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The present work addresses the problem of determining under what conditions the impending slip state or the steady sliding
of a linear elastic orthotropic layer or half space with respect to a rigid flat obstacle is dynamically unstable. In other words,
we search the conditions for the occurrence of smooth exponentially growing dynamic solutions with perturbed initial
conditions arbitrarily close to the steady sliding state, taking the system away from the equilibrium state or the steady sliding
state. Previously authors have shown that a linear elastic isotropic half space compressed against and sliding with respect to
a rigid flat surface may get unstable by flutter when the coefficient of friction μ and Poisson’s ratio ν are sufficiently large.
In the isotropic case they have been able to derive closed form analytic expressions for the exponentially growing unstable
solutions as well as for the borders of the stability regions in the space of parameters, because in the isotropic case there are
only two dimensionless parameters (μ and ν). Already for the simplest version of orthotropy (an orthotropic transversally
isotropic material) there are seven governing parameters (μ, five independent material constants and the orientation of the
principal directions of orthotropy) and the expressions become very lengthy and literally impossible to manipulate manually.
The orthotropic case addressed here is impossible to solve with simple closed form expressions, and therefore the use of
computer algebra software is required, the main commands being indicated in the text.
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1. Introduction

The aim of this work is to explore automatic symbolic
computation in the solution of two related problems of
engineering mechanics. We deal with elastic bodies with
a flat frictional interface—a layer of finite depth and a half
space—that, under certain circumstances, may exhibit
unstable behaviours, i.e., the tendency to respond with
exponentially growing displacements and reactions.

The appropriate combinations of stiffness, mass and
friction under which friction-induced instabilities may
occur are computed by the search of smooth dynamic
solutions, beginning arbitrarily close to an equilibrium
state or to a steady sliding state, which take the system
away from equilibrium in an exponential oscillatory

∗Corresponding author

(flutter) or non-oscillatory (divergence) manner. These
two types of dynamic instability of non-isotropic solids
in the presence of a frictional interface are investigated
with analytic models with a strong component of symbolic
manipulation. Closed form expressions for the coefficient
of friction at the onset of instability are derived by widely
exploring automatic symbolic computation resources.

It was only twenty years ago that Martins et al.
(1992; 1995) and Adams (1995) derived the first
conditions for the occurrence of frictional instabilities in
elastic spaces. Ibrahim (1994) as well as Martins and
Raous (2002) are exclusively dedicated to the conditions
for the occurrence of frictional instabilities or to their
effects. The first attempts to model instabilities in
nonisotropic solids were made by Agwa and Pinto da
Costa (2008; 2011), as well as Pinto da Costa and
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Agwa (2009), the present study being a continuation of
that effort. Here we consider orthotropic transversely
isotropic linear elastic materials with principal directions
of orthotropy that are, in general, skewed with respect to
the direction of sliding. As we will see, it is this skewness
and the larger number of material parameters that enforce
the intervention of symbolic manipulation, without which
the problems treated in this study would hardly be solved.
The intensive use of symbolic computation in this study
enabled the derivation of new closed form expressions for
the critical coefficients of friction and the derivation of
(very lengthy) analytical expressions eventually used to
obtain new numerical results summarized in graphs.

The formulas and procedures included in this study
may be useful in the design of orthotropic composite
materials operating under unilateral frictional contact
conditions. A natural extension of the present work is the
application of its results to the design of the conditions
in industrial environments to which orthotropic composite
materials may be submitted in order to preclude frictional
contact instabilities.

