
Int. J. Appl. Math. Comput. Sci., 2015, Vol. 25, No. 1, 65–76
DOI: 10.1515/amcs-2015-0005

A HAMILTONIAN APPROACH TO FAULT ISOLATION IN A PLANAR
VERTICAL TAKE–OFF AND LANDING AIRCRAFT MODEL

LUIS H. RODRIGUEZ-ALFARO a , EFRAIN ALCORTA-GARCIA a,∗, DAVID LARA b,
GERARDO ROMERO b

aFaculty of Electrical and Mechanical Engineering
Autonomous University of Nuevo Leon, Av. Universidad s/n, San Nicolas de los Garza, N.L., Mexico c.p. 66451, Mexico

e-mail: efrain.alcortagr@uanl.edu.mx

b Electrical Engineering Graduate School, UAM Reynosa Rodhe
Autonomous University of Tamaulipas, Reynosa Tamaulipas, Mexico

The problem of fault detection and isolation in a class of nonlinear systems having a Hamiltonian representation is consi-
dered. In particular, a model of a planar vertical take-off and landing aircraft with sensor and actuator faults is studied. A
Hamiltonian representation is derived from an Euler–Lagrange representation of the system model considered. In this form,
nonlinear decoupling is applied in order to obtain subsystems with (as much as possible) specific fault sensitivity proper-
ties. The resulting decoupled subsystem is represented as a Hamiltonian system and observer-based residual generators are
designed. The results are presented through simulations to show the effectiveness of the proposed approach.
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1. Introduction

Aerial vehicles become more and more relevant because
of many applications (Castillo et al., 2005). As any other
system, aerial vehicles are also susceptible to the effect of
faults. Reliability requirements in aerial vehicles motivate
the necessity of a fault detection and isolation schema. In
general, they are nonlinear systems, and so a nonlinear
inspired strategy for the detection and isolation of faults
could also be used (see, for example, Alcorta-Garcia and
Frank, 1997; Krokavec and Filasová, 2012; Kościelny and
Łabęda-Grudziak, 2013; Bartyś, 2013).

A model of an aerial vehicle that is able to take
off vertically such as helicopters and some special
airplanes is represented by the planar vertical take-off
and landing (PVTOL) aircraft model. The PVTOL aircraft
represents a challenging nonlinear system for control
systems designers. This system represents a particular
case of what is today known as “motion control”.

In spite of many control strategies proposed in the
literature (see, e.g., Fantoni et al., 2002; Al-Hiddabi
et al., 1999; Lin et al., 1999; Castillo et al., 2002; Zavala

∗Corresponding author

et al., 2003; Do et al., 2003; Wood and Cazzolato,
2007; Rejon and Aranda-Bricaire, 2006; Frye et al., 2010;
Ailon, 2010), there are a restricted number of results
related to the detection and isolation of faults in PVTOLs.
An approach to fault isolation for a PVTOL based on
nonlinear decoupling is reported by Rodríguez Alfaro
(2014).

In this paper an approach to fault detection and
isolation in a wide class of nonlinear systems, i.e.,
for systems which allow a Hamiltonian representation,
is considered. For this class of systems it is always
possible to design an observer-based residual. Using this
particular property, decoupled subsystems are defined and
represented now as Hamiltonian systems. In consequence,
it is always possible to obtain a solution to the fault
detection problem. A Hamiltonian representation is
derived from an Euler–Lagrange representation of the
PVTOL and the proposed approach applied. As a result,
the faults considered can be detected and a different set
of faults (not every fault) can be isolated. In contrast to
a geometric approach (DePersis and Isidori, 2001), the
approach considered keeps the observer design realizable.
Simulations are used to illustrate these results.
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The paper is organized as follows. In the next section
the Hamiltonian approach to fault diagnosis is presented,
in Section 3 the PVTOL system is introduced, in Section 4
an application of the proposed approach is considered and
some results are discussed. Conclusions are presented in
Section 5.

