing indicate the boundaries of voice
activity periods, while the dotted lines represent phoneme
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Table 2. Values of automatic segmentation quality ratings in
functions Θ01 and Θm1.

Θ01 1.60 1.68 1.76 1.84
Θm1 1.52 1.60 1.68 1.76

PG[%] 85.2 86.8 86.9 86.0
PB [%] 10.7 10.7 11.1 12.0
PR[%] 4.1 2.6 2.0 2.1
PU [%] 44.3 46.7 48.8 50.5

boundaries determined automatically. Out of the fourteen
manual segmentation boundaries, the proposed algorithm
detected eight. Their accuracy is very satisfactory. Out
of the six undefined boundaries, two are signal decay
boundaries at the ends of two activity fragments. This is a
regularity observed for almost all the analysed utterances.
However, it does not cause any difficulty, as this problem
is dealt with by the VAD algorithm, although with a lower
accuracy. Four of the undefined boundaries are related to
smooth transition between phonemes. These boundaries
are accompanied by local extrema of functions R1(k, t),
R2(k, t) or G(t) (cf. Figs. 5 and 6), but as thresholds
had been adjusted in such a way that the number of false
boundaries is minimised, they were not detected.

4.4. Global segmentation results. Tables 2, 3 and
4 present the values of automatic segmentation quality
indices for several parameter values: Θ01 and Θm1, Θ02

and Θm2, as well as Θ03 and Θm3, respectively, with the
values of the remaining parameters like in Section 4.2.

For the parameter values given in Section 4.2, the
value of PR is 2%, and that of PU rating is 48.8%. A
detailed analysis proves that a lot of redundant boundaries
are found in those speech fragments which comprise
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Fig. 7. Diagram of a sample utterance of the word zapamjentaj
with manually defined phoneme boundaries (rectangles
at the bottom of the picture), identified activity ranges
(rectangles at the top of the picture) and automatically
determined phoneme boundaries (dotted lines).

Table 3. Values of automatic segmentation quality ratings in
functions Θ02 and Θm2.
Θ02 1.66 1.74 1.82 1.90
Θm2 1.44 1.52 1.60 1.68

PG[%] 83.5 85.6 86.9 88.2
PB[%] 12.2 11.3 11.1 10.4
PR[%] 4.3 3.1 2.0 1.4
PU [%] 43.7 46.2 48.8 51.8

Table 4. Values of automatic segmentation quality ratings in
functions Θ03 and Θm3.
Θ03 0.67 0.71 0.75 0.79
Θm3 0.64 0.68 0.72 0.76

PG[%] 85.5 86.2 86.9 87.5
PB[%] 11.7 11.5 11.1 10.5
PR[%] 2.9 2.4 2.0 1.9
PU [%] 46.0 47.5 48.8 50.4

sounds other than phonemes or in places where the
pronunciation of a phoneme changes noticeably. Such
false detections can hardly be considered an algorithm
error. A large number of boundaries not defined precisely
enough (rating PB) are boundaries in the places of
smooth transitions between phonemes. In such situations,
there is quite a good chance that manually designated
boundaries are not accurate. Such inaccuracies do not
occur for plosive phonemes. In all the analysed recording
material, a large number of unidentified boundaries is
a consequence of the employed strategy of minimising
the number of false detections, i.e., minimising the
probability of false acceptance. Some of these boundaries
will be defined with a lesser accuracy by the VAD
algorithm.

The obtained results of automatic segmentation
were compared with those achieved with the algorithm
described by Tyagi et al. (2006). Among other
well-known algorithms, this one has a similar complexity
and it is an unsupervised algorithm. It was slightly
modified, as it had originally been designed for defining
boundaries of speech signal parametrisation frames whose
maximum length was set at 60 ms. Therefore, in this
form they are unsuitable for segmentation. The function
on which boundary detection was based has the form (cf.
Section 1)

C(t) =
1
2

[
(N0 + N1) log σ2

e

− (
N0 log σ2

e0
+ N1 log σ2

e1

) ]
, (42)

where e0, e1 and e are linear prediction error signals for
signal x0 being a fragment preceding the analysis point
t, the signal x1 being a fragment following the analysis
point t, and the joint of these fragments, respectively. The
adopted lengths of N0 and N1 were 20 ms. To make the
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Table 5. Values of automatic segmentation quality ratings in
function ΘT .

ΘT 33 38 43 48

PG[%] 87.4 88.6 89.9 90.6
PB [%] 9.8 8.9 8.1 8.1
PR[%] 2.8 2.4 2.0 1.2
PU [%] 57.8 60.4 69.1 73.2

results comparable, the analysis point was shifted by every
5 samples. Table 5 contains the values of segmentation
quality ratings for this algorithm as a function of the
threshold value ΘT .

The presented results obtained by both the algorithms
demonstrate that, with the assumed probability of false
acceptance P (H1|H0) at 2%, the efficiency of the
proposed algorithm is over 20% higher.

5. Conclusions

The paper proposes a real-time algorithm for automatic
segmentation of a speech signal. The discussed solution
has a few valuable features such as the independence
of signal scaling related to normalization performed
in innovation filtering, fast adaptation to time-varying
signal statistics, numerical stability, the possibility of
performing detection with different temporal resolutions
and adopting a mel scale of sound perception. For
statistics of variance and power change in subbands,
when employed in the detection process, a formal
analysis was performed. It consisted of determining the
threshold values that guarantee the required confidence
level. The threshold values obtained through theoretical
deliberations were applied in research conducted on real
speech signals which confirmed the correctness of the
performed analyses and the effectiveness of the designed
method. What is also worth emphasizing is the low
computational complexity of the discussed method, which
makes it applicable for real time work at the speech
recognition stage. Moreover, the properties of the
algorithm are so effective that it copes with the problem
of automatic segmentation better than the referential
algorithm.

The level of incorrect acceptances is satisfactory
and it should not pose any problems. A vast
majority of undetected inter-phoneme boundaries are
attributable to smooth transitions between phonemes.
Also, the probability of not detecting a boundary between
spectrally different boundaries is very small, and such
transitions pose the biggest problems for speech signal
parametrisation at recognition stage.
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