2. Surface divergence instability

A deformable material occupies a region in the (x, y, z)
plane defined to be unbounded in the x direction, to be
limited to the interval [0, h] in the y direction and to have
a certain uniform thickness in the z direction (Fig. 1).
The material particles at y = h are fixed while the

Fig. 1. Elastic orthotropic infinite layer in frictional contact with
a flat surface.

particles at y = 0 are kinematically constrained so as not
to abandon the region y ≥ 0 and statically constrained
to follow Coulomb’s friction law σyx ∈ μσyySign(S −
u̇) in the direction tangent to the frictional boundary.
Derivation with respect to the time variable t is denoted
by the dot over the corresponding variable. The possibly
nonvanishing velocity of the flat rough surface in the
tangent direction t is denoted by S (positive to the right),
σyx and σyy are the usual components of the Cauchy
stress tensor, μ ≥ 0 stands for the constant coefficient
of friction, the Cartesian components of the displacement
field are u (x component), v (y component) and w (z

component), and Sign(z) is the multi-mapping yielding 1
for z > 0, the interval [−1, 1] for z = 0, and−1 for z < 0.
The skew angle of the principal directions of orthotropy
p1 and p2 respectively with respect to x and y is denoted
by θ. The components of the stress tensor organized as a
vector

σ = {σxx, σyy, σxy, σzz , σyz, σxz}T

may be expressed in terms of the components of the strain
tensor

ε = {u,x, v,y, u,y + v,x, w,z , v,z + w,y, u,z + w,x}T

by premultiplying ε by a stiffness matrix with components
Dij that are functions of (i) the elastic parameters E1,
E2, G12, ν12, ν of an orthotropic transversely isotropic
material defined with respect to the principal directions
of orthotropy and (ii) of the skew angle θ (Batoz and
Dhatt, 1990; Rand and Rovenski, 2005; Agwa and Pinto
da Costa, 2008). The coefficients Dij depend on whether
the layer is in a state of plane strain or in a state of plane
stress.

Assuming that the particles at the bottom are in
persistent contact in impending slip to the left with respect
to the rough surface, we seek exponentially growing
nonoscillatory solutions u(y, t) = exp(λt)U(y) and
v(y, t) = exp(λt)V (y) with λ > 0 of the problem
consisting in the conjunction of the following conditions:

momentum equations: σxx,x+σyx,y = �ü and σxy,x+
σyy,y = �v̈ (� is the material’s volumetric mass,
assumed uniform);

constitutive equations: σxx = D11u,x + D12v,y +
D13(u,y+v,x), σyy = D12u,x+D22v,y+D23(u,y+
v,x) and σxy = D13u,x +D23v,y +D33(u,y + v,x)
(( ),α stands for the derivative of ( ) with respect
to α; Dij are elements of the symmetric stiffness
matrix connecting the elements of the stress and
deformation tensors, written in terms of the x and
y directions);

kinematic boundary conditions: u(x, h) = v(x, h) ≡
0 and v(x, 0) ≡ 0;

frictional boundary conditions: σyx = μσyy .

The conjugation of the assumed variable separated
solution with the constitutive and momentum equations
yields

[
D33 D23

D23 D22

]{
U ′′(y)
V ′′(y)

}
= �λ2

{
U(y)
V (y)

}
, (1)

with ( )′ denoting derivation with respect to y. The
general solution to (1), sought with the Maple (2013)



Using symbolic computation in the characterization of frictional instabilities. . . 261

command dsolve with the option symbolic,
corresponds to

⎧⎨
⎩
u(y, t)

v(y, t)

⎫⎬
⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D23S
2
1

ρ−D33S2
1
[C1 exp(S1λy)

+C2 exp(−S1λy)]

+
D23S

2
2

ρ−D33S2
2
[C3 exp(S2λy)

+C4 exp(−S2λy)]

C1 exp(S1λy)
+C2 exp(−S1λy)
+C3 exp(S2λy)
+C4 exp(−S2λy)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

exp(λt),

(2)
where C1 to C4 are real integration constants. When
D22D33 −D2

23 �= 0 is assumed, we get

S1 or 2 =

[
ρ
D22 +D33 ±

√
Δ

2(D22D33 −D2
23)

] 1
2

(3)

with Δ = (D22 + D33)
2 − 4(D22D33 − D2

23), and the
coefficient of friction as a function of the (exponential)
rate growth in time is given by the expression

μ =
A

B
, (4)

where

A =S1 coth (S1λh) (D23 + a1D33)

− S2 coth (S2λh) (D23 + a2D33),

B =S1 coth (S1λh) (D22 + a1D23)

− S2 coth (S2λh) (D22 + a2D23),

a1 =
D23S

2
1

�−D33S2
1

, a2 =
D23S

2
2

�−D33S2
2

(5)

and coth denotes the hyperbolic cotangent function. For a
more complete list of Maple commands, refer to Table A1
in Appendix.