2. Hamiltonian approach to fault diagnosis

2.1. Fault detection and isolation. There are a lot
of publications on fault detection and isolation of linear
systems (see, e.g., Chen and Patton, 1999; Blanke et al.,
2006; Ding, 2013). For nonlinear systems there are
also some solutions for different classes of systems
(Alcorta-Garcia and Frank, 1997; Zhang and Jiang,
2008). DePersis and Isidori (2001) propose a geometric
approach. Most of the approaches are for specific
nonlinear structures; however, when a general case is
considered, they have some limited existence conditions.

From an ideal point of view, residuals are signals
which only depend on faults and they are ideally zero
when no fault is present (Frank, 1990). Once residuals
are available, a residual evaluation function is required to
extract the fault information from the residuals. Generally,
a threshold is needed in the residual evaluation in order to
avoid false alarms. Note that residuals should only depend
on faults, but in reality this will never happen. It should
be seen more like a design specification and not as a fact
(Ding, 2013). A general schema for fault detection used
here is represented in Fig. 1
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−

Fig. 1. General schema for residual generation.

2.2. Hamiltonian approach to fault diagnosis.
In this work a novel fault detection and isolation
algorithm, the so-called Hamiltonian approach to fault
diagnosis, is considered. It has been recently proposed
by Rodríguez Alfaro (2014) and is inspired by the
well-known solution to the fault detection and isolation
problem, i.e., it follows a classical way to fault detection
and isolation (Frank, 1990): first a decoupling of different
faults (or groups of faults) is realized; after that, a residual
is obtained using an observer for the decoupled subsystem

(subsystems with specific fault sensitivity). For residual
generation, an observer based design can be used. The
evaluation of each residual brings information also on
fault isolation. In contrast to that classical approach, the
proposed Hamiltonian schema takes advantage of the
structure of the Hamiltonian representation and allows the
design of the residual generation based on the structure
also for nonlinear systems. The different steps of fault
diagnosis in Hamiltonian systems are the following:

1. representation of the system in the generalized
Hamiltonian form,

2. calculation of the subsystems sensible to a specific
fault,

3. design of an observer-based residual generator for
the decoupled subsystem,

4. evaluation function to decide when and where a fault
is occurring.

Each of the steps will be described in detail in the
following subsections.

2.3. Generalized Hamiltonian representation.
Consider a nonlinear systems described by

˙̄x = f(x̄, u),

y = h(x̄),
(1)

where x̄ ∈ R
n is the state vector, u ∈ R

p is the input
vector and y ∈ R

m represents the output vector, f(·, ·) is
a vector field, continuous with respect to its arguments.

A smooth nonlinear system (1) can be represented
in a generalized Hamiltonian form (Sira Ramírez and
Cruz Hernández, 2001; van der Schaft, 2000), which is
given in the following equation:

ẋ = [J(x) + S(x)]
∂H(x)

∂x
+ F (x) +G(u), (2)

with x ∈ R
n being the state vector, u the input vector,

H(x) a smooth energy function, globally positive definite
in R

n. A possible form for H(x) is given by

H(x) =
1

2
xTMx, (3)

where M is a constant matrix which is positive definite.
Taking the derivative of H(x) with respect to x, a gradient
results in a vector ∂H/∂x = Mx. The matrix J(x)
represents a conservative part of the system and matrix
S(x) represents a non conservative part of the system.
Both matrices should satisfy, for every x ∈ R

n, the
following conditions:

J(x) = −JT (x),

S(x) = ST (x),
(4)
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and F (x) represents a locally unstable vector field.
Many physical systems admit a representation in

a generalized Hamiltonian form, like electromechanical
systems, electrical systems, mechanical systems, and
others.

Note that additive faults in the generalized
Hamiltonian representation appear as additional inputs
(unknown inputs)

ẋ = J(x)
∂H

∂x
+ S(x)

∂H

∂x
+ F (x) +G(u) +N(Δf),

y = C
∂H

∂x
+Q(Δf),

(5)

where N(Δf) and Q(Δf) represent additive faults of the
system.

2.4. Fault decoupling. The main idea is to define a set
of transformations in such a way that each transformed
system (corresponding to each state transformation)
depends on a specific set of faults (or of a single fault).
There are some works on the analysis and synthesis
of these transformations (e.g., Seliger and Frank, 1991;
Alcorta Garcia, 1999; DePersis and Isidori, 2001). The
basic idea used by Seliger and Frank (1991) is to find a
fault decoupled system.

