
Int. J. Appl. Math. Comput. Sci., 2015, Vol. 25, No. 3, 597–615
DOI: 10.1515/amcs-2015-0044

BOTTOM–UP LEARNING OF HIERARCHICAL MODELS IN A CLASS
OF DETERMINISTIC POMDP ENVIRONMENTS

HIDEAKI ITOH a,∗, HISAO FUKUMOTO a, HIROSHI WAKUYA a, TATSUYA FURUKAWA a

aGraduate School of Science and Engineering
Saga University, 1 Honjo-machi, Saga 840-8502, Japan

e-mail: {hideaki,fukumoto,wakuya,tach}@ace.ec.saga-u.ac.jp

The theory of partially observable Markov decision processes (POMDPs) is a useful tool for developing various intelligent
agents, and learning hierarchical POMDP models is one of the key approaches for building such agents when the environ-
ments of the agents are unknown and large. To learn hierarchical models, bottom-up learning methods in which learning
takes place in a layer-by-layer manner from the lowest to the highest layer are already extensively used in some research
fields such as hidden Markov models and neural networks. However, little attention has been paid to bottom-up approaches
for learning POMDP models. In this paper, we present a novel bottom-up learning algorithm for hierarchical POMDP
models and prove that, by using this algorithm, a perfect model (i.e., a model that can perfectly predict future observations)
can be learned at least in a class of deterministic POMDP environments.

Keywords: partially observable Markov decision processes, hierarchical models, bottom-up learning.

1. Introduction

The theory of partially observable Markov decision
processes (POMDPs) provides a general framework for
sequential decision making under uncertainty (Drake,
1962; Åström, 1965; Kaelbling et al., 1999). POMDPs
have already been used in various problem domains,
including robot navigation (Theocharous et al., 2004;
Foka and Trahanias, 2007), assistance to elderly people
(Pineau et al., 2003; Hoey et al., 2010), and natural
language dialog management (Roy et al., 2000; Young
et al., 2013). In many studies, however, a model of
the environment is given a priori. Emphasis has been
placed only on how to optimize the policy (i.e., the
action-selection rule) for the given model.

The model-based approach is an important branch
of POMDP research (Sallans, 2000; Theocharous, 2002;
Shani et al., 2005). In this approach, the environment is
assumed to be unknown to the agent, and the agent learns
the model of the environment through experience (i.e., the
history of actions and observations). After learning, the
agent optimizes the policy using the model. Given recent
advances in policy optimization methods (e.g., Spaan and
Vlassis, 2005; Zamani et al., 2012), we can hope that if we

∗Corresponding author

have a method for learning the model, the optimal policy
can be automatically obtained in the unknown POMDP
environment.

Hierarchical models are useful when the environment
to be modeled is large (Theocharous and Mahadevan,
2002; Youngblood and Cook, 2007). A hierarchical model
typically consists of lower layers, which model some local
structures of the environment, and higher layers, which
model the global relationships among the local structures.
By this mechanism, it can model a large environment
with a much smaller number of parameters than flat (i.e.,
non-hierarchical) models. Therefore, learning can be
easier in hierarchical models.

The introduction of hierarchical POMDPs
(H-POMDPs) (Theocharous and Mahadevan, 2002;
Theocharous, 2002) and the fast learning method for
them (Theocharous et al., 2004) has been an important
attempt to enable learning in large POMDP environments.
In this learning method, H-POMDPs are represented as
dynamic Bayesian networks (DBNs), and these DBNs
are efficiently learned via an expectation-maximization
(EM) algorithm. This method has been successfully
applied to the map learning domain; the models of
large environments were more accurately learned using
H-POMDPs than using flat POMDPs. However, for this

{hideaki, fukumoto, wakuya, tach}@ace.ec.saga-u.ac.jp

598 H. Itoh et al.

method to successfully learn the map, the topology of
the map had to be given a priori. Thus, learning in large
environments without such prior knowledge remains an
unsolved problem.

A possible reason why the learning of H-POMDPs
has been difficult is that the learning method tries to
learn the entire hierarchy simultaneously. A promising
alternative approach for learning hierarchical models is
the bottom-up approach, in which learning takes place in
a layer-by-layer manner from the lowest to the highest
layer. In this approach, the lower layers first learn
local structures of the environment, and then the higher
layers learn the global relationships among the local
structures. We expect that this makes learning more
convenient, because it would be easier to separately learn
the local structures and their relationships than to learn
the entire hierarchy simultaneously. Although we could
consider top-down approaches (where learning begins at
the highest layer), they are difficult to implement because
it is hard to learn the relationships among local structures
prior to learning the actual local structures.

Indeed, in related research fields, the bottom-up
approach has been successfully used in some influential
studies, including those of layered hidden Markov mod-
els (layered HMMs) (Oliver et al., 2004) in the HMM
literature and deep learning (Hinton et al., 2006) in the
neural network literature. In logic network structure
learning (Mihalkova and Mooney, 2007), the bottom-up
approach has been empirically found to be better than
top-down approaches.

In the POMDP literature, however, little attention has
been paid to the bottom-up approach. A notable exception
is the bottom-up learning method that uses data mining
techniques (Youngblood et al., 2005; Youngblood and
Cook, 2007). This method has been successfully applied
to the intelligent home environment domain. However,
the method learns hierarchical HMMs (HHMMs) (Fine
et al., 1998) and converts them to H-POMDPs. Since this
conversion is not always possible, hierarchical POMDP
models cannot always be obtained using this method.

Therefore, in this paper, we present a novel
bottom-up learning algorithm that directly learns
hierarchical POMDP models. We use layers of finite state
machines (FSMs) instead of H-POMDPs.

Furthermore, we prove that, by using this algorithm,
a perfect model (i.e., a model that can perfectly predict
future observations) can be learned in a certain class of
POMDP environments. The fundamental idea behind the
algorithm is that, as each layer is learning, the learning
layer ignores some unimportant parts of the training data
(i.e., the history of actions and observations). More
specifically, in Section 4.2, we prove that the learning
layer can ignore the time periods of the training data
during which full observability is recovered by the lower
layers.

We also provide empirical results by which we
demonstrate how hierarchical models are successfully
learned by the algorithm. We show that, in the problem
domain used for our experiments, many parts (up to
99.2%) of the training data can be safely ignored when
the upper layers are learning. Further, we show that our
algorithm outperformed the DBN-based one for learning
H-POMDPs (Theocharous et al., 2004) in at least this
problem domain.

Thus, the presented algorithm is the first bottom-up
algorithm for directly learning POMDP models that
comes with a theoretical guarantee and empirical
validations regarding its performance.

In this paper, we consider only a subclass of
POMDPs. More specifically, the two constraints
described below are imposed on the environment. The
first constraint is that the environment needs to be a
deterministic POMDP (Littman, 1996; Bonet, 2009),
in which both state transitions and observations are
governed by deterministic functions. Deterministic
POMDPs are less general than standard POMDPs in
which state transitions and observations are determined
by probabilistic functions; however, since the state is
hidden from the agent, learning deterministic POMDPs
remains a difficult task (Holmes and Isbell Jr., 2006).
The second constraint is that the environment cannot
have a specific type of loop structure, which we call
action-observation loops (or ao-loops for short); they are
defined in Section 3.1. Although this constraint also
makes the target environment less general, environments
without ao-loops still include non-trivial problems (as we
present in Section 5). These two constraints are imposed
to simplify the analysis in this paper; it is desired that
these constraints are removed in future studies. This
study lays a firm foundation for future improvements
towards efficient methods for learning hierarchical models
in general POMDP environments.

The rest of the paper is organized as follows. Related
work is discussed in Section 2. After describing the
problem setup in Section 3, we present our learning
algorithm in Section 4, which also includes a proof that
our algorithm can learn a perfect model. Results of
empirical studies are given in Section 5. Section 6
concludes this paper.

2. Related work

There have been various kinds of methods proposed for
learning flat POMDP models, e.g., FSM-based methods
(Dean et al., 1995; Gavaldà et al., 2006), Bayesian
reinforcement learning methods (Poupart and Vlassis,
2008; Ross et al., 2011; Chatzis and Kosmopoulos,
2014), and sample-based methods (Doshi-Velez, 2009;
Doshi-Velez et al., 2015). These are different from our
approach, since they do not construct hierarchical models.

Bottom-up learning of hierarchical models in a class of deterministic POMDP environments 599

However, they can be useful for learning each layer of a
hierarchical model. For example, Bayesian reinforcement
learning methods can be used to optimally explore the
partially observable environments. The exploration issue
is also important to our approach, although it is not the
focus of the present paper; in our experiments, we used
a simple policy that selects a random action at any time
while the agent learns the environment.

Our hierarchical model is a multi-layer one (e.g.,
Chang et al., 2003), and each layer can be seen as a kind of
jump process (Kołodziej et al., 2011; Rao and Teh, 2013)
from the viewpoint of the higher layers, in the sense that
the higher layers only occasionally interact with the lower
layer. Indeed, our model is closely related to partially
observable semi-Markov decision processes (POSMDPs)
(White, 1976; Mahadevan, 1998; Lim et al., 2011). A
POSMDP is a semi-Markov model (e.g., Li et al., 2007;
Oniszczuk, 2009; Rusek et al., 2014) equipped with
actions and observations. The relationships between our
model and POSMDPs are described in Section 3.3.3.

Hierarchical models have also been extensively
studied in the field of hierarchical HMMs (HHMMs)
(Fine et al., 1998; Bui et al., 2004; Heller et al., 2009).
HHMMs are different from our model because they do
not take actions into account. An important attempt to add
actions to HHMMs has led to H-POMDPs (Theocharous
and Mahadevan, 2002; Theocharous, 2002; Theocharous
et al., 2004). We compare our model with this technique
in Section 5.

In the reinforcement learning literature, many studies
describe model-free approaches for obtaining hierarchical
controllers (Dietterich, 2000; Barto and Mahadevan,
2003; Hengst, 2011), mostly in fully observable MDP
environments (Kolobov, 2012). These approaches differ
from ours, because they do not construct an explicit model
of the environment. Comparisons between model-based
and model-free approaches are important, but are out of
the scope of this paper.

Studies of automatically discovering hierarchical
POMDP controllers (Charlin et al., 2007; Toussaint et al.,
2008) have some similarities with our study, because
they use hierarchical FSMs. However, they are different
from our study, because they assume that a model of the
environment is given.

3. Problem setup

In this section, we define the environment to be learned,
the goal of the learning, and the agent that learns the
environment.

3.1. Environment. Let the environment be a
deterministic POMDP defined as a tuple E := 〈S,A,O,
δ, γ, s0〉, where

• S := {1, 2, . . . , |S|} is a finite set of states,

a(t)

o(t+1)

s(t) s(t+1)

observation

state

action

Fig. 1. Time slice of the POMDP environment.