For states of plane strain, Fig. 2 presents the
evolution of the eigenvalue λ as a function of the
coefficient of friction for a fixed set of parameters E2,
G12, ν12 and ν; several values of E1 increasing from plot
(a) to plot (e) were considered and, in each plot, several
orientations of the principal directions of orthotropy. It
can be seen from Fig. 2 that all the curves have vertical
tangents at the onset of instability (vanishing rate of
growth of the solution, i.e., λ = 0), something that
can only be proven by the symbolic derivation of the
expression (4) of μ with respect to λ and then by the
evaluation of the resulting expression at λ = 0. In terms
of Maple commands,

dmu(lambda):=diff(mu(lambda),lambda),

and then

limit(dmu(lambda),lambda=0),

which yields zero, proving the vertical slopes for
vanishing λ.

Note that, for the assumed state of impending slip
to the left with respect to the obstacle, large ratios
E1/E2 (increasing from Figs. 2(a) to 2(e)) and angles θ
approaching 90◦ from below are favourable conditions for
the onset of divergence instability to occur at low values
of the coefficient of friction: the intersection of the curves
with the μ axis occurs for lower values of μ.

Explicit expressions for the coefficients of friction
μcr at the onset of surface divergence instability may
easily be obtained from (4) by computing symbolically
the limit as λ → 0. Using the notation s = sin θ and
c = cos θ, for states of plane stress, the critical coefficient
of friction at the onset of divergence instability is

μcr

(E1

E2
,
G12

E2
, ν12, θ

)
=

f(E1/E2, G12/E2, ν12, θ)

g(E1/E2, G12/E2, ν12, θ)
,

(6)
where

f
(E1

E2
,
G12

E2
, ν12, θ

)

= (s2 − c2)2 (ν212 −
E1

E2
)
G12

E2

+

(
2 ν12 − 1− E1

E2

)
s2c2

E1

E2

(7)

and

g
(E1

E2
,
G12

E2
, ν12, θ

)

=

[
2 (s2 − c2)(

E1

E2
− ν212)

G12

E2

−s2
(
E1

E2

)2

+ ((s2 − c2)ν12 + c2)
E1

E2

]
sc,

(8)

while for states of plane strain

μcr

(E1

E2
,
G12

E2
, ν12, ν, θ

)
=

f(E1/E2, G12/E2, ν12, ν, θ)

g(E1/E2, G12/E2, ν12, ν, θ)
,

(9)
where

f
(E1

E2
,
G12

E2
, ν12, ν, θ

)

= s2c2

[
(1− ν2)

(
E1

E2

)2

− (2 (1 + ν) ν12 − 1)
E1

E2
− ν212

]

+ (s2 − c2)2
G12

E2

[
(1− ν2)

E1

E2

−2(1 + ν) ν212
]

(10)



262 M.A. Agwa and A. Pinto da Costa

0 1 2 3 4 5
0

20

40

60

80

100

μ

λ

5060

70 80

(a)

0 1 2 3 4 5
0

20

40

60

80

100

μ

λ

40

50

60

70

80

(b)

0 1 2 3 4 5
0

20

40

60

80

100

μ

λ

30

40
50

60

70

80

(c)

0 1 2 3 4 5
0

20

40

60

80

100

μ

λ
30

40

50

60

70
80

(d)