Consider a system with faults in Eqn. (5) and a
nonlinear transformation

ζ = T (x). (6)

It is required that

ζ̇ =
∂T (x)

∂x
ẋ,

=
∂T (x)

∂x

[
J(x)

∂H(x)

∂x
+ S(x)

∂H(x)

∂x
+ F (x)

+G(u) +N(Δf)] , (7)

and the transformation T (x) should be selected in
such a way that the resulting transformed system has
the desired fault sensibility, i.e., suppose N(Δf) =
[n1(Δf) n2(Δf) · · · nl(Δf)], where N̄(Δf) represent
the columns associated with the faults that are required
not to affect a specific subsystem and ¯̄N(Δf) are the
columns related to the faults that are required to affect the
subsystem, with

∂T (x)

∂x
N̄(Δf) = 0,

∂T (x)

∂x
¯̄N(Δf) �= 0.

In the work of Seliger and Frank (1991), details about
the existence of this transformation can be found.

2.5. Observer for generalized Hamiltonian sys-
tems. An observer for the class of nonlinear systems
called generalized Hamiltonian has been proposed
by Sira Ramírez and Cruz Hernández (2001). Some
modifications have been added in order to consider an
extension for the case where the vector function F
depends on the state and not on the output like in the work
of Sira Ramírez and Cruz Hernández (2001). Instead, the
proposed observer is more like a Thau observer (Thau,
1973).

Consider a generalized Hamiltonian system as
represented by (2) with its corresponding output y:

ẋ = [J(y) + S(y)]
∂H(x)

∂x
+ F (x) +G(u), x ∈ R

n,

y = C
∂H(x)

∂x
, y ∈ R

m,

(8)

where y is the output vector, C is a constant output matrix
of an appropriate dimension.

An observer for the system (8) is defined by

ξ̇ = [J(y) + S(y)]
∂H(ξ)

∂ξ

+ F (ξ) +G(u) +K(y − η),

η = C
∂H(ξ)

∂ξ
, (9)

with K being the observer gain, ξ the estimated state, η
the estimated output, and ∂H(ξ)/∂ξ = Mξ the gradient
vector, with M being a positive definite matrix.

The corresponding state estimation error, defined by
e(t) = x(t) − ξ(t), as well as the output estimation error
ey(t) = y(t)− η(t), are given by

ė = J(y)
∂H(e)

∂e
+[S−KC]

∂H(e)

∂e

+ F̃ (x, ξ), e ∈ R
n,

ey = C
∂H(e)

∂e
, ey ∈ R

m, (10)

where ∂H(e)/∂e is a gradient vector of the modified
energy function

∂H(e)

∂e
=

∂H(x)

∂x
− ∂H(ξ)

∂ξ
= M(x− ξ) = Me.

The design conditions are described in the following
theorem.

Theorem 1. The state x of the nonlinear system (8) can
be globally, exponentially, asymptotically estimated by the
system (9) if the pair (C,S) is observable or at least detec-
table and the matrix

MT

[
S − 1

2

(
KC + CTKT

)]
M +Π (11)



68 L.H. Rodriguez-Alfaro et al.

is negative definite, with

Π =
1

2

[
M

∂F

∂x
(ζ) +

(
∂F

∂x
(ζ)

)T

MT

]

and ζ being a vector such that ζ ∈ (x, ξ).

Proof. From the generalized Hamiltonian representation

ẋ = J
∂H(x)

∂x
+ S

∂H(x)

∂x
+ F (x) +G(u),

y = C
∂H(x)

∂x
, (12)

and considering the observer described by

˙̂x = J
∂H(x̂)

∂x̂
+ S

∂H(x̂)

∂x̂
+ F (x̂) +G(u) +K(y − η),

η = C
∂H(x̂)

∂x̂
, (13)

defining the error as e = x − x̂ and ė = ẋ − ˙̂x, and
replacing ẋ and ˙̂x into ė, results in

ė = J
∂H

∂e
+ (S −KC)

∂H

∂e
+ F (x)− F (x̂), (14)

where

∂H

∂e
=

∂H

∂x
− ∂H

∂x̂
= M(x− x̂) = Me.