• A := {1, 2, . . . , |A|} is a finite set of actions,
• O := {1, 2, . . . , |O|} is a finite set of observations,
• δ : S × A → S is the deterministic transition

function,
• γ : S × A → O is the deterministic observation

function, and
• s0 ∈ S is the initial state of the environment.

As shown in Fig. 1, at each time t = 0, 1, 2, . . . ,
the agent takes action a(t) ∈ A. Then, state s(t) ∈ S is
changed to s(t+1) = δ(s(t), a(t)), and observation o(t+
1) = γ(s(t), a(t)) is given to the agent. For simplicity, we
do not consider rewards (i.e., evaluations of the states) in
this paper.

We assume thatA andO of E are known to the agent;
the other elements of E are assumed to be unknown.

Our algorithm is proven to work when the
environment does not contain a specific type of structure,
which we refer to as action-observation loops (or ao-loops
for short). Before defining ao-loops, we first define the
following two fundamental notions.

Definition 1. (Action-observation sequence) For any
integer n (≥ 1), we call q = (a1, o1, a2, o2, . . . , an, on)
an action-observation sequence if ai ∈ A and oi ∈ O for
all i ∈ {1, 2, . . . , n}.

Definition 2. (→q) Let q = (a1, o1, a2, o2, . . . , an, on)
be an action-observation sequence, and let s and s′ be
two (possibly identical) states in S. We write s →q s′

if, by receiving the action sequence specified in q (i.e.,
(a1, a2, . . . , an)), the state s transitions to s′ emitting the
observation sequence specified in q (i.e., (o1, o2, . . . , on)).

Given these definitions, we can define ao-loops. We
divide our definition into what we call 1st-order ao-loops
(specified as Definition 3 and shown in Fig. 2(a)) and
n-th-order ao-loops (specified as Definition 4, and two
examples shown in Figs. 2(b) and 2(c)).

Definition 3. (1st-order ao-loop) In environment E,
if there exist two different states s and s′ and one
action-observation sequence q such that there is a
transition path s →q s′ →q s′, then we call this path a
1st-order ao-loop.

600 H. Itoh et al.

s s'
q

q
s s'

q

q
s s'

q

q

s''
q

(a) (b) (c)

Fig. 2. Examples of ao-loops: 1st-order ao-loop, where s and
s′ are two different states (a), 2nd-order ao-loop, where
s and s′ are two different states, too (b), and 3rd-order
ao-loop, where s, s′, and s′′ are three different states (c).
In each figure, all of the action-observation sequences q
are identical to each other.

Definition 4. (n-th-order ao-loop (n ≥ 2)) In
environment E, if there exist n (≥ 2) different
states s(1), s(2), . . . , and s(n) and one action-observation
sequence q such that there is a transition path s(1) →q

s(2) →q · · · →q s(n) →q s(1), then we call this path an
n-th-order ao-loop.

For example, in Fig. 2(b), the state s transitions to
s′ with the action-observation sequence q, and the state
s′ transitions back to s′ with the same action-observation
sequence q. Since such a loop structure would make it
difficult for the agent to distinguish the hidden states, we
consider only environments that do not have ao-loops of
any order in this paper.

Note that a 1st-order ao-loop (Fig. 2(a)) differs
from higher-order ao-loops in the sense that a part of the
transition path does not form a loop. For brevity, we still
call it an ao-loop.

3.2. Goal of learning. In our approach, the goal of
learning is to obtain a model that can perfectly predict the
future. To be precise, we define the term perfect prediction
as follows.

Definition 5. (Perfect prediction) We say that a model
performs perfect prediction at time t if for any given future
action sequence (a(t), a(t+ 1), . . . , a(t+ τ − 1)) of any
length τ (≥ 1) the model correctly predicts the future
observation sequence (o(t+ 1), o(t+ 2), . . . , o(t+ τ)).

Given this definition, we call a model that performs
perfect prediction a perfect model. The agent is therefore
expected to acquire a perfect model through experience
(i.e., via the history of actions and observations).

3.3. Agent. Using a bottom-up approach, the agent
learns a hierarchical model of the environment while
interacting with it.

Figure 3 shows an overview of the bottom-up
learning approach. In what follows, superscripts (e.g., 1
in t10) indicate the layer number. At time t = 0, the agent
begins to interact with the environment. The initial time
period from t = 0 to t = t10 is when the learning of layer
1 takes place. During this time period, the agent gathers

layer 2

0 t t t

layer 1

...

time

0
1

0
2

0
3

layer 3

learning fixed

learning fixed

learning fixed ...

...

...

Fig. 3. Overview of the bottom-up learning approach. Each
subsequent layer goes through a learning process and is
then fixed such that layers above will complement the
lower layers.

experience (i.e., actions and observations) and constructs
layer 1, seeking better prediction performance. At time t10,
layer 1 is fixed.

The next time period from t = t10 to t = t20 is when
the learning of layer 2 takes place. During this period,
the agent collects more experience and constructs layer 2,
again seeking better prediction performance. Layer 2
is expected to play a complementary role in making
predictions, i.e., it is expected to learn to predict what
layer 1 cannot predict.

At time t20, layer 2 is fixed, and the learning of
layer 3 begins. This process can be repeated to construct
more layers (4, 5, and so forth), until perfect prediction is
achieved.

In this paper, we consider the case in which
each layer is a finite state machine (FSM), because
perfect prediction can be performed by an FSM for any
deterministic POMDP environment E. It is easy to prove
this fact; we prove it in Section 3.3.2 after we define the
lowest layer of the hierarchical model in Section 3.3.1.

3.3.1. Layer 1. Let the lowest layer, which
we call layer 1, be an FSM defined as M1 :=〈
B1, A,O, U1, P 1, b10

〉
, where

• B1 := {1, 2, . . . , |B1|} is a finite set of internal
states, which we call beliefs,

• A := {1, 2, . . . , |A|} is a finite set of actions,
• O := {1, 2, . . . , |O|} is a finite set of observations,
• U1 := B1×A×O → B1 is a belief update function,
• P 1 := B1 ×A → O is a prediction function, and
• b10 ∈ B1 is the belief at layer 1’s initial time t10.

Here, A and O of M1 are the same sets as those
of environment E. The other entities of M1 (i.e.,
B1, U1, P 1, and b10) are to be set by some learning method
(mentioned in Section 4.1).

The initial time of layer 1, t10, is when layer 1 is fixed
(Fig. 3). After this initial time, layer 1 behaves as shown
in Fig. 4. At each time t = t10, t

1
0 + 1, t10 + 2, . . .,

layer 1 receives action a(t) ∈ A taken by the agent

Bottom-up learning of hierarchical models in a class of deterministic POMDP environments 601

a(t)

o(t+1)

s(t) s(t+1)

b1(t) b1(t+1)

P1

U1

observation

state

action

belief

Fig. 4. Time slice of the POMDP environment with layer 1 of
the agent.

and predicts the next observation o(t + 1) ∈ O to be
õ(t + 1) = P 1(b1(t), a(t)), where the tilde indicates
a predicted value. After receiving the true observation
o(t + 1) from the environment, layer 1 changes its belief
b1(t) to b1(t+ 1) = U1(b1(t), a(t), o(t+ 1)).

3.3.2. FSM can perform perfect prediction. With
M1 defined, we prove that perfect prediction can be
performed by an FSM as follows.

Theorem 1. For any given environment E and any given
time t (≥ 0), there exists an FSM M1 that performs per-
fect prediction at time t.

Proof. Let B1, U1, P 1, and b10 of M1 be such that M1

simulates environment E; i.e., let B1 be identical to the
environment’s state space S, let U1(s, a, o) be the same
value as δ(s, a) for all s ∈ S, a ∈ A, and o ∈ O, and
let P 1(s, a) be the same value as γ(s, a) for all s ∈ S
and a ∈ A. Let M1’s initial time t10 be t. Let b10
be the environment’s state at t. Then, given any action
sequence (a(t), a(t+ 1), . . . , a(t+ τ − 1)), the sequence
of M1’s belief states (b1(t), b1(t+ 1), . . . , b1(t+ τ − 1))
determined by U1 is identical to that of the environment’s
states (s(t), s(t + 1), . . . , s(t + τ − 1)). Thus, future
observations (o(t+1), o(t+2), . . . , o(t+τ)) are correctly
predicted by P 1. �

As is evident from the theorem above, perfect
prediction can potentially be achieved by layer 1 alone.
If perfect prediction is achieved by layer 1, then no higher
layer is necessary. In practice, however, learning such a
perfect model with a single layer is difficult. Typically,
only some local structures would be learned by layer 1.
Hence, we need higher layers to learn the rest. We define
the higher layers in the next subsection.

3.3.3. Layer 2 and higher. Let the l-th layer (l ≥ 2) be
an FSM defined as M l :=

〈
Bl, Al, O, U l, P l, bl0

〉
, where

• Bl := {1, 2, . . . , |Bl|} is a finite set of belief states,

a(t)

o(t+1)

s(t) s(t+1)

b1(t) b1(t+1)

P1

U1

observation

state

action

belief of
layer 1

b2(t) b2(t+1)
belief of
layer 2

a(t)

o(t+1)

s(t) s(t+1)

b1(t) b1(t+1)

P2

b2(t) b2(t+1)

U2

(a) (b)

Fig. 5. Time slice of the POMDP environment with layers 1 and
2 of the agent. Usually, layer 2 does nothing; o(t + 1)
is predicted by layer 1, and b2(t + 1) equals b2(t) (a).
When necessary, layer 2 gets involved in the prediction
process; o(t + 1) is predicted by P 2, and b2(t + 1) is
determined by U2 (b). Note that in (b) arrows going to
b1(t+1) are omitted, but b1(t+1) is determined by U1

in exactly the same manner as in (a).

• Al ⊂ B1 × B2 × · · · × Bl−1 × A is a finite set of
actions,

• O := {1, 2, . . . , |O|} is a finite set of observations,
• U l := Bl×Al×O → Bl is a belief update function,
• P l := Bl ×Al → O is a prediction function, and
• bl0 ∈ Bl is the belief state at layer l’s initial time tl0.

Here, O is the same set as that of environment E,
and Al is a set consisting of all possible configurations
of the lower layers’ beliefs b1 ∈ B1, b2 ∈ B2, . . . ,
and bl−1 ∈ Bl−1 and action a ∈ A. Al can be
constructed by collecting all of the different values of
vector (b1(t), b2(t), . . . , bl−1(t), a(t)) in the past history
from t = 0 to the most recent value of t. Although the
size of Al may become exponentially large, usually it can
be kept small; we discuss this issue in Section 5.2. The
other entities of M l (i.e., Bl, U l, P l, and bl0) are to be set
by some learning method (described in Sections 4.2 and
4.3).

Layer l is fixed after some time period of learning,
as shown in Fig. 3. Let tl0 (≥ 0) be the time at which it
is fixed. We call tl0 the initial time of layer l. Layer l is
fixed after layer l−1 is fixed; hence, we have tl0 ≥ tl−1

0 ≥
tl−2
0 ≥ · · · ≥ t10 ≥ 0.