0 1 2 3 4 5
0

20

40

60

80

100

μ

λ
30

40
50

60

70

80

(e)

Fig. 2. Solution rate of the exponential growth λ in terms of the coefficient of friction for E2 = 1, G12 = 0.1, ν12 = 0.4, ν = 0.3,
and the angle θ (in degrees, near the curves) defining the orientation of the principal directions of orthotropy. State of plane
strain: E1 = 1 (a), E1 = 2 (b), E1 = 4 (c), E1 = 8 (d) and E1 = 16 (e).

and

g
(E1

E2
,
G12

E2
, ν12, ν, θ

)

=
[
sc(c2 − s2) (1 + ν) ν12 − sc3

] E1

E2

+ sc3ν212 + (1− ν2) s3c

(
E1

E2

)2

+ sc(s2 − c2)
G12

E2

[
2(ν2 − 1)

E1

E2

+ 4 (1 + ν) ν212

]
. (11)

The plots in Fig. 3 illustrate how μcr decreases
with an increase in E1/E2 with all the other parameters
fixed. Smaller values of G12/E2 promote instability for θ
approaching 90◦ from below, while instability is promoted
for larger values of G12/E2 when θ is small.

Another perspective may be taken with the set of
plots in Fig. 4. Clearly, when the orientation of the
principal direction of orthotropy p1 approaches 90◦ from
below (and the layer is in impending slip to the left), the
critical values of μ for divergence are lower—they may
easily reach values much smaller than 1. It is observed
that for larger values of E1, and for a fixed θ, the range of
E2 leading to small values of μcr increases.

3. Surface flutter instability

The next problem is associated with a different kind of
instability—flutter instability, beginning at the frictional
interface of an elastic (also orthotropic) half space (Fig. 5)
with an exponentially growing oscillatory motion with
respect to the steady sliding solution. The first results

Fig. 5. Elastic orthotropic half space in frictional contact with a
flat surface.

of frictional instabilities in half spaces presented by
Martins et al. (1992; 1995) were obtained with no help
from symbolic computation. In the cited papers, the
authors derived manually the conditions which completely
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Fig. 3. Coefficient of friction at the onset of divergence instability as a function of E1/E2 for ν12 = 0.4, ν = 0.3, for four values
of G12/E2, and several values of θ (indicated on the curves). State of plane strain: G12/E2 = 0.1 (a), G12/E2 = 0.25 (b),
G12/E2 = 0.5 (c) and G12/E2 = 1.0 (d).

characterize the situations of flutter instability in an
isotropic half space in contact with a rough moving rigid
surface. A similar procedure for orthotropic materials
is out of question, as will be seen below. The steady
sliding solution, whose instability conditions we wish to
determine, is defined by σs

yy(x, 0) < 0, vs(x, 0) = 0
(persistent contact) and σs

yx(x, 0) + μσs
yy(x, 0) = 0

(persistent sliding) (see Martins et al., 1995). The upper
rigid surface is sliding to the left with a nonvanishing
velocity S which is compatible with a shear stress
σs
yx(x, 0) = −μσs

yy(x, 0) > 0. In much the same way
as in the previous section, the perturbed solution must
comply with the following set of conditions:

momentum equations: σxx,x+σxy,y = �ü and σxy,x+
σyy,y = �v̈;

constitutive equations: σxx = D11u,x + D12v,y +
D13(u,y+v,x), σyy = D12u,x+D22v,y+D23(u,y+
v,x) and σxy = D13u,x +D23v,y +D33(u,y + v,x);

kinematic boundary conditions at y = 0: v(x, 0, t) =
0;

frictional boundary conditions at y = 0: σyx(x, 0, t)+
μσyy(x, 0, t) = 0.