Taking as a modified Hamiltonian energy function
the positive definite function

H(e) =
1

2
eT e, (15)

with the time derivative

Ḣ(e) =
∂H(e)

∂e
ė, (16)

and replacing ė in (16), we obtain

Ḣ(e) =
∂H(e)

∂e
(J + S −KC)

∂H(e)

∂e

+
∂H(e)

∂e
(F (x) − F ( ˙̂x)). (17)

Since J is a skew symmetric matrix, (17) is reduced
to

Ḣ(e) =
∂H(e)

∂e

[
S − 1

2
(KC + CTKT )

]
∂H(e)

∂e

+
∂H(e)

∂e
(F (x) − F ( ˙̂x)), (18)

where the skew symmetric part of the matrix KC is
eliminated. Now, applying the mean-value theorem (see,

for example, Apostol, 1967) to the last term of (18), we
have

F (x)− F (x̂) =
∂F (ρ)

∂x
e. (19)

Finally, it is obtained that

Ḣ(e)

= eT
[
MT

(
S − 1

2

(
KC + CTKT

))
M +Π

]
e,

(20)

where

Π =
1

2

(
MT ∂F (ρ)

∂x
+

∂F (ρ)

∂x

T

M

)
.

For (20) with the condition

∃K|λ(MT (S − 1

2
(KC + CTKT ))M +Π) ∈ C−

⇒ Ḣ(e) < 0, (21)

it is guaranteed that the estimation error e tends to zero as
the time tends to infinity. �

3. Planar vertical take-off and landing
model

The PVTOL model of an aircraft consists of two rotors
attached to a rigid bar with the vehicle mass center, at the
same distance from each other (see Fig. 2).
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Fig. 2. Two rotor PVTOL.

This paper has not considered the uncertainty in the
model. However, the main source of uncertainty is with
the measurement of the variables: position and angles. The
mass of the PVTOL can be also a source of uncertainties,
because of the way to pass energy to the motors.

A mathematical model can be developed using the
flat-Earth model equations to represent the kinematics,
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position, forces and moments (Stevens and Lewis, 2003).
Details for obtaining the mathematical model of the
PVTOL can be found, e.g., in the works of Castillo et al.
(2004), as well as Etkin and Reid (1996) and Murray et al.
(1994).

The system model of a PVTOL can be written in the
standard form

D(q)q̈ +G(q) = τ. (22)

This is a second-order differential equation for the motion
of an under-actuated system, where τ is the forces and
moments input vector, G(q) includes gravity terms, the
matrix D(q) summarizes the inertia properties.

Then, defining q
�
=
[
Y Z φ

]
as the generalized

state vector, Y is the displacement in the Y -axis, Z the
displacement in the Z-axis and φ the angle related to the
X-axis, and the input vector τ =

[
Uz Uy l

]
for the

PVTOL, where l is the rolling moment, the lateral force
Uy is related to the rolling moment l by Uy = ε0l, the term
ε0 represents the transport acceleration and characterizes
the coupling between the angular momentum and the
angular acceleration of the vehicle and Uz is the thrust
force in the Z-axis:

D(q) =

⎡
⎣ −m sin(φ) m cos(φ) 0

m cos(φ) m sin(φ) 0
0 0 Jx

⎤
⎦ ,

G(q) =

⎡
⎣ m g cos(φ)

m g sin(φ)
0

⎤
⎦ ,

where m represent the mass, g is the gravity force, Jx
is the inertia. Note that the PVTOL model (22) is a
representation based on an Euler–Lagrange formalism
(Murray et al., 1994).

4. Hamiltonian approach to fault diagnosis
in PVTOLs

In order to take advantage of the observer presented in
Section 2.5, a generalized Hamiltonian representation is
required.

4.1. Hamiltonian representation of PVTOLs. Using
the state transformation given by van der Schaft (2000,
Chapter 4), the PVTOL system (22) can be represented by
Eqns. (8). Let us consider a generalized moment (van der
Schaft, 2000) p(t) defined by

p
�
= D(q)q̇ (23)

as well as the Hamiltonian function H given by

H(q, p) =
1

2
pTD−1(q)p+ PE(q) (24)

with PE(q) being the potential energy term of the
PVTOL.

