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This paper addresses the design of a state estimation and sensor fault detection, isolation and fault estimation observer
for descriptor-linear parameter varying (D-LPV) systems. In contrast to where the scheduling functions depend on some
measurable time varying state, the proposed method considers the scheduling function depending on an unmeasurable state
vector. In order to isolate, detect and estimate sensor faults, an augmented system is constructed by considering faults to be
auxiliary state vectors. An unknown input LPV observer is designed to estimate simultaneously system states and faults.
Sufficient conditions to guarantee stability and robustness against the uncertainty provided by the unmeasurable scheduling
functions and the influence of disturbances are synthesized via a linear matrix inequality (LMI) formulation by considering
H∞ and Lyapunov approaches. The performances of the proposed method are illustrated through the application to an
anaerobic bioreactor model.

Keywords: fault diagnosis, fault estimation, LPV systems, observer design, descriptor system.

1. Introduction

Fault detection and isolation (FDI) systems are necessary
to ensure the effectiveness of process control, and improve
the system’s reliability. In general, a fault is something
that changes the behaviour of a system such that the
system does no longer satisfy its purpose (Lunze et al.,
2006). On the other hand, a fault detection and isolation
system is related to detection and identification of these
changes in order to guarantee both process safety and
performance. In the literature this problem has been
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addressed by considering various approaches, e.g., parity
checks (Gertler, 1997), identification methods (Isermann,
1984), fault detection filters (Wang et al., 2007), among
other things; a more detailed review is given by Hwang
et al. (2010), Samy et al. (2011), Chen and Patton (1999)
or Ding (2008).

Among the available FDI methods, observer-based
ones have become most successful techniques.
Frequently, these methods address the FDI problem by
evaluating the residual signals which contain information
about the faults (Frank, 1996). Moreover, a majority of
the proposed methods focus on designing FDI systems
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for linear-time invariant (LTI) systems. Nevertheless, it is
well known that all systems exhibit nonlinear behavior.
In general, the real design of nonlinear fault detection
methods is not an easy task, even if the nonlinear system
is completely known (Alcorta-Garcı́a et al., 2014).

More recently, descriptor-linear parameter varying
(D-LPV) systems have received increased attention. The
main feature of D-LPV systems is to represent the
nonlinear dynamics by local linear models which are
blended in real time into an overall single model through
gain scheduling functions (GSFs). Likewise, in contrast
to the classical state-space LPV representation, D-LPV
systems are represented by a set of ordinary differential
equations (to describe the dynamics) and algebraic ones
(to describe interconnections or algebraic constraints).
These special attributes of D-LPV systems form a
more complete representation of nonlinear systems than
state-space LPV systems. In contrast, designing FDI
methods for D-LPV systems is more difficult than for
state-space ones, because descriptor systems usually have
three types of modes: finite dynamic modes, impulsive
modes and non-dynamic modes (Duan, 2010). Then, an
FDI system should be able to deal with these modes.
Applications of descriptor systems can be found in aircraft
modelling (Masubuchi et al., 2004), complex systems
(Nagy-Kiss et al., 2011a), and electrical, mechanical, or
hydraulic systems (Duan, 2010).

Another problem of D-LPV systems is related
to gain scheduling functions. Typically, these are
designed based on a measurable scheduling vector as
the input or the output of the system. Nevertheless,
in many applications the scheduling vector could be
unmeasurable as the system state. Models which depend
on unmeasurable scheduling functions cover a wide
class of nonlinear systems, compared with models with
measurable scheduling functions. However, the design of
control schemes for D-LPV systems with unmeasurable
scheduling functions is more difficult than for those
with a measurable one. In consequence, few works
related to systems with unmeasurable gains scheduling
functions have been published. Most of the papers
deal with FDI for state-space LPV systems (Yoneyama,
2009; Theilliol and Aberkane, 2011; Ichalal et al., 2010;
Chadli et al., 2013a; Blesa et al., 2014). Some of
them are related to fault detection for D-LPVsystems
with measurable scheduling functions (Hamdi et al.,
2012b; Astorga-Zaragoza et al., 2011; Aguilera-González
et al., 2013) and only several are related to D-LPV
systems. However, we can mention Nagy-Kiss et al.
(2011a), who propose a state observer by transforming the
D-LPV system with unmeasurable scheduling functions
into an equivalent uncertain system. In a work by
Nagy Kiss et al. (2011b), an unknown input observer
was developed by considering the original system another
a perturbed system, where the perturbation vector

represents a bounded uncertainty given by measurable and
unmeasurable scheduling functions. In both the previous
works, the observers were successfully evaluated by using
a nonlinear model of a waste-water treatment plant.

In the same context, based on the perturbed system
technique, a fault detection scheme was proposed by
Hamdi et al. (2012a) with an application to an electrical
system. In a work of López-Estrada et al. (2013),
the unmeasurable scheduling problem was addressed by
considering gain scheduling uncertainties, and designing
an H∞ fault estimation observer to be robust against these
uncertainties. Even so, robustness against disturbances
is not considered. In another attempt (López-Estrada
et al., 2014b), an FDI scheme is proposed by considering
the uncertain system approach. In this case, robustness
against disturbances is examined but no fault estimation.