We look for perturbed solutions of the type
{
u(x, y, t)
v(x, y, t)

}
=

{
A
B

}
e−by exp(ik(x− ct)), (12)

where b may be a complex number provided its real part
is positive (to ensure a displacement field exponentially
decaying towards the interior of the elastic medium), i
denotes the imaginary unit, k > 0 is the wave number and
c is the complex wave velocity (note that, in this section,
c has nothing in common with the cosine of the previous
section). For Re(c) �= 0 the solution oscillates and if, in
addition, Im(c) > 0, it grows exponentially, too (a flutter
instability).

The first step to build a perturbed solution in the
neighbourhood of the steady sliding state consists in
substituting (12) in the equations obtained by inserting
the constitutive ones into the momentum equations, which
leads to the following eigenvalue problem with a complex
matrix:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b2D33 b2D23 − k2D13

+k2(�c2 −D11) −bk(D12 +D33)i
−2bkD13i

b2D23 − k2D13 b2D22

−bk(D12 +D33)i +k2(�c2 −D33)
−2bkD23i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

{
A
B

}
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Fig. 4. Coefficient of friction at the onset of divergence instability as a function of E2 for ν12 = 0.4, ν = 0.3, G12/E2 = 0.1, for
several values of E1 (one for each plot) and θ (indicated on the curves). The values of θ in (a) are the same as those of the other
plots: from 30◦ for the leftmost curve to 80◦ for the rightmost curve. State of plane strain: E1 = 1 (a), E1 = 2 (b), E1 = 4
(c), E1 = 8 (d) and E1 = 16 (e).

=

{
0
0

}
, (13)

in which b plays the role of the eigenvalue, for a
fixed velocity c and fixed constitutive properties. Under
the assumption of a nonvanishing wave number k, the
Maple command collect(det(M),b) enables one
to organize the characteristic equation of the coefficient
matrix in (13) (denoted by M) in terms of a complex
polynomial of powers of b/k,

d1

(
b

k

)4

+ (d2 + d3c
2)

(
b

k

)2

+ d4 + d5c
2 + d6c

4

+ i
b

k

[
d7

(
b

k

)2

+ d8 + d9c
2

]
= 0,

(14)

where d1, . . . , d9 depend on the material properties
(see Agwa and Pinto da Costa, 2011). For a more
complete list of Maple commands, refer to Table A2 in
Appendix.

The four solutions b/k are sought with solve
and allvalues commands, from which we are only
interested in the two with a positive real part. In
the special cases for which coefficients d7, d8 and
d9 vanish (namely, isotropic materials), Eqn. (14)

is a biquadratic equation that obviously does not
require automatic symbolic manipulation; in the general
orthotropic transversely isotropic materials, Eqn. (14) can
nowadays be solved with a symbolic manipulator in order
to express the solutions b/k in terms of the wave velocity
c. The two solutions b′ and b′′ with positive real parts
are associated with two eigenvectors of (13), (A′, B′) and
(A′′, B′′); the general solution is then obtained by the
linear combination

{
u(x, y, t)
v(x, y, t)

}

=

{
A′e−b′y +A′′e−b′′y

B′e−b′y +B′′e−b′′y

}
exp(ik(x − ct)), (15)

in which the constants A′, B′, A′′ and B′′ are not
independent because they have to satisfy the two possible
ratios (B/A)′ and (B/A)′′ due to the linear dependence
of the two equations in (13). Note that b′ and b′′,
symbolically dependent on the velocity c, are in general
very lengthy expressions that can only be manipulated in
an automatic symbolic manner.

A second eigenvalue problem is obtained by
enforcing the general solution (15) to satisfy the kinematic
boundary conditions together with the frictional boundary
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conditions, both at y = 0, listed above,
[
M11 M12

M21 M22

]{
A′

A′′

}
=

{
0
0

}
, (16)

where

M11 =

(
B

A

)′
, (17)

M12 =

(
B

A

)′′
, (18)

M21 =− b′
{
D33 +

(
B

A

)′
D23

+μ

[
D23 +

(
B

A

)′
D22

]}

+ ik

{
D13 +

(
B

A

)′
D33

+μ

[
D12 +

(
B

A

)′
D23

]}
,

(19)

M22 =− b′′
{
D33 +

(
B

A

)′′
D23

+μ

[
D23 +

(
B

A

)′′
D22

]}

+ ik

{
D13 +

(
B

A

)′′
D33

+μ

[
D12 +

(
B

A

)′′
D23

]}
.