The system (22) can be alternatively represented by

q̇ =
∂H(q, p)

∂p
= D−1(q)p, (25)

ṗ = −∂H(q, p)

∂q
+ τ, (26)

ṗ = − ∂

∂q

(
1

2
pTD−1(q)p

)
− ∂

∂q
PE(q) + τ, (27)

where the well-known relation

∂PE(q)

∂q
= G(q)

is used (see, for example, Ortega et al., 1998). The
PVTOL equations are as follows:

ẋ1 = −x4

m
sin(x3) +

x5

m
cos(x3), (28)

ẋ2 =
x4

m
cos(x3) +

x5

m
sin(x3), (29)

ẋ3 =
x6

Jx
, (30)

ẋ4 = −m g cos(x3) + Uz, (31)

ẋ5 = −m g sin(x3) + Uy, (32)

ẋ6 =
x2
4 cos(x3)

2m
+

x4x5 sin(x3)

m

− x2
5 cos(x3)

2m
+ l, (33)

where xT =
[
x1 x2 x3 x4 x5 x6

]
and

xT =
[
Y Z φ p1 p2 p3

]
=
[
qT pT

]
.

Now, defining a HamiltonianH �
= 1

2x
Tx in order to arrive

at the form (2), the following equations are obtained:

∂H
∂x

= x, M = I ∈ R
6×6,

J(x) = [0] ∈ R
6×6, S(x) = [0] ∈ R

6×6,

F (x)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−x4 sin(x3)

m
+

x5 cos(x3)

m
x4 cos(x3)

m
+

x5 sin(x3)

mx6

Jx−m g cos(x3)
−m g sin(x3)

x2
4 cos(x3)

2m
+

x4 x5 sin(x3)

m
− x2

5 cos(x3)

2m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

GT =

⎡
⎣ 0 0 0 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎦ .
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The Hamiltonian representation results in the
following equation:

ẋ = J(x)
∂H
∂x

+ S(x)
∂H
∂x

+ F (x) +G

⎡
⎣ Uz

Uy

l

⎤
⎦

︸ ︷︷ ︸
u

,

y = C
∂H
∂x

, (34)

with

C =

⎡
⎣ 1 0 0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0

⎤
⎦ .

4.2. Fault modeling. In this work five faults are
considered: one for each sensor and one for each actuator.
Faults could be multiplicative or additive, depending on
the way they appear in the equations. Additive faults
are like an external input to the system or to the output
equations. Multiplicative faults are in product with states,
inputs or both. Depending on the form in which the
faults are manifested, they could be incipient, abrupt or
intermittent (Chen and Patton, 1999; Isermann, 2006;
Ding, 2008).

For each sensor and actuator, additive and
multiplicative faults are considered. However, due to
the space conditions, only abrupt faults are tested.

4.2.1. Additive fault representation. Additive faults
are implemented as an additive input in each actuator
channel (fai) as well as in each output channel (fsi):

ẋ = (J(x) + S(x))
∂H
∂x

+ F (x) +Gu+Gf

⎡
⎣ fa1

fa2
fa3

⎤
⎦ ,

y = C
∂H
∂x

+

⎡
⎣ fs1

fs2
fs3

⎤
⎦ , (35)

where

GT
f =

⎡
⎣ 0 0 0 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎦ .

The faults have been modeled as step functions. The time
at which the fault occurs is the time for the step. In general,
additive faults are a bias for the sensors and/or actuators.
Different magnitudes will be tested in the fault detection
scheme.