López-Estrada et al. (2014a) also propose a method
based on the convex property of the scheduling functions
to obtain an uncertain representation in order to design
a robust H∞ observer. It is important to note that in
previous works there is no fault reconstruction and the
fault detection and isolation are performed by means of
normalized residuals generated from a bank of observers.
Nevertheless, all these works exemplify the relevance of
the techniques for D-LPV systems with unmeasurable
scheduling functions and their application to a real
process. Nevertheless, due to the lack of research, this
problem remains an outstanding and ongoing issue.

The main contribution of this paper is to design
a robust state estimation, as well as fault detection,
isolation and estimation based on an LPV observer
for D-LPV systems with unmeasurable gain scheduling
functions. The consideration of unmeasurable scheduling
functions is not trivial, since the weighting functions used
to synthesize the observer cannot depend on the state
variables and, in consequence, it is necessary to estimate
them. The research work presented in this article is based
on our early work (López-Estrada et al., 2013) with a
significant extension consisting in considering additional
disturbance rejection to improve state and fault estimation.

In order to solve the unmeasurable scheduling
problem, the D-LPV system is transformed into an
uncertain one with estimated gain scheduling functions.
The fault detection and estimation are solved by
considering an augmented system with faults as auxiliary
states in the state vector. Consequently, an observer
associated with the uncertain augmented system is
synthesized to estimate the original states and fault
vectors. Sufficient conditions for stability, solvability and
robustness are given in terms of LMIs by considering
the H∞ technique and Lyapunov theory. The practical
contribution of the present paper is application of the
proposed method to a realistic model of an anaerobic
bioreactor. Simulation results show that the proposed
method, compared with the previous work (López-Estrada
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et al., 2013), increases the robustness to the unmeasurable
gain scheduling function and disturbances, which are
needed to increase reliability and to prevent false alarms.

The problem investigated here is distinguished from
most previous literature on D-LPV systems in the
following aspects. First, in contrast to the works of
Nagy-Kiss et al. (2011a; 2011b), who address only
state estimation, the proposed method deals additionally
with the FDI problem. The second aspect is related
to integrating design of FDI and state estimations.
Compared with our previous results (López-Estrada et al.,
2014a; 2014b; Hamdi et al. 2012a), the method proposed
in this article requires just one observer composed of
h models, compared with h observers with h models
proposed in the cited papers. This is primarily due to
the fact that the method described in this paper does
not require a bank of observers to detect faults. Since
the number of observers is lower, so is computational
complexity, which makes the method attractive for
physical implementation. In addition, faults are detected
and estimated on time, even in the case of simultaneous
faults.

The outline of the paper is as follows. First, the
problem formulation is given in Section 2. Sufficient
conditions to guarantee stability and robustness on the
state and fault estimation observers, as well as some
conditions to reduce conservatism and avoid infeasibility
numerical solutions are given in Section 3. Section 4
presents a nonlinear model of the anaerobic bioreactor
and its equivalent D-LPV model. Some simulations are
presented to illustrate the effectiveness of the proposed
method. Finally, some concluding remarks are given in
Section 5.

The notation used in this article is standard. For a
matrix A ∈ R

n×n, AT , A−1 and A† denote its transpose,
inverse and pseudoinverse, respectively. He{A} is a
shorthand notation for A + AT . The asterisk � denotes
the transposed elements in the symmetric positions of a
matrix.

2. Problem formulation

Consider a descriptor LPV system under sensor faults and
disturbances given by

Ẽ ˙̃x(t) =

h∑

i=1

ρi(x̃(t))
[
Ãix̃(t) + B̃iu(t) + B̃dd(t)

]
,

y(t) = C̃x̃(t) + D̃dd(t) + f(t), (1)

where x̃(t) ∈ R
n, u(t) ∈ R

m, d(t) ∈ R
l, y(t) ∈ R

p,
and f(t) ∈ R

p are the state vector, the control input,
the disturbance vector, the measured vector and the sensor
fault vector, respectively. Ãi, B̃i, B̃d, C̃, D̃d are constant
matrices of appropriate dimensions, rank(Ẽ) = r ≤ n. h
is the number of models and ρi(x̃(t))’s are the scheduling

functions which are considered to be depending on the
unmeasurable state vector x̃(t). The scheduling function
satisfies the following convex property:

F (t) :=

{
∀i ∈ 1, 2, . . . , h, ρi(x̃(t)) ≥ 0,∑h

i=1 ρi(x̃(t)) = 1, ∀t. (2)

In order to estimate the states and sensor faults, we
considered faults as an auxiliary state of the augmented
state system

x(t) =
[
x̃T (t) fT (t)

]T
,

such that the system (1) becomes

Eẋ(t) =

h∑

i=1

ρi [Aix(t) +Biu(t)

+Bdd(t) +Bff(t)] , (3)

y(t) = Cx(t) +Ddd(t),

where

E =

[
Ẽ 0
0 0p

]
, Ai =

[
Ãi 0
0 −Ip

]
,

Bi =

[
B̃i

0p

]
Bd =

[
B̃d

0

]
,

Bf =

[
0
Ip

]
, C =

[
C̃ Ip

]
,

Dd = D̃d.