(20)

This second eigenvalue problem is, however,
nonsymmetric, putting in evidence the nonassociated
character of Coulomb’s friction law. The determinant
of the coefficient matrix in (16) is found symbolically
in terms of c and μ, and is composed of a real and an
imaginary part. For each value of μ, the characteristic
equation of (16) is solved numerically in the Argand plane
for c.

Figure 6 shows how the complex nondimensional
wave velocity c/cT depends on the coefficient of friction
for a typical set of parameters. Recall from (12) that
Im(c) > 0 corresponds to an exponentially growing
solution; since Re(c) �= 0, the solution represents an
oscillation in time. In order to make the numerical
verification by the interested reader possible, Table 1
shows the numerical values of the coordinates of some
points of the curves in Fig. 6.

For another set of elastic parameters, Fig. 7 shows
three curves, now for three different orientations θ of the

Fig. 6. Coefficient of friction μ versus the real and imaginary
parts of c/cT , for some values of Poisson’s ratio ν12 in-
dicated near each curve. Data: θ = 90◦, E1/E2 = 8,
G12/E2 = 0.1, and ν = 0.3.

Table 1. Numerical coordinates of points in the three curves in
Fig. 6. Data: θ = 90◦, E1/E2 = 8, G12/E2 = 0.1,
and ν = 0.3.

ν12 μ Re(c/cT ) Im(c/cT )

0.4 3.28 6.32 · 10−4

0.1 2.15 3.38 0.142
2.92 3.51 1.58 · 10−4

0.425 3.23 1.58 · 10−4

0.3 7.45 3.86 0.968
10 4.39 0.802

0.5
0.453 3.18 1.58 · 10−4

10 3.15 1.99

principal directions of orthotropy, also illustrating how
the coefficient of friction at the onset of flutter instability
relates with the normalized complex wave velocity c/cT :
in a manner similar to what is observed in Fig. 6, each
curve forms a smooth arch beginning and ending in plane
Im(c/cT ). Table 2 complements Fig. 7 with numerical
data. Certain combinations of material constants and skew
angle θ lead to coefficients of friction at the onset of flutter
instability that are considerably small, as shown in the sets
{Fig. 6, Table 1} and {Fig. 7, Table 2}.

Besides from determining rigorously the regions in
the parameter space corresponding to unstable behaviours,
it is interesting to observe the form of those unstable
solutions. Figure 8 illustrates the real parts of the
horizontal (a) and vertical (b) components of displacement
field represented at the nondimensional instant T =
(cT /Λ)t (with cT =

√
G12/� and Λ = 1 being an

arbitrary wavelength) for μ = 0.5 and a given set
of material data. In Fig. 8(a) there is clearly visible
(i) the (exponential) decay of the U component of the
displacement with the depth Y and (ii) the periodic
(sinusoidal) form of the wave in the X direction. In
parallel, Fig. 8(b) shows (i) the kinematic boundary
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Fig. 7. Coefficient of friction μ versus the real and imaginary
parts of c/cT , for some values of the angle θ that the
principal directions of orthotropy make with the sliding
direction (in degrees, indicated near each curve). Data:
E1/E2 = 4, G12/E2 = 0.1, ν = 0.4, and ν12 = 0.1.

Table 2. Some numerical solutions of the set of characteristic
equations (14) and (16) for the data E1/E2 = 4,
G12/E2 = 0.1, ν = 0.4, and ν12 = 0.1 (Fig. 7).