4.2.2. Multiplicative fault representation. The case
of a multiplicative fault representation corresponds to
a parameter change in the system. Actuator faults are
actually in product with the input; multiplicative sensor
faults are in product with the state. Multiplicative faults

are represented as Δfai for actuators and Δfsi for
sensors. The system with multiplicative faults is as
follows:

ẋ = (J(x) + S(x))
∂H
∂x

+ F (x) +Gu

+GΔf (u)

⎡
⎣ Δfa1

Δfa2
Δfa3

⎤
⎦ ,

y = C
∂H
∂x

+ CΔf (x)

⎡
⎣ fs1

fs2
fs3

⎤
⎦ , (36)

where

GT
Δf (u) =

⎡
⎣ 0 0 0 Uz 0 0

0 0 0 0 Uy 0
0 0 0 0 0 l

⎤
⎦ ,

CT
Δf (x) =

⎡
⎣ x1 0 0 0 0 0

0 x2 0 0 0 0
0 0 x3 0 0 0

⎤
⎦ .

4.3. Fault decoupling. A kind of generalized observer
scheme (Frank, 1990) will be used here. The general
strategy is to make a decoupling in order to obtain a
subsystem robust to each of the possible fault origins, i.e.,
a sensor and an actuator, one by one.

4.3.1. Sensor faults. For sensor faults, only one
sensor is considered as the output of the whole system.
For a simpler model for the subsystem 1, state x3 is
substituted using y3, i.e., the sensor fault 3 will also
affect the subsystem 1. It is also necessary to test which
of the actuator faults also affects the subsystem. An
observer-based residual is designed for the corresponding
observable part. The separation of the observable part of
the system could be a laborious task. However, in any
event, for the sensor faults, a full-order observer could be
designed. The output estimation error will be used as a
residual, so three residuals are obtained. Therefore, each
residual can be associated to each fault.

Subsystem 1. For the first sensor, under the assumption
that x3 is reliable (or available from the output y3), a
subsystem could be formed by Eqns. (28), (31) and (32).
Note that for this subsystem the design is simple:

ẋ1 = −x4

m
sin(x3) +

x5

m
cos(x3),

ẋ4 = −m g cos(x3) + Uz,

ẋ5 = −m g sin(x3) + Uy,

ys1 = x1. (37)

Subsystem 2. For the second sensor, let us consider
Eqns. (29), (31) and (32)). Again, the measured third state
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x3 is assumed as reliable:

ẋ2 =
x4

m
cos(x3) +

x5

m
sin(x3),

ẋ4 = −m g cos(x3) + Uz,

ẋ5 = −m g sin(x3) + Uy,

ys2 = x2. (38)

Subsystem 3. For the third sensor, which corresponds to
x3, the subsystem is formed by (30), (31), (32) and (33):

ẋ3 =
x6

Jx
,

ẋ6 =
x2
4

2m
cos(x3) +

x4x5

m
sin(x3)− x2

5

2m
cos(x3) + l,

ẋ4 = −m g cos(x3) + Uz,

ẋ5 = −m g sin(x3) + Uy,

ys3 = x3. (39)

If the measurement of x3 is not reliable, fs3 will also
affect subsystems associated with the sensor faults 1 and
2.

4.3.2. Actuator faults. In order to isolate the actuator
faults, a decoupling strategy is required. Each case will be
discussed.

Subsystem 4. For the first actuator fault (fa1 and/or
Δfa1), it is possible to follow this reasoning: Because
the fault for which the residual should be sensible is in
the same channel as Uz , take (31) together with (28),
because x1 is measured. Using the fact that x3 is also
available from the output, we can make an observer-based
residual for this subsystem using the output estimation
error (r1a = y1 − ŷ1) as a residual. Then x5 should be
obtained from (29). The subsystem 4 results in

ẋ1 = − x4

m sin(x3)
+

ẋ2 cos(x3)

sin(x3)
,

ẋ4 = −m g cos(x3) + Uz,

ya1 = x1. (40)

Subsystem 5. For the second actuator fault fa2 and/or
Δfa2 we use the actuators (28) and (32), assuming that
x3 is available in the measurable output y3. Since x4 is
not measurable, its value results from Eqn. (29). Then, the
value of x4 is substituted in (28) and, considering (32), the
subsystem 5 is obtained:

ẋ1 =
x5

m cos(x3)
− ẋ2 sin(x3)

cos(x3)
,

ẋ5 = −m g sin(x3) + Uy,

ya2 = x1. (41)

Subsystem 6. For the third actuator fault fa3 and/or
Δfa3 Eqns. (30) and (33) are used to get the subsystem