For this system, the stability condition is given by the
following lemma:

Lemma 1. (Chadli and Darouach, 2011) The sys-
tem (3) is said to be stable if there exists a Lyapunov
function V (x(t)) = xT (t)ETPx(t), where ETP =
PTE ≥ 0, whose derivative V̇ (x(t)) = ẋT (t)ETPx(t)+
xTETP ẋ(t) is negative.

The following assumptions express observability
properties of D-LPV systems

Assumption 1. (Hamdi et al., 2012) The system (3)
and the triple (E, Ai, C) are called observable on the
reachable set (R-observable) if

rank

[
sE − Ai

C

]
= n, ∀i ∈ {1, 2, . . . , h}. (4)

Assumption 2. (Hamdi et al., 2012) The system (3)
and the triple (E, Ai, C) are called impulse observable
(I-observable) if

rank

⎡

⎣
E Ai

0 E
0 C

⎤

⎦ = n+ rankE,

∀i ∈ {1, 2, . . . , h}. (5)
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Remark 1. R-observability characterizes the ability to
reconstruct only the reachable state from the output data.
However, due to algebraic equations, impulsive terms can
appear. These are not desirable since they can saturate
the state response or, in general, they can have negative
effects on the system. I-observability guarantees the
ability to estimate impulse terms given by the algebraic
equations. Note that observers for D-LPV systems with
unmeasurable scheduling functions are designed such that
each scheduling function has a local gain. Therefore
it is required that the local models be observable or
detectable. However, due to the form of the observer (6),
it is required to assume that the local models are R/I
observable (Kamidi, 2000; Lendek et al., 2011).

With the assumptions that the D-LPV system is
R/I-observable, the following LPV observer is proposed:

ż(t) =
h∑

j=1

ρj(x̂(t)) [Njz(t) +Gju(t) + Ljy(t)] ,

x̂(t) =z(t) + T2y(t) (6)

where z(t) is an auxiliary state vector, x̂(t) is the
state estimate, Nj , Gj , Lj and T2 are gain matrices
of appropriate dimensions, while ρj(x̂(t)) are convex
gain scheduling functions which are considered to be
dependent on the estimated time varying state x̂(t).
Additionally, an auxiliary residual vector is defined as

r(t) = y(t)− Cx̂(t). (7)

The problem of fault estimation is reduced to finding
the gain matrices of the observer (6) which maximize
robustness to the unmeasurable scheduling function
ρi(x(t)) such that limt→∞ |e(t)| ≈ limt→∞ |x(t) −
x̂(t)| ≈ 0. In addition, the effects of disturbances must
be also attenuated.

3. Observer design

As already mentioned, the system (3) is dependent on the
unmeasurable state x(t) and the observer is dependent
on the estimated state x̂(t). Therefore, in order to
synthesize the observer gains, it is necessary to obtain
a system which considers both scheduling functions.
To solve this problem, the system (3) is transformed
into an uncertain one by adding and subtracting the
term

∑h
j=1 ρj(x̂(t)) (Ajx(t) +Bju(t)). After algebraic

manipulations, the original system (3) becomes

Eẋ(t) =
h∑

i,j=1

ρiρ̂j [Aijx(t) +Biju(t) +Bdd(t)

+Bff(t)] ,

y(t) = Cx(t) +Ddd(t), (8)

where

h∑

i,j=1

ρiρ̂j =

h∑

i=1

h∑

j=1

ρi(x(t))ρj(x̂(t)),

Aij = Aj +ΔAij , ΔAij = Ai −Aj ,

Bij = Bj +ΔBij , ΔBij = Bi −Bj .

Note that the previous transformation is possible due
to the convex property of the scheduling functions which
considers

∑h
i=1 ρi(x(t)) =

∑h
i=1 ρj(x̂(t)) = 1.

The estimation error is given as

e(t) =x(t) − x̂(t), (9)

e(t) =(I − T2C)x(t) − z(t)− T2Ddd(t), (10)

assuming that there exists T1 ∈ R
n×n such that

T1E = I − T2C. (11)

A particular solution of matrices T1 and T2 is computed
as

[
T1 T2

]
=

[
E
C

]†
. (12)

Consequently, the error equation is given by

e(t) = T1Ex(t)− z(t)− T2Ddd(t). (13)

In order to eliminate the influence of d(t) in (13), it
is assumed that unknown inputs are of slow variation, i.e,
ḋ(t) ≈ 0. From a practical point of view, this condition
can be relaxed as discussed by Hamdi et al. (2012b) and
Chadli et al. (2013b).