We let layer l do some work only when it is
necessary. This is because we want the higher layers to
focus on predicting what the lower layers cannot predict
(see Sections 4.2 and 4.3 for details). To describe how
each layer works, consider, for example, the case of l = 2
(Fig. 5) where t is after t20. In this time period, layer

602 H. Itoh et al.

a(t+1)

observation

state

action

belief of
layer 1

belief of
layer 2

a(t)

o(t+1)

s(t) s(t+1)

b1(t) b1(t+1)

b2(t) b2(t+1)

a(t+2)

o(t+2)

s(t+2)

b1(t+2)

b2(t+2)

a(t+3)

o(t+3)

s(t+3)

b1(t+3)

b2(t+3)

o(t+4)

s(t+4)

b1(t+4)

b2(t+4)

Fig. 6. Example of four time slices of the POMDP environment with layers 1 and 2 of the agent. In this example, layer 2 gets involved
in the prediction process (as in Fig. 5(b)) at t and t+3, and does nothing (as in Fig. 5(a)) at t+1 and t+2. Each time slice in
this figure is a replication of Fig. 5(a) or (b), but we include the arrows omitted in Fig. 5(b). Only the variables marked using
thick circles directly affect layer 2’s belief b2(·).

1 has already been fixed and is working in the manner
shown in Fig. 4; i.e., at each time t, layer 1 predicts the
next observation o(t + 1) using P 1 and updates its belief
b1(t) using U1. At each time t, layer 2 chooses either to
do nothing (Fig. 5(a)) or to get involved in the prediction
process (Fig. 5(b)). Normally, layer 2 does nothing (Fig.
5(a)); i.e., the prediction of o(t + 1) made by layer 1
becomes the prediction of the whole model (i.e., layers
1 and 2), and the belief of layer 2 remains unchanged
(i.e., b2(t) = b2(t + 1)). When necessary, layer 2 gets
involved in the prediction process (Fig. 5(b)). That is,
layer 2 predicts o(t+1) to be õ(t+1) = P 2(b2(t), a2(t)),
where a2(t) := (b1(t), a(t)). After receiving the true
observation o(t + 1) from the environment, the belief of
layer 2 is updated to b2(t+1) = U2(b2(t), a2(t), o(t+1)).

Next, we restate the above for general l (≥ 2).
Normally, layer l does nothing, and the prediction of
o(t + 1) made by layers 1, 2, . . . , and l − 1 becomes
that of the whole model (i.e., layers 1, 2, . . . , and l).
The belief of layer l remains unchanged; i.e., bl(t) =
bl(t + 1). When necessary, layer l predicts o(t + 1)
to be õ(t + 1) = P l(bl(t), al(t)), where al(t) :=
(b1(t), b2(t), . . . , bl−1(t), a(t)). After receiving the true
observation o(t + 1), the belief of layer l is updated to
bl(t+ 1) = U l(bl(t), al(t), o(t+ 1)).

At each time t, the agent determines whether
layer l should get involved in the prediction
process; this determination is based on the values of
b1(t), b2(t), . . . , bl−1(t), and a(t). Further details are
described in the next section.

We explain the entire process using the example in
Fig. 6. In this figure, there are two layers and four
time slices from t to t + 4. Suppose that, at time t,
the values of b1(t), b2(t), and s(t) have already been

fixed. The agent selects action a(t) in a certain way
(which we do not consider in this paper) and determines
whether layer 2 should get involved, based on the values
of b1(t) and a(t). In the example in Fig. 6, layer 2
gets involved. Consequently, layer 2 predicts the next
observation o(t+1), and after the true observation o(t+1)
is given from the environment, the beliefs of layers 1 and
2 are updated to b1(t + 1) and b2(t + 1), respectively.
At the same time, the state of the environment is updated
to s(t + 1). At time t + 1, the agent selects the next
action a(t+1) and determines whether layer 2 should get
involved, based on the values of b1(t+1) and a(t+1). In
the example in Fig. 6, layer 2 does not get involved, i.e., it
does nothing. The next observation o(t+2) is predicted by
layer 1, and the belief of layer 2 remains unchanged (i.e.,
b2(t+ 2) = b2(t+ 1)). The belief of layer 1 and the state
of the environment are updated to b1(t+ 2) and s(t+ 2),
respectively. The process continues in this manner. In the
example in Fig. 6, layer 2 does nothing at t + 2 and gets
involved at t+ 3.

Our model is related to POSMDPs (White, 1976;
Mahadevan, 1998; Lim et al., 2011). Note that in the
example in Fig. 6 only the variables shown in thick
circles, i.e., b1(·), a(·), and o(·), directly affect layer 2’s
belief b2(·). These variables (b1(·), a(·), and o(·)) can
be considered to obey a jump process in which, given an
action a(t) at time t, layer 1’s belief b1(t) emits o(t + 1)
and changes sometime later to b1(t + τ), where τ = 3 in
this example. This process is not exactly a POSMDP, but
if we include the hidden state variables s(t) and s(t + τ)
and the actions a(t+ 1), a(t+ 2), · · · , and a(t+ τ − 1),
then we obtain a POSMDP in which, given a(t), a(t+1),
· · · , and a(t+ τ − 1), the state of the process (b1(t), s(t))
changes to (b1(t+ τ), s(t+ τ)) emitting o(t+ 1).

Bottom-up learning of hierarchical models in a class of deterministic POMDP environments 603

4. Bottom-up learning algorithm

Our bottom-up learning algorithm is shown in Algorithm
1; each step of this algorithm is described below.

4.1. Making M1. The first step of our learning
algorithm (Step 1 in Algorithm 1) is the process of
learning at the lowest layer M1. Although this is an
important first step of the entire learning process, we do
not focus on it in this paper. Any method can be used
to learn M1. For example, the Baum–Welch algorithm
can be used to learn an input–output HMM, which, after
learning, is converted into an FSM by discretizing the
belief space. Alternatively, the FSM’s parameter values
can be directly searched by gradient ascent methods,
genetic algorithms, or other such methods.

4.2. Adding M2 on top of M1. Suppose that M1 has
already been learned and fixed by some method and that
perfect prediction has not been achieved by M1. In this
section, we consider how to add a second layer M2 on top
of M1.

4.2.1. Overview. Before describing the details, we
provide an overview by using an example. Consider a
mobile agent that is learning a map of a building’s layout
shown in Fig. 7(a). This is a grid map, and each cell (�)
is a state hidden from the agent. We suppose that the cells
with the numbers 1–5 represent floors and those with the
number 6 or 7 represent staircases.

Suppose that this map is learned only partially by
M1. For example, let us consider an M1 whose belief
update function U1 is such that belief b1(t) becomes
identical to o(t) when o(t) ∈ {1, 2, . . . , 7} and to b1(t−1)
when o(t) is “no move.” If we use this M1, then b1(t)
is always identical to the number that is observed in the
cell where the agent is located, as shown in Fig. 7(b).
This b1(t) represents the current position in each corridor
or staircase; hence, the model successfully predicts the
future observations as long as the agent moves inside a
corridor or staircase; however, since it does not represent
the exact position within the entire map, the model cannot
always make a correct prediction.

When addingM2 on top ofM1, it would be desirable
if we could ignore the things that have already been
learned by M1 and allow M2 to focus on learning what
has not been learned. In the example illustrated in Fig.
7(b), since M1 has already learned the map of each
corridor and staircase, it would be desirable if M2 could
focus on learning how the corridors and staircases are
connected to each other.

To accomplish this, we must first identify what can
be safely ignored. The idea behind our algorithm is to
ignore the time periods during which full observability is
recovered by M1. In the example shown in Fig. 7(b),

Algorithm 1. Bottom-up learning.

Step 1. Learn M1 by any method.

Step 2. Explore the environment and let the recent history
h be h = (b1ao(t−T +1), b1ao(t−T +2), . . . , b1ao(t)).

Step 3. Find OP transitions by counting N(b1, a, o).

Step 4. Find OPM transitions.

Step 5. Obtain h′ = (b1ao(t1), b
1ao(t2), . . . , b

1ao(tn))
from h by discarding all b1ao(·) associated with the OPM
transitions.

Step 6. Optimize M2 using h′.
Step 7. To construct higher layer M l (l ≥ 3), repeat
Steps 2–6 with b1 and M2 replaced with b1:l−1 and M l,
respectively.

during the time periods when the agent is moving inside a
corridor or staircase, full observability is recovered by M1

in the sense that at each time t, belief b1(t) has sufficient
information for the agent to determine the position within
the corridor (e.g., if b1(t) = 1 holds, the agent knows
that it is located in the leftmost position of a corridor on
some floor). This suggests that during these time periods,
there is nothing left for M2 to learn. We will prove, in
Theorems 2 and 3 introduced in the next section, that these
time periods can be safely ignored when M2 is learning.
It is not necessary forM2 to do anything during these time
periods, and M2 can focus on predicting the observations
at other time steps. Perfect prediction is achieved once the
belief of M2 becomes capable of distinguishing corridors
and staircases, as illustrated in Fig. 7(c).

In the next section, we present a method for
determining the time periods during which full
observability is recovered.

4.2.2. Discarding ignorable parts. As described
above, we wish to ignore time periods during which
full observability is recovered. One important clue for
judging whether full observability is recovered is the pre-
dictability of the observation at the next time step. To be
precise, before we define the notion of predictability (i.e.,
Definition 7), we introduce some fundamental notions
regarding the combined system of environment E and
layer 1.

Definition 6. (Combined POMDP and its extended state)
For any environment E and any FSM M1, we call a
POMDP consisting of E and M1 a combined POMDP.
The state of the combined POMDP is (s, b1) ∈ S×B1 :=
{(s, b1) | s ∈ S, b1 ∈ B1}, which we call an extended
state. The action and observation spaces of the combined
POMDP are the same as those of environment E. The
extended state (s, b1) is changed to (s′, b1′) by action
a ∈ A of the agent, where s′ is the next state of the
environment (i.e., s′ = δ(s, a)), and b1′ is the next belief

604 H. Itoh et al.

1 2 3 4 5

6

7

51 2 3 4

6

7

51 2 3 4

1 1 1 1 1

4

4

22 2 2 2

5

5

33 3 3 3

1 2 3 4 5

6

7

51 2 3 4

6

7

51 2 3 4

(a) (b) (c)

Fig. 7. Mapping a three-story building environment. Map of the
environment; in each cell (�), the agent can move left,
right, up, or down; the number written in each cell is the
observation given to the agent when the agent enters the
cell; if the agent attempts to take an impossible action
(e.g., going up in a cell with the number 1), a different
value indicating “no move” is observed (a). Example of
M1’s belief, in which the number written in each cell is
the value of b1(t) when the agent is located in the cell
(b). Example of M2’s belief, in which the number writ-
ten in each cell is the value of b2(t) when the agent is
located in the cell (c).

of layer 1 (i.e., b1′ = U1(b1, a, o), where o = γ(s, a)).
The observation emitted by the combined POMDP is the
same as that of environment E. The initial extended state
is (s(t10), b

1
0), where s(t10) is the environment’s state at the

initial time of layer 1.