θ μ Re(c/cT ) Im(c/cT )

0.483 2.92 1.58 · 10−4

105◦ 0.96 3.47 0.55
1.12 4 1.58 · 10−4

1.04 2.58 10−4

120◦ 1.6 3.73 1.13
1.7 4.83 1.58 · 10−4

2.13 2.41 1.58 · 10−4

135◦ 3.1 4.49 2.07
3.21 6.48 1.58 · 10−4

condition enforcing that at the contact surface Y = 0
there is no normal displacement V and (ii) the periodic
(sinusoidal) pattern of the vertical displacement V in
the tangent direction X ; if a larger range of values of
Y was chosen to plot Fig. 8(b), the exponential decay
of V with depth Y would also become apparent. The
features exhibited in Fig. 8 are common to other material
parameters leading to flutter instability.

4. Conclusions

It was shown that automatic symbolic computation
is a valuable resource in establishing the conditions
for the occurrence of divergence or flutter instabilities
in orthotropic solids subjected to frictional contact
conditions. In particular, symbolic computation opened
the possibility of consideration of orthotropic materials in
the search for the conditions of occurrence of divergence
and flutter instabilities in elastic solids acted by a rough
surface. By means of symbolic computation it was put in
evidence that unstable solutions may exist for coefficients
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Fig. 8. Representation of an exponentially growing wave at
non-dimensional time T = 0.1 of the square (X,Y ) =
(x/Λ, y/Λ) ∈ [0, 2] × [0, 2] near the frictional con-
tact surface Y = 0. k = 2π. Displacement par-
allel (perpendicular) to the frictional interface (a), dis-
placement perpendicular to the frictional interface (b).
The non-dimensional velocity c/cT = 3.1380863 +
0.0140721 i, corresponding to E1/E2 = 8, ν12 =
0.3, ν = 0.2, G12/E2 = 0.1, θ = 90o, μ = 0.5.

of friction that are much smaller than in the case of
isotropic materials.
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Appendix

MAPLE commands

Tables A1 and A2 contain the main Maple commands
used in the symbolic manipulation of the expressions for
the study of surface divergence and flutter instabilities.
In both cases the commands with(student),
with(LinearAlgebra), with(DETools) and
with(plots) calling relevant Maple packages were
executed at the beginning of both Maple files.

Table A1. Maple commands for the study of divergence
instability (Section 2).p y g y ( )

Resolution of Eqn. (1). dsolve(Eq1,symbolic):
Differentiation of the
expression μ(λ) (4). dmu(lambda):=diff(mu(lambda),lambda):
Check the vertical slopes
at the onset of instability. limit(dmu(lambda),lambda=0);
Numerical resolution for k from 0 to 400
of Eqn. (4). do

mu:=k/80.0:
EQ4:
y[k]:=fsolve(EQ4=0.0,lambda,0..100):

od:
Write the pairs (μ, λ) fd:=fopen(‘‘filename.txt’’, WRITE):
in the file “filename.txt” for k from 0 to 400
in order to produce the graphs do
in Fig. 2. fprintf(fd,‘‘%a %a \n’’,k/80.0,y[k]);

end do:
fclose(fd);

Explicit expressions (6)
of the critical value of μ (at the
onset of divergence instability). limit(mu(lambda),lambda=0);

Table A2. Maple commands for the study of flutter instability
(Section 3).

Solution of Eqn. (1). dsolve(Eq1,symbolic):
Symbolic computation of the
determinants in Eqns. (13) and (16). det(Coeff_Matrix);
To gather the terms of the
same power of b. collect(det(Coeff_Matrix),b);
Solution of Eqn. (14) solve({Eq14=0},{b});
to find its four solutions. allvalues(b);
To solve the characteristic for k from 1 to 400
equation in Eqn. (16) to find do
the values of c in the Argand mu:=k/40:
plane for prescribed values of μ, DD:=det(Coeff_Matrix_Eq16):
to draw Figs. 6 and 7. y[k]:=fsolve(DD=0.0,c,complex,0..5.0+5.0*I):

od:
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