The dynamics of the error equation are rewritten by
considering the slow variation condition as

ė(t) = T1Eẋ(t)− ż(t),

ė(t) =

h∑

i,j=1

ρiρ̂j [T1 (Aijx(t) +Biju(t) +Bdd(t)

+Bff(t)) − (Njz(t) +Gju(t) + Ljy(t))] ,
(14)

ė(t) =

h∑

i,j=1

ρiρ̂j [(T1Aj − LjC −NjT1E)x(t)

+ T1ΔAijx(t) + (T1Bj −Gj)u(t)

+T1ΔBiju(t) + (T1Bd − LjDd) d(t)

+T1Bff(t) +Nje(t)] , (15)

assuming that

T1Aj − LjC −NjT1E = 0, (16)

Gj − T1Bj = 0. (17)
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By manipulating (16), the following expressions are
equivalent:

Nj = T1Aj +KjC, ∀j ∈ {1, 2, . . . , h}, (18)

Kj = NjT2 − Lj, ∀j ∈ {1, 2, . . . , h}. (19)

By substituting these conditions in (15) and considering
(7), the state-space residual equation is obtained as

ė(t) =

h∑

i,j=1

ρiρ̂j [Nje(t) + T1ΔAijx(t) + T1ΔBiju(t)

+(T1Bd +KjDd)d(t) + T1Bff(t)] ,

r(t) = Ce(t) +Ddd(t). (20)

Then a standard representation is arrived at by considering

the augmented states xe(t) =
[
e(t)T x(t)T

]T
such as

Ēxe(t) = Āxe(t) + B̄f̄d(t),

r(t) = C̄xe(t) + D̄df̄d(t), (21)

where

Ē =

[
I 0
0 E

]
, Ā =

h∑

i,j=1

ρiρ̂j

[
Nj T1ΔAij

0 Ai

]
,

B̄ =
h∑

i,j=1

ρiρ̂j

[
T1ΔBij T1Bd +KjDd T1Bf

Bi Bd Bf

]
,

C̄ =
[
C 0

]
, D̄d =

[
0 D̃d 0

]
,

f̄d = [u(t) d(t) f(t)]
T
.

Equivalently, the transfer from the input f̄d to r(t) is
written as

Grf̄d =

{
Ē,

[
Ā B̄
−
C

−
Dd

]}
. (22)

Sufficient conditions to guarantee robustness
to unknown inputs and the error provided by the
unmeasurable scheduling function such that the norm
‖ Grf̄d ‖∞≤ γ are given by the following theorem:

Theorem 1. Consider the system (1), the augmented sys-
tem (3), and the observer (6). Let the attenuation level
satisfy γ > 0. The quadratic stability of the estimation
error is guaranteed if ‖ Grf̄d ‖∞< γ and if there exist
matrices

P =

[
P1 0
0 P2

]
, P1 = PT

1 > 0,

such that the following optimization problem holds ∀i, j ∈
{1, 2, . . . , h}:

min
P1, P2, Qi

γ,

subject to

ETP2 = PT
2 E ≥ 0, (23)

⎡

⎢⎢⎢⎢⎢⎢⎣

Φ11 Φ12 P1T1ΔBij Φ14 P1T1Bf CT

� Φ22 P2Bi P2Bd P2Bf 0
� � −γ2I 0 0 0
� � � −γ2I 0 DT

d

� � � � −γ2I 0
� � � � � −I

⎤

⎥⎥⎥⎥⎥⎥⎦
<0,

(24)

where

Φ11 = He{(T1Aj)
TP1 +QjC},

Φ12 = P1(T1ΔAij),

Φ14 = P1T1Bd +QjDd,

Φ22 = He{AT
i P2},

with T1 given by

[
T1 T2

]
=

[
E
C

]†
.

Then, the gain matrices of the observer (6) are given by
Kj = P−1

1 Qj and the equations defined in (17)–(19).

Proof. In order to provide residual signals robust to the
unmeasurable scheduling functions, H∞ performance can
be guaranteed by considering the following criterion:

Jrf̄d :=

∫ ∞

0

rT (t)r(t) dτ

− γ2

∫ ∞

0

f̄T
d (t)f̄d(t) dτ < 0. (25)

Note that these performance criteria guaranteed
disturbance and uncertainties attenuation in
relation to γ. Additionally, asymptotic stability
is reached by considering a Lyapunov function
V (xe(t)) = Ω(t) = xT

e (t)Ē
TPxe(t), such that the

criteria performance can be manipulated as

Jrf̄d

:=

∫ ∞

0

(
rT (t)r(t) − γ2f̄T

d (t)f̄d(t)) + Ω̇(t))
)
dτ

− Ω(t) < 0

=

∫ ∞

0

(
xT
e (t)C̄

T C̄xe(t) + xT
e (t)C̄

T D̄df̄d(t)

+ f̄T
d (t)D̄T

d C̄xe(t) + f̄T (t)D̄T
d D̄df̄d(t)

−γ2f̄T
d (t)f̄d(t) + Ω̇(t)

)
dτ − Ω(t))) < 0. (26)
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For given matrices C̄ and D̄d from the extended
states of (21), the following expression is obtained:

∫ ∞

0

⎛

⎜⎜⎜⎜⎝

⎡

⎢⎢⎢⎢⎣

e(t)
x(t)
u(t)
d(t)
f(t)

⎤

⎥⎥⎥⎥⎦

T

Γ

⎡

⎢⎢⎢⎢⎣

e(t)
x(t)
u(t)
d(t)
f(t)

⎤

⎥⎥⎥⎥⎦
+ Ω̇(t)

⎞

⎟⎟⎟⎟⎠
dτ − Ω(t))) < 0,

with

Γ =

⎡

⎢⎢⎢⎢⎣

CTC 0 0 CTDd 0
0 0 0 0 0
0 0 −γ2I 0 0

DT
d C 0 0 DT

d Dd − γ2I 0
0 0 0 0 −γ2I

⎤

⎥⎥⎥⎥⎦
.

The dynamics of the Lyapunov equation Ω(t) are
manipulated as

Ω̇(t) = ẋT
e (t)Ē

TPxe(t) + xT
e Ē

TP ẋe(t)

and by considering ĒTP = PT Ē < 0. Then

Ω̇(t) = ẋT
e (t)Ē

TPxe(t) + xT
e Ē

TP ẋe(t) (27)

= xT
e (t)Ā

TPxe(t) + f̄T (t)B̄TPxe(t)

+ xT
e (t)P

T Āxe(t) + xT
e (t)P

T B̄f̄(t)

=

[
xe

f̄(t)

]T [
ĀTP + PT Ā PT B̄

� 0

] [
xe

f̄(t)

]
. (28)

Here

P =

[
P1 0
0 P2

]

and ĒTP = PT Ē ≥ 0 are manipulated as
[
P1 0
0 ETP2

]
=

[
PT
1 0
0 PT

2 E

]
≥ 0. (29)

It can be seen that P1 = PT
1 ≥ 0 and ETP2 = PT

2 E ≥ 0.
The term ĀTP + PT Ā can be manipulated as
[
He{(T1Aj)

TP1 +QjC} P1(T1ΔAij)
� He{AT

i P2}
]
< 0. (30)

By considering the extended matrices from (21), the
Lyapunov equation (28) is rewritten as

Ω̇(t) =

h∑

i,j=1

ρiρ̂j

⎡

⎢⎢⎢⎢⎣

e(t)
x(t)
u(t)
d(t)
f(t)

⎤

⎥⎥⎥⎥⎦

T ⎡

⎢⎢⎢⎢⎣

Φ11 P1(T1ΔAij)
� He{AT

i P2}
� �
� �
� �

P1T1ΔBij Φ14 P1T1Bf

PT
2 Bi PT

2 Bd PT
2 Bf

0 0 0
� 0 0
� � 0

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

e(t)
x(t)
u(t)
d(t)
f(t)

⎤

⎥⎥⎥⎥⎦
. (31)

Then, by substituting Ω̇(t) in the criteria Jrf̄d , we
obtain

Jrf̄d =

∫ ∞

0

h∑

i,j=1

ρiρ̂j

⎡

⎢⎢⎣

e(t)
x(t)
u(t)
f(t)

⎤

⎥⎥⎦

T

Θ

⎡

⎢⎢⎣

e(t)
x(t)
u(t)
f(t)

⎤

⎥⎥⎦ dt

− V (xe(t)) < 0, (32)

with

Θ =

⎡

⎢⎢⎢⎢⎣

Φ11 + CTC P1(T1ΔAij) P1T1ΔBij

� He{AT
i P2} PT

2 Bi

� � −γ2I
� � �
� � �

Φ14 + CTDd P1T1Bf

PT
2 Bd PT

2 Bf

0 0
DT

d Dd − γ2I 0
� −γ2I

⎤

⎥⎥⎥⎥⎦
< 0.

It can be noticed that, if Θ < 0, then Jrf̄d < 0. The Schur
complement implies (24). Finally, in order to guarantee an
optimal solution for γ, the problem is reformulated as an
optimization one as written in Theorem 1. This completes
the proof. �

3.1. Feasibility and gain synthesis. Numerical
problems or infeasible solutions can appear due to the
singular form of the equality constraint (23) in Theorem 1.
The following lemma provides a sufficient condition to
transform the equality constraint ETP2 = PT

2 E into the
LMI form.

Lemma 2. (Xu and Lam, 2006) All Z ∈ R
n×n satisfying

ETZ = ZTE ≥ 0

can be parametrized as

Z = ZE + SX,

where Z > 0 ∈ R
n×n and X ∈ R

(n−r)×n are parameter
matrices. S ∈ R

n×(n−r) is any matrix with full column
rank and satisfies ETS = 0.

From Lemma 2, the following result is obtained.