Further, we say that state s co-occurs with belief b1

when the extended state is (s, b1). Given these definitions,
we define predictability below.

Definition 7. (Observation-predictable (OP) transition)
In any strongly connected region of the space of extended
states S × B1, if selecting action a in belief b1 always
results in an identical observation regardless of which
state s is co-occurring with belief b1, then we say that
the pair (b1, a) causes an observation-predictable transi-
tion, or OP transition for short. We write this transition as
(b1, a) →OP b

1′, where b1′ is the next belief after b1 and a.

Note that in Definition 7 we consider only strongly
connected regions of S × B1. This is because the other
(i.e., transient) regions are difficult to learn since the agent
potentially moves through these regions only once.

Whether a transition is OP or not can be judged
from the history that the agent has experienced while
interacting with the environment. This corresponds to
Steps 2 and 3 of Algorithm 1. In Step 2, suppose that
the agent has explored the environment and recorded the
history of M1’s beliefs, actions, and observations up to
time t. Let the belief-action-observation history of recent
T time steps be

h := (b1ao(t−T+1), b1ao(t−T+2), . . . , b1ao(t)), (1)

where b1ao(·) is the abbreviated notation for a tuple
(b1(·), a(·), o(· + 1)). Since OP transition is a notion
regarding a strongly connected region of S×B1, we must
discard initial parts of the experienced history to exclude
the time period before the agent falls into a strongly
connected region. There are multiple ways to do this,
but in the numerical experiments in Section 5 below we
simply discarded the initial 1/10 of the history; i.e., we
set T := 9t/10 in Eqn. (1). By doing this, if t is
sufficiently large, history h includes only the experience
after the agent falls into a strongly connected region.

In Step 3, for every pair of belief b1 ∈ B1 and action
a ∈ A, let N(b1, a, o) for each o ∈ O be the number of
occasions in which o is observed immediately after b1 and
a. We use history h to count N(b1, a, o). If N(b1, a, o) >
0 for only a single observation o and N(b1, a, o) = 0 for
other o’s, then (b1, a) is identified as the pair that causes
an OP transition. Although misidentifications can occur if
history h is too short, correct identifications will be made
after h becomes sufficiently long.

The notion of OP transition introduced above is
an important clue, but it is not sufficient for us to
know whether full observability is recovered. We need
additional notions regarding mutuality, which we describe
below.

Definition 8. (Mutually observation-predictably transi-
tionable) For any two beliefs b1 and b1′ ∈ B1, we
say that b1 and b1′ are mutually observation-predictably
transitionable if we have both (b1, ∃a) →OP b1′ and
(b1′, ∃a′) →OP b

1.

Definition 9. (OPM transition) For any two beliefs b1

and b1′ ∈ B1 and action a ∈ A, if (1) (b1, a) causes
an OP transition to b1′ and (2) b1 and b1′ are mutually
observation-predictably transitionable, then we say that
(b1, a) causes an OPM transition to b1′. We write this
transition as (b1, a) →OPM b1′. If (b1, a) causes an
OPM transition and o is the observation that is obtained
immediately after (b1, a), then we say that (b1, a, o) is
associated with the OPM transition.

Note that in Definition 9 the OPM acronym combines
the observation-predictable transition and the mutually
observation-predictably transitionable beliefs.

Also note that, from Definitions 8 and 9, OPM
transitions can be found using OP transitions. This
corresponds to Step 4 of Algorithm 1.

With these notions defined, we can identify the
time periods during which full observability is recovered
by M1. In history h in Eqn. (1), some elements
b1ao(·) would be associated with OPM transitions, while
others would not. The theorem below states that full
observability is recovered byM1 during the time period in
which every b1ao(·) is associated with an OPM transition.

Bottom-up learning of hierarchical models in a class of deterministic POMDP environments 605

Theorem 2. Consider a combined POMDP consisting
of any environment E without ao-loops and any FSM M1.
After the agent falls into a strongly connected region of
S × B1 of the combined POMDP, if there is any time pe-
riod t1 ≤ t ≤ t2 such that every b1ao(t), t ∈ [t1, t2], is
associated with an OPM transition, then for any ti and
tj ∈ [t1, t2+1] we have s(ti)
= s(tj) ⇒ b1(ti)
= b1(tj).

Proof. See Appendix. �

The main idea of the proof is as follows. First,
the space of extended states can be partitioned into
blocks, which we call x-blocks; within each block, all
of the extended states are connected by undirected OPM
transitions. Next, we can prove that for any two extended
states (s, b1) and (s′, b1′) within an x-block we have
s
= s′ ⇒ b1
= b1′. Additionally, during any time
period t1 ≤ t ≤ t2 such that every b1ao(t), t ∈ [t1, t2],
is associated with an OPM transition, the extended state
(s(t), b1(t)) stays within a single x-block. We can use
these two facts to prove Theorem 2.

Note that the final part of Theorem 2 (i.e., s(ti)
=
s(tj) ⇒ b1(ti)
= b1(tj)) means full observability, since
it states that there is no such case in which different states
are confusingly represented by a single belief.

To learn M2, we ignore the fully observable periods
and use only the remaining parts. This corresponds to Step
5 in Algorithm 1. Within history h in Eqn. (1), let ti (i =
1, 2, . . . , n) be the time steps in each of which b1ao(ti) is
not associated with an OPM transition, where t−T +1 ≤
t1 < t2 < · · · < tn ≤ t. We ignore the other time steps
and use

h′ = (b1ao(t1), b
1ao(t2), . . . , b

1ao(tn)) (2)

for the learning process of M2. In the next section, we
prove that this h′ is sufficient for the agent to use to
successfully learn M2.

4.2.3. Optimization of M2. The next step of our
learning algorithm, i.e., Step 6 in Algorithm 1, is to
optimize M2. The optimization is performed such
that M2 can predict, in collaboration with M1, future
observations as correctly as possible.

Before describing the optimization process itself, we
first state how M2 collaborates with M1. As mentioned
in Section 3.3.3, layer 2 either does nothing (Fig. 5(a))
or gets involved in the prediction (Fig. 5(b)) at each
time. We let layer 2 do nothing when (b1(t), a(t)) causes
an OPM transition, whereas we let layer 2 get involved
in the prediction when (b1(t), a(t)) does not cause an
OPM transition. More specifically, layers 1 and 2 work
in collaboration, as shown in Algorithm 2.

In what follows, we assume that, whenever
(b1(t), a(t)) causes an OPM transition, M1 correctly

Algorithm 2. Making predictions via layers 1 and 2 after
t = t20 (see Section 4.3 for layers higher than layer 2).

Do the following at each time t = t20, t
2
0 + 1, t20 + 2,

Step 1. Layer 1 makes a prediction of the next observation
o(t+1) by P 1. After obtaining the true observation, layer
1’s belief b1(t) is updated to b1(t+ 1) by U1.

Step 2. Layer 2 does either (2a) or (2b), depending on the
value of (b1(t), a(t)).

(2a) If (b1(t), a(t)) causes an OPM transition, then the
prediction of o(t+ 1) made by layer 1 is used as the
prediction of the whole model; M2 does nothing, and
its belief b2(t) remains unchanged (i.e., b2(t + 1) =
b2(t)).

(2b) If (b1(t), a(t)) does not cause an OPM transition,
then the prediction of o(t + 1) made by M1 is
discarded, and the prediction made by layer 2, i.e.,
P 2(b2(t), a2(t)), is used instead, where a2(t) :=
(b1(t), a(t)). Belief b2(t) is updated to b2(t + 1) =
U2(b2(t), a2(t), o(t + 1)) after obtaining the true
observation o(t+ 1).

predicts o(t + 1). We need this assumption because
when (b1(t), a(t)) causes an OPM transition, we adopt
the prediction made by M1 as the prediction of the whole
model (Step (2a) in Algorithm 2). It is easy for M1

to satisfy this assumption, since, by the definition of
OPM transitions, o(t + 1) is uniquely determined when
(b1(t), a(t)) causes an OPM transition.

Using Algorithm 2, perfect prediction can be attained
by M1 and M2, as stated in the following theorem.

Theorem 3. Consider any environment E without ao-
loops and any FSM M1 that correctly predicts o(t + 1)
whenever (b1(t), a(t)) causes an OPM transition. For any
time t after the agent falls into a strongly connected region
of S × B1 of the combined POMDP consisting of E and
M1, there exists an M2 =

〈
B2, A2, O, U2, P 2, b20

〉
that

performs perfect prediction at time t, collaborating with
M1 in the manner described in Algorithm 2.

Proof. See Appendix. �

In the proof provided in Appendix, we prove the
existence of an M2 that performs perfect prediction by
constructing an example.

The above theorem tells us that there exists an M2

that performs perfect prediction, but it does not state
how to learn such an M2. There can be multiple ways
to learn it. In the experiments in Section 5 below,
we used the following method. First, recall that, in
Algorithm 2, M2 must predict the next observation
o(t + 1) when and only when (b1(t), a(t)) does not
cause an OPM transition. Thus, we used the history of
non-OPM transitions, i.e., h′ = (b1ao(t1), b

1ao(t2), . . . ,

606 H. Itoh et al.

b1ao(tn)) of Eqn. (2), as the training data for M2.
At each time ti (i = 1, 2, . . . , n), we want M2 to
correctly predict the next observation o(ti + 1) given
current belief b1(ti), action a(ti), and previous history
(b1ao(t1), b

1ao(t2), . . . , b
1ao(ti−1)). We optimized the

parameters of M2 such that the prediction is correct in as
many time steps as possible. For parameter optimization,
we used a simple gradient ascent method, which is
described in Section 5.2.

4.3. Constructing M3 and higher layers. Constru-
cting an M2 that performs perfect prediction may still be
difficult to accomplish. If necessary, we can add higher
layers M3, M4, and so on. This corresponds to Step 7 of
Algorithm 1.

Let us begin by considering the case of adding M3

on top of M1 and M2. Instead of two FSMs M1 and
M2, we can consider an equivalent single FSM, which
we denote as M1:2. In M1:2, the belief at time t is
b1:2(t) := (b1(t), b2(t)), the space of the belief states
is B1 × B2, the action space is A, the observation
space is O, the belief update and prediction functions are
defined according to Algorithm 2, and the initial belief is
b1:2(t20) := (b1(t20), b

2(t20)).
Adding M3 on top of layers M1 and M2 is

equivalent to adding M3 on top of the single layer M1:2.
Thus, all of the definitions, theorems, and Algorithm 2 of
Section 4.2 above are valid if we replace M1 with M1:2.
Therefore, Steps 2–6 of Algorithm 1 can be repeated
in exactly the same manner, except that b1 and M2 are
replaced with b1:2 and M3, respectively.