6. Since Eqn. (33) depends on x4 and x5, which are
not measurable, its values are obtained from the other
equations. The value of x5 is obtained solving Eqn. (28),
the value of x4 is substituted in (29) and the resulting
equation is solved for x5. Now, Eqn. (28) is solved for x5,
the result is substituted in (29) and the resulting equation
is solved for x4:

ẋ3 =
x6

Jx
,

ẋ6 =
x2
4

2m
cos(x3) +

x4x5

m
sin(x3)− x2

5

2m
cos(x3) + l,

ya3 = x3, (42)

where

x4 = m cos(x3)

(
ẋ2 − ẋ1 sin(x3)

cos(x3)

)
,

x5 = m sin(x3)

(
ẋ2 − ẋ1 cos(x3)

sin(x3)

)
.

Note that the time derivatives of x2 and x1, i.e., of y2 and
y1, will be required. A numerical approximation is used
in this work. Some recent results (Vasiljevic and Khalil,
2008) can be also applied to obtain estimates of the time
derivatives.

4.4. Observer-based residual design. The
observer-based residuals are designed as presented
in Section 2.5. For the subsystems sensible to sensor
faults, the design is simple. As an example, residual
generator design with details for the sensor 1 is presented.

Consider the first subsystem:

ẋ1 = −x4

m
sin(x3) +

x5

m
cos(x3),

ẋ4 = −m g cos(x3) + Uz,

ẋ5 = −m g sin(x3) + Uy,

y1 = x1.

Consider the observer-based residual generator:

˙̂x1 = − x̂4

m
sin(x3) +

x̂5

m
cos(x3) + L1(y1 − x̂1),

˙̂x4 = −m g cos(x3) + Uz,

˙̂x5 = −m g cos(x3) + Uy,

r1 = y1 − x̂1.

Define the estimation errors as

e1
�
= x1 − x̂1,

e4
�
= x4 − x̂4,

e5
�
= x5 − x̂5.
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The estimation error dynamics are

ė1 =
e5 cos(x3)− e4 m sin(x3)

m
− L1e1,

ė4 = −e4,

ė5 = −e5,

r1 = e1.

Note that r1 goes to zero when time increases if no faults
(f1 and/or f3) are present in the PVTOL system.

Residual design for faults in the second sensor
(second subsystem) is similar to the one above, but
we change the differential equation of ẋ1 by the
corresponding one of ẋ2. The details of the design will
not be presented here.

The subsystem sensible to actuator faults in the input
channel of Uz results in a subsystem given by

ẋ1 =
−x4

m sin(x3)
+

ẏ2 cos(x3)

sin(x3)
,

ẋ4 = −m g cos(x3) + Uz,

y4 = x4,

which can be written in the form (2) with

J(x) = [0] ∈ R
2×2,

S(x) = [0] ∈ R
2×2,

F (x) =

⎡
⎣ m ẏ2 cos(x3)− x4

m sin(x3)
−m g cos(x3)

⎤
⎦ ,

G =

[
0
1

]
,

C =
[
1 0

]
.

In the above subsystem, the pair (C, S) is detectable.
Therefore, an observer-based residual can be designed.
The residual is designed using a copy of the subsystem
(model) and a correction factor defined by L(y4 − ŷ4),
with the observer gain LT =

[
L4 0

]
.

For the second actuator fault (fa2, Δfa2), for the
third actuator fault (fa3, Δfa3) and for the fault in
the third sensor (fs3, Δfs3), the decoupled required
subsystem is similar to the procedure used for the actuator
fault fa1. Table 1 presents a summary of the different fault
sensitivity, where � means that the subsystem presents
sensibility to the corresponding fault, i.e., the fault affects
the corresponding subsystem.

Table 1. Subsystems (
∑

sub) sensitive to different faults.
�������Faults

Σsub 1 2 3 4 5 6

fs1 � � � �
fs2 � � �
fs3 � � � � � �
fa1 � � �
fa2 � � �
fa3 � �

From Table 1 it results clearly that the subsystems
1 and 5 have the same fault sensitivity {fs1, fs3, fa2}, so
one of them is unnecessary.