Corollary 1. Consider the system (1), the augmented sys-
tem (3), and the observer (6). Let the attenuation level
satisfy γ > 0. The quadratic stability of the estimation
error is guaranteed if ‖ Grf̄d ‖∞< γ and if there exist
matrices

P =

[
P1 0
0 P2

]
, P1 = PT

1 > 0,
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P2 = P2E + SX, P2 > 0, X ∈ R
(n−r)×n,

such that the following optimization problem holds,
∀i, j ∈ {1, 2, . . . , h}:

min
P1, P2, Qi,X

γ,

subject to

⎡

⎢⎢⎢⎢⎢⎢⎣

Φ11 Φ12 P1T1ΔBij Φ14

� Φ22 PT
2 Bi PT

2 Bd

� � −γ2I 0
� � � −γ2I
� � � �
� � � �

P1T1Bf CT

PT
2 Bf 0
0 0
0 DT

d

−γ2I 0
� −I

⎤

⎥⎥⎥⎥⎥⎥⎦
< 0,

(33)

with

Φ22 = He{AT
i P2},

where T1 is given by

[
T1 T2

]
=

[
E
C

]†
.

S ∈ R
n×(n−r) is any matrix with full column rank which

satisfies ETS = 0. Then the gain matrices of the ob-
server (6) are given by Kj = P−1

1 Qj and the equations
defined in (17)–(19).

Proof. Sufficiency can be easily proved by substituting
P2 = P2E+SX in (23), and with the condition ETS =
0 it is easy to prove that ETP2 = PT

2 E ≥ 0. �

4. Application: An anaerobic bioreactor

The proposed method is evaluated via numerical
simulations by using a fourth-order mathematical model
which has been previously described and validated by
Martı́nez-Sibaja et al. (2011). This model represents an
upflow anaerobic sludge blanket bioreactor (UASB). The
state variables are x̃1(t) = xo(t), the concentration of
the anaerobic biomass; x̃2(t) = s1(t), the concentration
of organic matter expressed as chemical oxygen demand
(COD); x̃3(t) = QCH4(t), the outlet flux of methane
bio-gas, and x̃4(t) = μ(t), the specific growth rate. The
inputs variables are: u1(t) = D(t), the dilution rate,
and u2(t) = si1(t), the concentration of COD in the
yield affluent. From the model given by Martı́nez-Sibaja

et al. (2011), the following nonlinear descriptor system is
deduced:

˙̃x(t) =f1(x̃(t), u(t)), (34)

0 =f2(x̃(t), u(t)), (35)

with

f1(x̃(t), u(t))

=

⎡

⎣
Y1μ(t)xo(t)− αD(t)xo(t)− kdxo(t)

D(t)(s1(t)
i − s1(t)) − μ(t)xo

(1 − Y1)YCH4μ(t)xo −QCH4(t)

⎤

⎦ , (36)

f2(x̃(t), u(t)) = km1
s1(t)

ks1 + s1(t)
IpH − μ(t), (37)

where kml, kd, ks1 are the specific growth rates of
mass, the dilution rate of the anaerobic reactor and the
constant decrease in semi-saturation for the biomass,
respectively. Y1 is the coefficient of degradation of COD,
IpH represents the pH inhibition, where pHLL and pHUL

are the lower and higher pH limits. The values of the
constants parameters are shown in Table 1. The process
outputs are y1(t) = xo, y2(t) = s1(t) and y3(t) = QCH4.

Table 1. Model parameters.
Parameter Value

km1 5.1 gCOD/gCOD d
ks1 0.5 gCOD/l
kd 0.02 l/d
Y1 0.1gCOD/g COD
YCH4 0.35 lCH4/g COD
α 0.5
IpH 0.9068

The nonlinear descriptor system given by (36) and
(37) can be written as

⎡

⎢⎢⎣

˙̃x1(t)
˙̃x2(t)
˙̃x3(t)
0

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

−kd 0 0
0 0 0
0 0 −1

0 km1

ks1+x̃2(t)
IpH 0

Y1x̃1(t)
−x̃1(t)

(1− Y1)YCH4x̃1(t)
−1

⎤

⎥⎥⎦

⎡

⎢⎢⎣

x̃1(t)
x̃2(t)
x̃3(t)
x̃4(t)

⎤

⎥⎥⎦

+

⎡

⎢⎢⎣

−αx̃1(t) 0
−x̃2(t) u1(t)

0 0
0 0

⎤

⎥⎥⎦

[
u1(t)
u2(t)

]
. (38)

In order to obtain a D-LPV representation, the
scheduling variables are chosen as ak < ζ(t) < āk, ∀ k =
1, 2, . . . , 4, where k is the number of non-constant
elements in the system (38). The minimum and maximum



240 F.-R. López-Estrada et al.

bounded limits ak and āk for k = 1, . . . , 4, are
selected according to experimental constraints as given by
Martı́nez-Sibaja et al. (2011),

ζ1 = x̃1(t) ∈ [ā1, a1] = [0.2 0.7],

ζ2 = x̃2(t) ∈ [ā2, a2] = [0.01 0.6],

ζ3 = u1(t) ∈ [ā3, a3] = [0.2 0.8],

ζ4 =
km1

ks1 + x̃2(t)
IpH ∈ [ā4, a4] = [3.7 9.9].

For each ζj , two local scheduling functions are
constructed as

μk
1(ζk) =

āk − ζk
āk − ak

, μk
2 = 1− μk

1 , k = 1, . . . , 4.