In general, adding M l on top of layers M1,M2, . . . ,
and M l−1 is equivalent to adding M l on top of a single
layer M1:l−1 that behaves in exactly the same way as
layers M1,M2, . . . , and M l−1. Given this, Steps 2–6 of
Algorithm 1 can again be repeated in exactly the same
way, except that b1 and M2 are replaced with b1:l−1 and
M l, respectively. This is Step 7 in Algorithm 1.

As stated in the theorem below, we note that if
b1:l−1ao(t) is associated with an OPM transition, then
b1:lao(t) is associated with an OPM transition. Therefore,
when we create layer l, we do not need all time steps of
the recent history h = (b1:l−1ao(t−T +1), b1:l−1ao(t−
T + 2), . . . , b1:l−1ao(t − 1), b1:l−1ao(t)) in Step 2 of
Algorithm 1; time steps that have been judged by lower
layers 1, 2, . . . , and l − 2 to be associated with an OPM
transition can be safely excluded from h. Thus, the history
h for making M l can become much shorter, reducing the
computational time of subsequent Steps 3–5.

Theorem 4. For any environment E and any l ≥ 2, sup-
pose we have FSMs M1,M2, . . . , and M l that are work-
ing as in Algorithm 2. For any time t ≥ tl0, if b1:l−1ao(t)
is associated with an OPM transition, then b1:lao(t) is as-
sociated with an OPM transition.

Proof. See Appendix. �

The main idea of the proof is as follows. We begin
with the case where l = 2. First, we have a bidirectionality
of OPM transitions. That is, for any b1 ∈ B1 and a ∈
A, if (b1, a) causes an OPM transition to b1′, then there
exists an action a′ ∈ A such that (b1′, a) causes an OPM
transition returning to b1. Next, b2(t) does not change
with an OPM transition. From these two facts, we can
prove Theorem 4 for the case of l = 2. For l > 2, we can
prove the theorem by replacing M1,M2, . . . , and M l−1

in the theorem with an equivalent M1:l−1.

4.4. Time complexity. The time complexity of each
step of Algorithm 1 is as follows.

Step 1 of Algorithm 1 can be accomplished by
any method, and the time complexity depends on the
technique used. Step 2 requires O(|h|) time to store the
training data h. Step 3 requires O(|h|) time to count
N(b1, a, o) from h and O(|B1||A||O|) time to determine
whether each (b1, a) causes an OP transition.

There are multiple ways to find the OPM transitions
in Step 4, but the following is one of the easiest. Let
us consider a |B1| × |B1| binary matrix X . First, we
set all the elements of X to 0. Next, for every OP
transition (b1, a) → b1′ found in Step 3, we set the
(b1, b1′)-th element of X to 1. Note that if two beliefs
b1 and b1′ ∈ B1 are mutually observation-predictably
transitionable (Definition 8), then both the (b1, b1′)-th and
(b1′, b1)-th elements of X are set to 1. Using this matrix
X , each OP transition (b1, a) → b1′ is judged to be an
OPM transition if and only if the (b1′, b1)-th element of
X is 1. Since there are at most |B1||A| OP transitions,
if the memory access to each element of X can be done
in a constant time regardless of |B1|, then we require
O(|B1||A|) time for Step 4.

Step 5 requires O(|h|) time because we must
determine whether each element of h is associated with
the OPM transitions.

Step 6 can be implemented using different learning
methods, each of which may have a different time
complexity. Most methods require at least O(|h′|) time
to process the training data h′ (for example, our simple
greedy search method used in Section 5 requires O(|h′|+
|B2||A2||O|) time for each iteration). Thus, it is important
that we keep |h′| small by ignoring the unimportant parts
of h.

To construct higher layers M l (l ≥ 3) in
Step 7, we must repeat Steps 2–6. For layer l, the
time complexities of Steps 2–6 are O(|h|), O(|h| +
|Bl||Al||O|), O(|Bl||Al|), O(|h|), and (at least) O(|h′|),
respectively. Note that Theorem 4 implies that the length
of h for higher layers can be made much shorter than for
layer 1.

Bottom-up learning of hierarchical models in a class of deterministic POMDP environments 607

5. Numerical experiments

5.1. Examples of environments without ao-loops. In
this section, we describe two classes of environments
that have no ao-loops, which we use in the numerical
experiments described in the next section. Note that these
classes are just two examples; there are other classes of
environments without ao-loops.

Example 1. (Two-dimensional grid mazes with special
observations for impossible moves) Let C1 be a class of
environments described as follows. Environment E ∈ C1

is a two-dimensional grid maze environment (e.g., as
shown in Fig. 7(a)). In the maze, the agent can move
via four actions, right, left, up, and down, each of which
brings the agent to an adjacent grid cell. The set of
observations O is divided into two disjoint sets Ostay and
Omove. When the agent takes an action, if the motion
intended by the action is impossible (e.g., moving up from
a cell labeled 1 in Fig. 7(a) is impossible), the agent stays
in the current cell and obtains some observation o ∈ Ostay.
If the motion intended by the action is possible, the agent
moves to the new cell and obtains some observation o ∈
Omove.

Theorem 5. Any environment in C1 does not have an
ao-loop.

Proof. Consider any environment in C1 and any
action-observation sequence q = (a1, o1, a2, o2, . . . ,
an, on) that occurs in the environment. For each action
ai (i = 1, 2, . . . , n) of q, if subsequent observation oi is in
Omove, then we know that the agent’s position is changed
as intended. Conversely, if the subsequent observation
oi is in Ostay, then we know that the agent’s position
is unchanged. Thus, the displacement (Δx,Δy) of the
agent’s position in the maze caused during sequence q is
uniquely determined, regardless of the state in which the
agent is located before q.

Therefore, in any environment in C1, if there are two
different states s and s′ ∈ S and sequence q such that
s →q s′, then we know that (Δx,Δy)
= (0, 0) for q,
which implies that s′ →q s′ is impossible. Thus, there is
no such path s →q s′ →q s′; i.e., there is no 1st-order
ao-loop. Similarly, we can prove that there are no 2nd- or
higher-order ao-loops. �

Example 2. (Two-dimensional grid mazes of Example 1,
with jumps) In grid mazes, let us call a movement to
a non-adjacent cell a jump. Let C2 be another class of
environments described as follows. Environment E ∈ C2

(e.g., as shown in Fig. 8) is the same maze environment as
Example 1, except that the agent can move to non-adjacent
cells under the condition that if taking action a in state s
causes a jump, then the resultant action-observation pair
(a, o), where o = γ(s, a), should be unique to (s, a), that
is, no other state-action pair should result in (a, o).

1 2 3 4 5

6

7

51 2 3 4

6

7

51 2 3 4

1 2 3 4 5

6

7

51 2 3 4

6

7

51 2 3 4

Bldg. 1

Bldg. 2

CW CCW

CCW CWCW CCW

1 2 3 4 5

6

7

51 2 3 4

6

7

51 2 3 4

Bldg. 3

Fig. 8. Environment consisting of three buildings. Each build-
ing is the same as that of Fig. 7(a). The buildings are
arranged in a circle. In addition to the four actions,
right, left, up, and down, there are two actions, which
we call clockwise (CW) and counterclockwise (CCW)
jumps, each of which causes the agent to move to the
neighboring building in the CW and CCW directions,
respectively. These CW and CCW actions are valid only
when the agent is in the bottom-right cell (which repre-
sents the entrance) of each building. After a valid CW
or CCW action, the agent observes the number (i.e., #1,
#2, or #3) of the building to which the agent moved. In
all the other cells, CW and CCW actions are invalid; i.e.,
the agent stays in the same cell and observes “no move.”

Theorem 6. Any environment in C2 does not have an
ao-loop.

Proof. Consider any environment in C2 and any
action-observation sequence q = (a1, o1, a2, o2, . . . ,
an, on) that occurs in the environment. Because of the
condition imposed on the environments in C2, we know
when and from where jumps occur in q. For example, if
(a1, o1) of q is an action-observation pair that is unique to
a jump caused by taking action a1 in some state s, then
we know that a jump occurs in the first time step of q and
that the jump is from the state s.

Let i be the first time step at which a jump occurs
in q (if no jump occurs in q, then the proof of Theorem
5 applies). As mentioned above, we know that the state
s from which the jump occurs at step i is uniquely
determined. In addition, since state transitions before step
i are ordinary (i.e., non-jump) transitions, we know from
the proof of Theorem 5 that the displacement (Δx,Δy)
caused by these transitions is uniquely determined. From
these two facts, we know that the state from which
sequence q starts is uniquely determined.

Therefore, in any environment in C2, there is no
such path s →q s′ →q s′, because in this path q starts
from different states s and s′. Thus, there is no 1st-order
ao-loop. Similarly, we can prove that there is no 2nd- or
higher-order ao-loops. �

608 H. Itoh et al.

0 2 4 6 8

−3

−2

Time (x 104)

L
og

−
L

ik
el

ih
oo

d

layer 1 layer 2

−0.1

−0.05

0

~~

(a)

0 2 4 6 8
0

100

200

300

Time (x 104)

C
PU

 ti
m

e
[s

]

layer 1 layer 2

(b)

Fig. 9. Results of learning a building environment. Each line
shows the average of 20 runs with different random
seeds. Log-likelihood of the prediction of the next ob-
servation o(t + 1); the solid line is the result of using
layers 1 and 2, whereas the broken line is the result of
using only layer 1. Layer 1 learned from t = 0 to 20,000,
and layer 2 learned from t = 20,000 to 60,000. The opti-
mization of U2 and P 2 was performed every 5,000 time
steps. The dotted line is the result of the DBN-based
learning method (Theocharous et al., 2004) (a). Cumu-
lative CPU time spent in each layer; the broken and solid
lines represent the CPU time spent in layers 1 and 2, re-
spectively. The dotted line is the result of the DBN-based
learning method, in which the actual CPU time is 1,500
times longer than that indicated by the dotted line (b).

5.2. Experiments and results. We tested our
bottom-up learning algorithm in two environments.

5.2.1. Four-story building. One environment is the
same as that of Fig. 7(a), except that there are 4 floors
instead of 3 and that in each floor there are 10 cells
instead of 5. The observations obtained in the staircase
cells are 11 and 12 instead of 6 and 7. Thus, we have
|S| = 46, |A| = 4, and |O| = 13 in this environment
(here, we have |O| = 13 because there are 12 observations
obtained after the agent moves to a different cell and 1 “no
move” observation). This environment belongs to class
C1 in Section 5.1; however, the agent is not aware of this

fact. Further, the agent is not given any prior knowledge
regarding which observations are in Ostay or Omove.

We used two layers in this case. For layer 1,
we prepared B1, U1, and b10 such that the observation
obtained after a successful movement directly becomes
the belief (i.e., as shown in Fig. 7(b)). These are prepared
by hand. Layer 1 learned P 1 only.