Note that five residuals are obtained for the PVTOL
under the assumption that only a single fault occurred at
one time (given by the observer-based approach applied to
the subsystems {1, 2, 3, 4, 6} or {1, 2, 3, 4, 5}).

Formally, for fault isolation, i.e., the isolation of
the six single faults considered, only three residuals are
required. Note that the different sets of three residuals
associated with the corresponding subsystems that can be
used are, e.g. {1, 2, 3}, {1, 2, 6}, {1, 3, 6}, {1, 3, 4},
{2, 3, 6}. Each of them could be used for the isolation of
the six faults. However, the set of residuals associated with
{1, 4, 6} will isolate only five faults. Further, under the
last set of residuals, fs1 and fs3 appear coupled. The other
set of residuals inadequate for the isolation of all the faults
considered is {1, 2, 4}. For this set of residuals only four
groups of faults (three of them are single faults), fs1, fs3,
fa2 and the group {fs2, fa1} can be isolated. The fault
fa3 has no effect on this set of residuals.

Remark 1. A factor to be considered for the selection
of the set of residuals (i.e., a corresponding subsystem
associated with a specific fault sensitivity) is also to
observe that some of the residuals obtained in Section
4.3 have the requirements of time derivatives. In the case
of the subsystems obtained, three of them require time
derivatives. Actually, the three residuals obtained were
inspired by acquisition of a subsystem robust to a specific
actuator fault. Obtaining time derivatives of the system
output could be a hard task if noise is present.

Observer-based residual generation for the first three
subsystems seems to be the more robust option. The effect
of noise is reduced because of filter characteristics of the
observer.

4.5. Simulation results. The following parameters are
used in the simulation results: mass m = 0.8 kg, gravity
constant g = 9.81 m/sec2 and inertia Jx = 0.015 kg m2.
For all faulty cases a fault magnitude equal to 1, occurring
at time t = 75 sec, was considered.

Figure 3 shows the output signals of the PVTOL
without failures. Figure 4 shows the state signals of the
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Fig. 3. PVTOL output signals in nominal conditions.
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Fig. 4. PVTOL output signals when the fault fs1 is present.
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Fig. 5. PVTOL output when the fault fa3 is present.

PVTOL when the sensor fault fs1 occurs and Fig. 5 shows
the case when the actuator fault fa3 occurs. As can be
noticed in the case without failures, the states become the
reference value and remain so, but when a fault occurs, the
state deviates from the reference signal. Figure 6 shows
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Fig. 6. Response of residuals to the sensor fault fs1.

the evolution of the residuals when the sensor fault fs1
occurs, where the residuals that differ from zero indicate
sensitivity to the fault while the other residuals are zero at
all time due their insensitivity to the fault. Note that the
fault effect on the residuals 1, 4 and 5 makes it difficult
to make a decision about fault occurrence. Figure 7 shows
the evolution of the residuals when the fault fa3 occurs,
where the residuals r3 and r6 are different from zero
due to their sensitivity to the fault while the others are
insensitive to this fault.

5. Conclusions

In this work an approach to fault detection and isolation of
nonlinear systems that admit a Hamiltonian representation
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Fig. 7. Response of residuals to the actuator fault fa3.

was proposed. The isolation of faults is obtained by
application of decoupling theory. Residual generation is
proposed based on a novel variant of an observer for
a system in a Hamiltonian representation. In particular,
the case of a planar vertical take-off and landing aircraft
model is analyzed. Starting from a Euler–Lagrange
model representation, a Hamiltonian representation of
the PVTOL is obtained. Faults were considered in all
of the PVTOL sensors and control inputs. Decoupling
is obtained from reasoning and algebraic manipulation.
It was also possible to verify that subsystems sensitive
to any fault maintain their generalized Hamiltonian
representation which is present in PVTOL before
performing the fault decoupling. This, in turn, simplifies

the design of nonlinear observers as well as the fault
diagnosis itself. The proposed approach was applied
to model of PVTOL, with good results. All the faults
considered were detected and isolated.

Future work includes a robustness study as well as
physical implementation in a laboratory setup.
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