(39)
These two weighting functions are normalized such that
μk
1 > 0, μk

2 > 0, and μk
1 + μk

2 = 1 for any value of zk.
Therefore, for k = 4, 24 = 16 scheduling functions are
computed as the product of the weighting functions that
correspond to each local model

ρi(ζ(t)) =

4∏

k=1

μik(ζi), (40)

where μik is either μk
1 or μk

2 , depending on which local
weighting function is considered.

The scheduling functions are normal ρi(ζ(t)) ≥
0,

∑16
i=1 ρi(ζ(t)) = 1.

Remark 2. Without loss of generality, we change
the notation from ρi(x(t)) to ρi(ζ(t)), because in this
particular example there are two nonlinear terms related
to the states and one to the input. Note also that,
although the scheduling equations are well known as
given in (40), the scheduling vector ζ(t) is considered
unmeasurable and needs to be estimated. Therefore,
for the observer implementation the scheduling function
ρi(ζ(t)) is expressed as ρj(ζ̂(t)), which indicates the
estimation of the unmeasurable states x̃1(t), x̃2(t) and the
output u(t).

By considering the scheduling variables on the
nonlinear matrix (38), a descriptor quasi-LPV model is
obtained as

E ˙̃x(t) =

8∑

i=1

ρi(ζ(t))
[
Ãix̃(t) + B̃iu(t)

]
,

y(t) = C̃x̃(t), (41)

Ẽ = diag(1, 1, 1, 0),

Ãi =

⎡

⎢⎢⎣

−kd 0 0 Y1ζ1
0 0 0 −ζ1
0 0 −1 (1− Y1)YCH4ζ1
0 ζ4 0 −1

⎤

⎥⎥⎦ ,

B̃i =

⎡

⎢⎢⎣

−αζ1 0
−ζ2 ζ3
0 0
0 0

⎤

⎥⎥⎦ , C̃ =

⎡

⎣
1 0 0 0
0 1 0 0
0 0 1 0

⎤

⎦ .

Note that the matrices of (41) are not unique and
different representations can be obtained by considering
different arrangements of the scheduling variables.

The eight modes of (41) are given by evaluating Ãi

and B̃i over the operation ranges of ζi. State matrices are
not displayed here due to space limitations.

To validate the D-LPV model, the following
conditions are considered:

x̃(0) = [0.523 0.345 0.00001 0.001]
T
.

The simulated inputs are shown in Fig. 1.
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Fig. 1. Nonlinear system outputs and inputs.

Figure 1 displays the comparison between the output
signals generated by the D-LPV model and the nonlinear
one. The mean-square error for y1(t), y2 and y3(t),
between the nonlinear and the D-LPV model, is 1.08 ×
10−5, 3.45 × 10−4 and, 6.67 × 10−6, respectively. It
is clear, considering Fig. 1 and the small errors, that the
D-LPV model matches the nonlinear model.

4.1. State and sensor fault estimation. In order to
perform fault estimation, the LPV observer as described
in (6) becomes

ż(t) =

8∑

j=1

ρi(ζ̂(t)) [Njz(t) +Gju(t) + Ljy(t)] ,

x̂(t) =z(t) + T2y(t). (42)
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In addition, to evaluate its performance and robustness,
two simulations scenarios, named Case 1 and Case 2, are
considered as follows.

Case 1. The method proposed in our previous work
(López-Estrada et al., 2013) addressed the observer
design without consider disturbances as represented
in the system A1. In such a case, robustness is not
guaranteed in the presence of noise and disturbance,
which can affect also the observer performance as
will be detailed below. Note that, despite the
same observer structure, the sufficient conditions to
compute the observer gains, expressed with the LMIs
from Theorem A1 and Corollary 1, are different due
to the exclusion of matrices Bd and Dd. Appendix
summarizes and describes the sufficient conditions
considered in this case.

Case 2. For the system (41), the observer gains for
the fault estimation observer (42), which is robust
to disturbances and the error provided by the
unmeasurable scheduling functions, are computed as
proposed in this paper by solving Corollary 1.

For both the cases, the following disturbance and
noise matrices are considered:

Bd =

⎡

⎢⎢⎣

0
0
1
1

⎤

⎥⎥⎦ , Dd =

⎡

⎣
0.7
0.2
0.5

⎤

⎦ .

Gain matrices and attenuation levels are computed
using Theorem A1 and Corollary 1 with the YALMIP
toolbox (Lofberg, 2004). Due to space limitations, gain
matrices are not displayed here. Attenuation levels are
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Fig. 2. Estimated gain scheduling functions.

γ = 0.0024 and γ = 0.000196, for Case 1 and Case 2,
respectively. The small value of γ guarantees good
attenuation of uncertainties and disturbances.

For both cases the fault estimation observer considers
initial conditions x̂(0) = [0 0.5 1 0.4 − 1 − .2 0.3]. The
disturbance signal included in the system is random signal
with a mean of 0.2 and bounded by 0.05.