For layer 2, we used our learning algorithm. We set
b20 = 1 without loss of generality and set |B2| = 4. The
recent history h in Eqn. (1) was prepared by discarding
the initial 1/10 of the entire history from t = 0 to the
current time. For the learning of U2 and P 2 (i.e., Step 6
of Algorithm 1), we used a simple greedy search method.
More specifically, we repeated the following steps until
convergence was achieved: (1) modify U2 by setting a
different value to a parameter of U2, (2) learn P 2 using
the modified U2, and (3) accept (or reject) the modified
U2 if the rate of correct prediction improved (or did not
improve). The parameter to be modified was selected in
turn. In each experiment, this greedy search was carried
out every 5,000 time steps. For each time the search was
carried out, the same search was repeated 10 times with
different initial parameter values in order to (hopefully)
escape local optima.

The results are shown in Fig. 9. The perfect
prediction was achieved by t = 25,000 (Fig. 9(a)). By
t = 25,000, approximately 90 seconds of CPU time were
spent in layer 1 and 30 seconds in layer 2 (Fig. 9(b)). The
CPU time includes both the time spent for learning and
the time spent for prediction. We used an Intel Core i7 3.4
GHz PC. The program was written in MATLAB.

As shown in Theorems 2 and 3, unimportant parts
of the training data can be safely ignored when layer 2
is learning. For example, at time t = 60, 000 in this
experiment (which is the final time step of layer 2’s
learning period), the length of h in Step 2 of Algorithm
1 was 54, 000, because we discarded the initial 1/10 of the
entire history (see Section 4.2.2 for details). In contrast,
the length of h′ in Step 5 of Algorithm 1 was 4, 080± 275
(mean ± standard deviation of 20 runs). Thus, 92.4 ±
0.5% of the training data were safely ignored.

For comparison, we include results of the
well-known DBN-based method (Theocharous
et al., 2004) in Fig. 9. We used the MATLAB code in the
BNT toolbox (Murphy, 2002). Learning was carried out
every 5,000 time steps after t = 20,000; for each time the
learning was performed, the same learning process was
repeated 10 times with different initial values, in order to
(hopefully) escape local optima. Prediction performance
was slightly better than that of layer 1 (Fig. 9(a)); perfect
prediction was not achieved in all of the 20 runs that we
conducted. The log-likelihood at the final time step (i.e.,
t = 80,000) was statistically significantly lower than
that of layer 2 (p < 0.001, t-test) and marginally higher
than that of layer 1 (p = 0.06, t-test). Further, much

Bottom-up learning of hierarchical models in a class of deterministic POMDP environments 609

0 2 4 6 8 10 12

−3

−2

Time (x 104)

L
og

−
L

ik
el

ih
oo

d

layer 1 layer 2 layer 3

−0.1

−0.05

0

~~

(a)

0 2 4 6 8 10 12
0

100

200

300

400

500

600

Time (x 104)

C
PU

 ti
m

e
[s

]

layer 1 layer 2 layer 3

(b)

Fig. 10. Results of learning a 10-building environment: each
line is the average of 20 runs conducted with differ-
ent random seeds. Log-likelihood of the prediction; the
solid line is the result of using all layers 1, 2, and 3, the
broken line is the result of using only layers 1 and 2,
and the dotted line is the result of using only layer 1.
Layer 1 learned from t = 0 to 20,000, layer 2 learned
from t = 20,000 to 60,000, and layer 3 learned from
t = 60,000 to 100,000 (a). Cumulative CPU time spent
in each layer; the dotted, broken, and solid lines repre-
sent the CPU time spent in layers 1, 2, and 3, respec-
tively (b).

CPU time was spent—more than 300,000 seconds by t =
35,000; therefore, we stopped the learning process at t =
35,000. Thus, our method outperformed the DBN-based
approach, at least in this environment. To be fair, we
should note that the DBN-based method is applicable for
learning general stochastic POMDPs. We also note that
there is a possibility that the method can be sped up, as
noted by Wakabayashi and Miura (2012).

5.2.2. Ten four-story buildings. The second
environment is the same multi-building environment as
shown in Fig. 8, except that each building is a four-story
building from Section 5.2.1 above and that there are 10
buildings. Thus, we have |S| = 460, |A| = 6, and
|O| = 23 in this environment (here, we have |O| =

23 because there are 12 within-building observations,
10 building-number observations, and 1 “no move”
observation). This environment belongs to class C2 in
Section 5.1, although this fact is not given to the agent.

We used three layers in this case. Layers 1 and 2 are
exactly the same as those described in Section 5.2.1. For
layer 3, we set b30 = 1 without loss of generality, and we
set |B3| = 10. For the learning of U3 and P 3 (i.e., Step 6
in Algorithm 1), we used the same greedy method as we
did for layer 2.

The results are shown in Fig. 10. Perfect prediction
was achieved by t = 70,000 (Fig. 10(a)). By t = 70,000,
approximately 330 seconds of CPU time were spent by
each of layers 1 and 2, and 80 seconds were spent by
layer 3 (Fig. 10(b)).

Again, as shown in Theorems 2 and 3, unimportant
parts of the training data can be safely ignored when
layer 2 is learning. In this experiment, at time t = 60, 000
(which is the final time step of layer 2’s learning period),
92.2 ± 0.6% of the training data were safely ignored.
Furthermore, as shown in Theorem 4, more of the training
data can be safely ignored when layer 3 is learning. In
this experiment, at time t = 100, 000 (which is the final
time step of layer 3’s learning period), 99.2± 0.1% of the
training data were safely ignored.

Here, we used two “tricks” that made learning more
likely to succeed. Both focus on the learning of layer 2.
The first trick is that, when we carry out the greedy
optimization of U2 and P 2, we try to predict only
observations that occur within the building; when the
observation is a building number (which occurs when the
agent moves from one building to another), we ignore it
by replacing the observation with “no move.” Using this
trick, layer 2 can focus on learning the map within each
building, which indeed resulted in better overall prediction
performance after the learning of layer 3.

The second trick is to try to find M2 such that the
number of possible configurations of (b1(t), b2(t), a(t)) is
minimized. If there are a large number of configurations
of (b1(t), b2(t), a(t)), the learning of layer 3 is difficult.
Thus, keeping the number of configurations small is
important. To find such M2, we compared results of the
greedy optimization of U2 and P 2 (recall that we obtained
10 optimization results using different initial values), and
if there were multiple optimization results with the same
prediction performance, we picked the one that caused the
minimum number of configurations of (b1(t), b2(t), a(t)).

With these two tricks, perfect prediction was
achieved in 20 out of 20 runs; hence, the average
log-likelihood becomes 0 in Fig. 10(a). Without the first
trick, perfect prediction was achieved in 10 out of 20 runs.
Without the second trick, it was achieved in 16 out of 20
runs. With neither of the tricks, it was achieved in 10 out
of 20 runs.

610 H. Itoh et al.

6. Conclusion

In this paper, we proposed a bottom-up learning algorithm
for deterministic POMDPs and proved that the algorithm
learns a perfect model in a class of POMDP environments,
i.e., deterministic POMDPs without ao-loops. We also
empirically demonstrated how a hierarchical model is
learned via the algorithm.

One key improvement for future study is to extend
our learning algorithm to be applicable to more general
POMDPs. To make it useful for environments that have
ao-loops, one possible approach is to use a loop-detection
method. To make the algorithm applicable to probabilistic
POMDPs, one possible approach is to consider learning
approximate models; notions such as approximately OP
transitions may be useful.

Another important focus for future study is to
consider how to efficiently optimize the policy for the
hierarchical model learned by our algorithm. Although
general POMDP solvers could be used for optimization,
there may be a better solver that exploits the fact that
full observability is partly recovered in each layer of the
model.

Acknowledgment

We would like to thank the reviewers for their valuable
comments. Hideaki Itoh wishes to thank Prof. Kiyohiko
Nakamura, Prof. Deb Roy, and Minseok Kim for their
helpful suggestions. This study was partially supported
by the Ministry of Education, Culture, Sports, Science and
Technology in Japan, Grant-in-Aid for Scientific Research
(C) 24500277.

References
Åström, K.J. (1965). Optimal control of Markov decision

processes with incomplete state estimation, Journal of
Mathematical Analysis and Applications 10(1): 174–205.

Barto, A.G. and Mahadevan, S. (2003). Recent advances in
hierarchical reinforcement learning, Discrete Event Dy-
namic Systems 13(4): 341–379.

Bonet, B. (2009). Deterministic POMDPs revisited, Proceedings
of the 25th Conference on Uncertainty in Artificial Intelli-
gence (UAI), Montreal, Canada, pp. 59–66.

Bui, H.H., Phung, D.Q. and Venkatesh, S. (2004). Hierarchical
hidden Markov models with general state hierarchy, Pro-
ceedings of the 19th National Conference on Artificial In-
telligence (AAAI), San Jose, CA, USA, pp. 324–329.

Chang, H.S., Fard, P.J., Marcus, S.I. and Shayman, M. (2003).
Multi-time scale Markov decision processes, IEEE Trans-
actions on Automatic Control 48(6): 976–987.

Charlin, L., Poupart, P. and Shioda, R. (2007). Automated
hierarchy discovery for planning in partially observable
environments, in B. Schölkopf, J.C. Platt and T. Hofmann

(Eds.), Advances in Neural Information Processing Sys-
tems 19 (NIPS 2006), The MIT Press, Cambridge, MA,
pp. 225–232.

Chatzis, S.P. and Kosmopoulos, D. (2014). A
partially-observable Markov decision process for dealing
with dynamically changing environments, in L. Iliadis, I.
Maglogiannis and H. Papadopoulos (Eds.), Artificial In-
telligence Applications and Innovations, Springer-Verlag,
Berlin, pp. 111–120.

Dean, T., Angluin, D., Basye, K., Engelson, S., Kaelbling,
L., Kokkevis, E. and Maron, O. (1995). Inferring
finite automata with stochastic output functions and
an application to map learning, Machine Learning
18(1): 81–108.

Dietterich, T.G. (2000). Hierarchical reinforcement learning
with the MAXQ value function decomposition, Journal of
Artificial Intelligence Research 13: 227–303.

Doshi-Velez, F. (2009). The infinite partially observable Markov
decision process, in Y. Bengio et al. (Eds.), Advances in
Neural Information Processing Systems 22 (NIPS 2009),
Curran Associates Inc., Red Hook, NY, pp. 477–485.

Doshi-Velez, F., Pfau, D., Wood, F. and Roy, N. (2015).
Bayesian nonparametric methods for partially-observable
reinforcement learning, IEEE Transactions on Pattern
Analysis and Machine Intelligence 37(2): 394–407.

Drake, A. (1962). Observation of a Markov Process Through
a Noisy Channel, Ph.D. thesis, Massachusetts Institute of
Technology, Cambridge, MA.

Fine, S., Singer, Y. and Tishby, N. (1998). The hierarchical
hidden Markov model: Analysis and applications, Ma-
chine Learning 32(1): 41–62.

Foka, A. and Trahanias, P. (2007). Real-time hierarchical
POMDPs for autonomous robot navigation, Robotics and
Autonomous Systems 55(7): 561–571.

Gavaldà, R., Keller, P.W., Pineau, J. and Precup, D. (2006).
PAC-learning of Markov models with hidden state, Pro-
ceedings of the 17th European Conference on Machine
Learning (ECML), Berlin, Germany, pp. 150–161.

Heller, K.A., Teh, Y.W. and Görür, D. (2009). Infinite
hierarchical hidden Markov models, Proceedings of the
12th International Conference on Artificial Intelligence
and Statistics (AISTATS), Clearwater Beach, FL, USA,
pp. 224–231.

Hengst, B. (2011). Hierarchical approaches, in M. Wiering and
M. van Otterlo (Eds.), Reinforcement Learning: State of
the Art, Springer-Verlag, Berlin, pp. 293–323.

Hinton, G.E., Osindero, S. and Teh, Y.-W. (2006). A fast
learning algorithm for deep belief nets, Neural Computa-
tion 18(7): 1527–1554.

Hoey, J., Poupart, P., Bertoldi, A., Craig, T., Boutilier, C. and
Mihailidis, A. (2010). Automated handwashing assistance
for persons with dementia using video and a partially
observable Markov decision process, Computer Vision and
Image Understanding 114(5): 503–519.

Bottom-up learning of hierarchical models in a class of deterministic POMDP environments 611

Holmes, M.P. and Isbell Jr., C.L. (2006). Looping suffix
tree-based inference of partially observable hidden state,
Proceedings of the 23rd International Conference on Ma-
chine Learning (ICML), Pittsburgh, PA, USA, pp. 409–416.

Kaelbling, L.P., Littman, M.L. and Cassandra, A.R. (1999).
Planning and acting in partially observable stochastic
domains, Artificial Intelligence 101(1–2): 99–134.

Kolobov, A. (2012). Planning with Markov decision processes:
An AI perspective, Synthesis Lectures on Artificial Intelli-
gence and Machine Learning 6(1): 1–210.

Kołodziej, J., Khan, S.U., Wang, L., Min-Allah, N., Madani,
S.A., Ghani, N. and Li, H. (2011). An application of
Markov jump process model for activity-based indoor
mobility prediction in wireless networks, 9th IEEE Inter-
national Conference on Frontiers of Information Technol-
ogy (FIT), Islamabad, Pakistan, pp. 51–56.

Li, H., Zhao, Q. and Yang, Z. (2007). Reliability modeling of
fault tolerant control systems, International Journal of Ap-
plied Mathematics and Computer Science 17(4): 491–504,
DOI: 10.2478/v10006-007-0041-0.

Lim, Z., Sun, L. and Hsu, D.J. (2011). Monte Carlo value
iteration with macro-actions, in J. Shawe-Taylor et al.
(Eds.), Advances in Neural Information Processing Sys-
tems 24 (NIPS 2011), Curran Associates Inc., Red Hook,
NY, pp. 1287–1295.

Littman, M.L. (1996). Algorithms for Sequential Decision Mak-
ing, Ph.D. thesis, Brown University, Providence, RI.

Mahadevan, S. (1998). Partially observable semi-Markov
decision processes: Theory and applications in engineering
and cognitive science, AAAI Fall Symposium on Planning
with Partially Observable Markov Decision Processes, Or-
lando, FL, USA, pp. 113–120.

Mihalkova, L. and Mooney, R.J. (2007). Bottom-up learning of
Markov logic network structure, Proceedings of the 24th
International Conference on Machine Learning (ICML),
Corvallis, OR, USA, pp. 625–632.

Murphy, K.P. (2002). Representing hierarchical POMDPs
as DBNs, with applications to mobile robot navigation,
www.cs.ubc.ca/˜murphyk/mypapers.html.

Oliver, N., Garg, A. and Horvitz, E. (2004). Layered
representations for learning and inferring office activity
from multiple sensory channels, Computer Vision and Im-
age Understanding 96(2): 163–180.

Oniszczuk, W. (2009). Semi-Markov-based approach for
the analysis of open tandem networks with blocking
and truncation, International Journal of Applied Math-
ematics and Computer Science 19(1): 151–163, DOI:
10.2478/v10006-009-0014-6.

Pineau, J., Montemerlo, M., Pollack, M., Roy, N. and Thrun,
S. (2003). Towards robotic assistants in nursing homes:
Challenges and results, Robotics and Autonomous Systems
42(3): 271–281.

Poupart, P. and Vlassis, N. (2008). Model-based Bayesian
reinforcement learning in partially observable domains,
Proceedings of the 10th International Symposium on Ar-
tificial Intelligence and Mathematics (ISAIM), Fort Laud-
erdale, FL, USA, p. 8.

Rao, V. and Teh, Y. W. (2013). Fast MCMC sampling for
Markov jump processes and extensions, The Journal of
Machine Learning Research 14(1): 3295–3320.

Ross, S., Pineau, J., Chaib-draa, B. and Kreitmann, P. (2011).
A Bayesian approach for learning and planning in partially
observable Markov decision processes, Journal of Machine
Learning Research 12: 1729–1770.

Roy, N., Pineau, J. and Thrun, S. (2000). Spoken dialogue
management using probabilistic reasoning, Proceedings of
the 38th Annual Meeting on Association for Computational
Linguistics (ACL), Hong Kong, China, pp. 93–100.

Rusek, K., Janowski, L. and Papir, Z. (2014). Transient and
stationary characteristics of a packet buffer modelled as an
MAP/SM/1/b system, International Journal of Applied
Mathematics and Computer Science 24(2): 429–442, DOI:
10.2478/amcs-2014-0033.

Sallans, B. (2000). Learning factored representations for
partially observable Markov decision processes, in S.A.
Solla, T.K. Leen and K. Müller (Eds.), Advances in Neural
Information Processing Systems 12 (NIPS 1999), The MIT
Press, Cambridge, MA, pp. 1050–1056.

Shani, G., Brafman, R.I. and Shimony, S.E. (2005).
Model-based online learning of POMDPs, Proceedings
of the 16th European Conference on Machine Learning
(ECML), Porto, Portugal, pp. 353–364.

Spaan, M.T.J. and Vlassis, N. (2005). Perseus: Randomized
point-based value iteration for POMDPs, Journal of Artifi-
cial Intelligence Research 24: 195–220.

Theocharous, G. (2002). Hierarchical Learning and Planning
in Partially Observable Markov Decision Processes, Ph.D.
thesis, Michigan State University, East Lansing, MI.

Theocharous, G. and Mahadevan, S. (2002). Approximate
planning with hierarchical partially observable Markov
decision process models for robot navigation, Proceed-
ings of the 2002 IEEE International Conference on
Robotics and Automation (ICRA), Washington, DC, USA,
pp. 1347–1352.

Theocharous, G., Murphy, K. and Kaelbling, L.P. (2004).
Representing hierarchical POMDPs as DBNs for
multi-scale robot localization, Proceedings of the
2004 IEEE International Conference on Robotics and
Automation (ICRA), New Orleans, LA, USA, Vol. 1,
pp. 1045–1051.

Toussaint, M., Charlin, L. and Poupart, P. (2008). Hierarchical
POMDP controller optimization by likelihood
maximization, Proceedings of the 24th Conference
on Uncertainty in Artificial Intelligence (UAI), Helsinki,
Finland, pp. 562–570.

Wakabayashi, K. and Miura, T. (2012). Forward-backward
activation algorithm for hierarchical hidden Markov
models, in F. Pereira et al. (Eds.), Advances in Neural
Information Processing Systems 25 (NIPS 2012), Curran
Associates Inc., Red Hook, NY, pp. 1502–1510.

White, C.C. (1976). Procedures for the solution of
a finite-horizon, partially observed, semi-Markov
optimization problem, Operations Research
24(2): 348–358.

www.cs.ubc.ca/~murphyk/mypapers.html.

612 H. Itoh et al.

Young, S., Gas̆ić, M., Thomson, B. and Williams, J.D.
(2013). POMDP-based statistical spoken dialog systems:
A review, Proceedings of the IEEE 101(5): 1160–1179.

Youngblood, G.M. and Cook, D.J. (2007). Data mining for
hierarchical model creation, IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part C: Applications and Re-
views 37(4): 561–572.

Youngblood, G.M., Heierman, E.O., Cook, D.J. and Holder,
L.B. (2005). Automated HPOMDP construction through
data-mining techniques in the intelligent environment
domain, Proceedings of the 18th International Florida
Artificial Intelligence Research Society Conference
(FLAIRS), Clearwater Beach, FL, USA, pp. 194–199.

Zamani, Z., Sanner, S., Poupart, P. and Kersting, K. (2012).
Symbolic dynamic programming for continuous state and
observation POMDPs, in F. Pereira et al. (Eds.), Advances
in Neural Information Processing Systems 25 (NIPS 2012),
Curran Associates Inc., Red Hook, NY, pp. 1403–1411.

Hideaki Itoh received the B.E., M.E., and D.E.
degrees in 1997, 1999, and 2002, respectively,
from the University of Tokyo, Japan. After work-
ing as a research associate and as an assistant pro-
fessor at Tokyo Institute of Technology, he trans-
ferred as a lecturer to the Department of Electri-
cal and Electronic Engineering at Saga Univer-
sity in 2009. His research interests include artifi-
cial intelligence and soft computing.

Hisao Fukumoto received the B.E., M.E., and
D.E. degrees in 1997, 1999, and 2002, respec-
tively, from Saga University, Japan. He was a
research associate of the Faculty of Science and
Engineering at Saga University in 2002–2007.
He has been an assistant professor of the Grad-
uate School of Science and Engineering at Saga
University since 2007. His research fields in-
clude image processing, signal processing, and
higher education on engineering based on ad-

vanced computational engineering.

Hiroshi Wakuya received the B.E. degree in
1989 from Kyushu Institute of Technology, Ki-
takyushu, Japan. He obtained the M.E. and D.E.
degrees in 1991 and 1994, respectively, from To-
hoku University, Sendai, Japan. He joined Saga
University, Japan, as a research associate in 1994.
He has been an associate professor of the De-
partment of Electrical and Electronic Engineer-
ing at Saga University since 2002. His research
fields cover biomedical engineering and soft

computing.

Tatsuya Furukawa received the B.E., M.E., and
D.E. degrees in 1979, 1981, and 1987, respec-
tively, from Kyushu University, Fukuoka, Japan.
He joined Nagasaki University, Japan, as a re-
search associate in 1984. He transferred to Saga
University, Japan, as a lecturer in 1986. He has
been a professor at the Department of Electri-
cal and Electronic Engineering at Saga Univer-
sity since 2001. His research fields are power en-
gineering, electric machinery, computer science,

simulation technology, instrumentation technology, and higher educa-
tion on engineering based on advanced computational engineering.