Simulation results are displayed as follows. The
interactions between the eight models defined by the
estimated scheduling functions (40) are displayed in
Fig. 2. The quadratic estimation error for Case 1 is
displayed in Fig. 3(a) and for Case 2 in Fig. 3(b). For
both the cases, the observer converges fast and with
small errors. However, it is clear that, by comparing the
error magnitudes, the state observer with observer gains
computed by Corollary 1, which considers additional
disturbances attenuation, is better than those obtained in
our previous work, where the disturbance vector was not
considered. Furthermore, the displayed results also show
that in both the cases the observer is still robust to the
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Fig. 3. Quadratic estimation errors between the nonlinear and
the D-LPV model: Case 1 (top), Case 2 (bottom).
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unmeasurable gain scheduling functions. The real and
estimated faults are displayed in Fig. 4.

The fault on the first sensor is a step-up step-down
fault, the one on the second sensor is an incipient fault and
that on the third sensor is a one-step fault. The observer
estimates faults with good performance, even when they
appear simultaneously. The quadratic errors between f1
and f̂1, f2 as well as f̂2 and, f3 and f̂3 are 0.0064, 0.0099,
and 0.00051 for Case 1 and 0.0024, 0.0015, and 0.00025
for Case 2, respectively. The discrepancies between the
two cases are mainly caused by the effect of disturbances.
It is also clear that, by considering H∞ performance
criteria, the error injected by the unmeasurable scheduling
functions is well attenuated. Also, as displayed in Fig. 4,
by considering disturbance attenuation it is possible to
increase the convergence time. For example, the fault 3
converges in three days with Case 2 regardless the eight
days of Case 1. Moreover, by considering disturbance
attenuation, it is possible to increase reliability and avoid
false alarms. For example, for Case 1, the fault estimation
from t = 40 days to t = 50 days on Sensor 2, which
is after the threshold limit, can be interpreted as a false
alarm. Of course, this false alarm can be eliminated
by predefining different threshold levels or considering
a more elaborated adaptive threshold (Montes de Oca
et al., 2011). Nevertheless, this problem is beyond the
scope of this paper.

5. Conclusions

In this paper, a state estimation as well as fault
detection, isolation, and sensor fault estimation observer
for descriptor-LPV system with unmeasurable gain
scheduling functions was proposed. In order to estimate
the faults, the states of the D-LPV system were augmented
by considering the fault vector as auxiliary state variables
such that the augmented vector contains information about
the original states and faults. Because the gain scheduling
functions of the D-LPV system and the observer are
dependent on different time varying scheduling functions,
the D-LPV system was transformed into an uncertain one
in order to obtain a descriptor error system depending
on both the estimated and unmeasurable scheduling
functions. Sufficient conditions for the existence of the
robust observer were given by a set of linear matrix
inequalities.

The applicability and performance of the proposed
method was illustrated through an application example of
an anaerobic bioreactor. Simulations results also show
that the influence of the errors due to the unmeasurable
scheduling functions and disturbance were well attenuated
due to the H∞ criterion considered. Based on fault
estimation, a fault tolerant control scheme could be
implement. Additionally, a further extension of these
results can be obtained by considering the H−/H∞

approach in order to synthesize an observer sensitive to
faults and insensitive to disturbances.
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Appendix

Synthesis of the fault estimation observer

Consider a descriptor LPV system under sensor faults
given by

Ẽ ˙̃x(t) =

h∑

i=1

ρi(x̃(t))
[
Ãix̃(t) + B̃iu(t)

]
,

y(t) =C̃x̃(t) + f(t). (A1)

Under the assumptions of admissibility and
R/I-observability, the following LPV observer is proposed
to estimate states and faults:

ż(t) =

h∑

j=1

ρj(x̂(t)) [Njz(t) +Gju(t) + Ljy(t)] ,

x̂(t) =z(t) + T2y(t). (A2)

The following result guarantees state and fault estimation.

Theorem A1. (López-Estrada et al., 2013) Given the sys-
tem (A1), let the attenuation level satisfy γ > 0. Then the
observer (A2) exists if (A1) is stable and ‖ Grf̄ (s) ‖∞< γ
and if there are matrices

P =

[
P1 0
0 P2

]
,

P1 = PT
1 > 0, P2 ≥ 0 and gain matrices Qj = P1Kj

such that ∀i, j ∈ {1, 2, . . . , h}:

ETP2 = PT
2 E ≥ 0 (A3)

⎡

⎢⎢⎢⎢⎣

Φ11 Φ12 P1T1ΔBij

� He{AT
i P2} PT

2 Bi

� � −γ2I
� � �
� � �

P1T1Bf CT

PT
2 Bf 0
0 0

−γ2I 0
� −I

⎤

⎥⎥⎥⎥⎦
< 0, (A4)

with

Φ11 = He{(T1Aj)
TP1 +QjC},

Φ12 = (T1ΔAij)
TP1.

The proof is omitted and can be consulted in the cited
paper. It is clear that Theorem A1 guaranteed asymptotic
stability on the estimation error but not robustness to
disturbances.
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