Appendix

In this section, we provide proofs of Theorems 2–4. For
brevity, we write M1’s belief and belief space as b and B,
instead of b1 and B1, respectively.

A1. Proof of Theorem 2

Before proving Theorem 2, we begin with a lemma
regarding bidirectionality of the OPM transitions, as
illustrated in Fig. A1.

Lemma A1. If (b, a) causes an OPM transition to b′,
then there exists an action a′ such that (b′, a′) causes an
OPM transition returning to b.

Proof. Suppose that (b, a) causes an OPM transition to
b′. Then, by the definition of OPM transitions (Definition
9), (b, a) causes an OP transition to b′, and b and b′

are mutually observation-predictably transitionable.
Therefore, by the definition of being mutually
observation-predictably transitionable (Definition 8),
there exists at least one action a′ such that (b′, a′) causes
an OP transition returning to b. This OP transition
is an OPM transition because b and b′ are mutually
observation-predictably transitionable. Therefore, there
exists an action a′ such that (b′, a′) causes an OPM
transition to b. �

Next, we need a definition and a lemma regarding
the extended states. We use the term OPM transition
in the following broader sense: For any action a and
two extended states x = (s, b) and x′ = (s′, b′) such
that x transitions to x′ after action a, we say that (x, a)
causes an OPM transition to x′ when (b, a) causes an
OPM transition to b′.

OPM

b b'
a'

OPMa

Fig. A1. If we have (b, a) →OPM b′, then there exists a′ such
that (b′, a′) →OPM b.

Bottom-up learning of hierarchical models in a class of deterministic POMDP environments 613

s

b

OPM

OPM

OPM

s

b

x-block 1
x-block 2

(a) (b)

Fig. A2. Partitioning the space of extended states (s, b) into
x-blocks. Extended states (©) are connected by
transitions (→); some transitions are OPM (→OPM),
while the others are not (a). Partitioned extended states
(b).

Definition A1. (x-block) Let us consider any strongly
connected region of the combined POMDP consisting of
any environment E and any FSM M1. By drawing all
extended states in the strongly connected region and all
transitions between these extended states caused by every
action a ∈ A, we obtain a transition diagram such as
the one shown in Fig. A2(a). From these transitions,
let us keep the OPM transitions and delete all the other
transitions. Let us ignore the directions of the OPM
transitions. Then, we obtain a connection diagram such
as the one shown in Fig. A2(b). In this connection
diagram, the extended states are partitioned into blocks;
within each block, all of the extended states are connected
by the undirected OPM transitions. We call each block an
extended-block, or x-block for short.

Lemma A2. Consider any environment E without ao-
loops and any FSM M1. For any two extended states
(s, b) and (s′, b′) within any x-block of the combined
POMDP consisting of E and M1, we have s
= s′ ⇒
b
= b′.

Proof. We prove this by contradiction. Assume that, in an
x-block of the combined POMDP, there are two extended
states,

x1 = (s1, b) and x2 = (s2, b), where s1
= s2. (A1)

Note that x1 and x2 have different states s1 and s2 ∈ S
and common belief b ∈ B.

First, let us consider the case in which there is a path
or an action-observation sequence q that we can follow
from x1 to x2 via OPM transitions (Fig. A3).

Let the sequence of actions along path q be denoted
by qa, and the resultant observation sequence by qo.
That is, if q = (a1, o1, a2, o2, . . . , an, on), then qa =
(a1, a2, . . . , an) and qo = (o1, o2, . . . , on). Suppose that
the agent in x2 takes the same action sequence qa. Then,
by the definition of OPM transitions, the same observation
sequence qo is obtained; hence, the agent goes to some

s1

b
OPM

s2

x1 x2

OPM

OPM

an x-block

Fig. A3. Case in which there is a path that we can follow from
x1 to x2 by OPM transitions, where x1 and x2 are
defined in Eqn. (A1).

OPM

xA

xB

s

b

Fig. A4. OPM transition from xA to xB .

extended state whose belief is b. We denote this extended
state as x3 = (s3, b).

Here, x3 cannot be identical to x2, because if s3 =
s2, then it is implied that a 1st-order ao-loop s1 →q s2
→q s2 exists, and this contradicts the supposition that
environment E has no ao-loops. Similarly, x3 cannot be
identical to x1, because if s3 = s1, it is implied that a
2nd-order ao-loop s1→q s2→q s1 exists, which again is a
contradiction. Thus, x3 is not identical to either x1 or x2.

Therefore, x1, x2, and x3 are all different from one
another. Suppose that the agent in x3 takes the same
action sequence qa. Then, again by the definition of OPM
transitions, the same observation sequence qo is obtained,
and the agent goes to some extended state x4 = (s4, b).
Here, x4 cannot be identical to x1, because if s4 = s1,
it is implied that a 3rd-order ao-loop exists, which is a
contradiction. Similarly, x4 cannot be identical to x2 or
x3. Thus, x4 is not identical to any of x1, x2, or x3.

Therefore, x1, x2, x3, and x4 are all different
from one another. After repeating this, we find that
x1, x2, x3, . . . , and x|S|+1 (all of them have common
belief b) are all different from one another, where |S| is
the number of states of environment E. However, since
there are only |S| states in environmentE, it is impossible
that x1, x2, x3, . . . , and x|S|+1 are all different.

Therefore, we conclude that there is no such path that
we can follow from x1 to x2 by OPM transitions (*).

We can also conclude, however, that there is a path
that we can follow from x1 to x2 by OPM transitions. To
prove this, we begin by proving that, for any two different
extended states xA and xB , if there is an OPM transition
from xA to xB (as illustrated in Fig. A4), then there is an

614 H. Itoh et al.

OPM transition from xB back to xA.
The proof is as follows. Suppose that there is an

OPM transition from xA = (sA, bA) to xB = (sB , bB). It
follows that there is an action a such that (bA, a) causes an
OPM transition to bB . Thus, from Lemma A1, there exists
an action a′ such that (bB, a′) causes an OPM transition to
bA. Therefore, there is at least one OPM transition from
xB to an extended state whose belief is bA. We denote
this extended state as xC = (sC , bA). Here, if xC
= xA,
then we can go from xA to xC(
= xA) by OPM transitions
through xB ; however, going from xA to xC(
= xA) by
OPM transitions is impossible, which can be proven using
the same technique as for (*). Thus, we have xC = xA,
which means that there is an OPM transition from xB to
xA. Therefore, we have proven that if there is an OPM
transition from xA to xB , then there is an OPM transition
from xB to xA.

Thus, OPM transitions between extended states are
bidirectional. From the definition of x-blocks, we
know that any two extended states within an x-block
are connected by OPM transitions whose directions are
ignored. Because of this and the bidirectionality of OPM
transitions, we conclude that there is a path that we can
follow from x1 to x2 by OPM transitions (**).

Since (*) and (**) contradict each other, our initial
assumption is false. �

Given this lemma, it is easy to prove Theorem 2,
which we restate here, omitting superscripts of b1 and B1.

Theorem A1. (Theorem 2 restated) Consider a com-
bined POMDP consisting of any environment E without
ao-loops and any FSM M1. After the agent falls into
a strongly connected region of S × B of the combined
POMDP, if there is any time period t1 ≤ t ≤ t2 such
that every bao(t), t ∈ [t1, t2], is associated with an OPM
transition, then for any ti and tj ∈ [t1, t2 + 1] we have
s(ti)
= s(tj) ⇒ b(ti)
= b(tj).

Proof. Since every bao(t), t ∈ [t1, t2], is associated with
an OPM transition, the extended state remains located
within a single x-block from t = t1 to t2 + 1. Therefore,
from Lemma A2, we know that for any ti and tj ∈
[t1, t2 + 1], if s(ti)
= s(tj), then b(ti)
= b(tj). �

A2. Proof of Theorem 3

Here we restate Theorem 3, omitting superscripts of b1

and B1.

Theorem A2. (Theorem 3 restated) Consider any envi-
ronment E without ao-loops and any FSM M1 that cor-
rectly predicts o(t + 1) whenever (b(t), a(t)) causes an
OPM transition. For any time t after the agent falls into
a strongly connected region of S × B of the combined
POMDP consisting of E and M1, there exists an M2 =〈
B2, A2, O, U2, P 2, b20

〉
that performs perfect prediction

at time t, collaborating with M1 in the manner described
in Algorithm 2.

Proof. Consider any strongly connected region of S ×B
of the combined POMDP consisting of any environment
E without ao-loops and any FSM M1. Since S and B are
both finite sets, there are a finite number of x-blocks in
this region. Let the number of x-blocks be N . Next, let
us arbitrarily assign a number from 1 to N to each of the
x-blocks, avoiding repetition. Then, we can enumerate the
x-blocks as the 1st x-block, 2nd x-block, . . ., i-th x-block,
. . ., and N -th x-block. In this proof, we call the assigned
number the index of the x-block, and we use i as the
variable that represents the index.

Consider a function f that maps extended state (s, b)
to (i, b), where i is the index of the x-block in which
(s, b) is located. This function f is invertible; i.e., there
exists f−1 such that f−1(i, b) = (s, b). Invertibility holds
because for any x-block i and any belief b, we know from
Lemma A2 that inside the i-th x-block there is only one
state s that can co-occur with b.

Using f , we can construct an M2 that performs
perfect prediction at time t in collaboration with M1,
where t is any time after the agent falls into the strongly
connected region of S × B. In what follows, we describe
how to construct such M2. Note that the M2 which we
construct below is such that its belief b2 is always identical
to the index of the x-block in which the agent is located.

First, let B2 be the set of indices {1, 2, . . . , N}. As
stated in Section 3.3.3, let A2 be the set of possible values
of (b, a), and O be the set of possible observations. Let t20
(i.e., the initial time of M2) be the time to perform perfect
prediction, and let b20 be the index of the x-block in which
the agent is located at time t20.

Next, let us constructU2 and P 2 as follows. Suppose
that, at time τ (≥ t20), the agent is in the i-th x-block with
its layer 1’s belief being b. The state s at time τ is uniquely
determined by f−1(i, b).

The first case we consider is when the agent takes
action a such that (b, a) does not cause an OPM transition.
After action a is taken, the state s is changed to s′ =
δ(s, a), and the agent observes o′ = γ(s, a), by which
layer 1’s belief b is changed to b′ = U1(b, a, o′). Thus,
both s′ and b′ are uniquely determined from i, b, and a.
Therefore, the new x-block i′ in which the agent is located
after taking action a is also uniquely determined from i, b,
and a. This implies that there exists a function U2 that
maps (i, (b, a), o′) to i′. With this U2, layer 2’s belief b2

is always identical to the index of the x-block in which
the agent is located. In addition, if we set P 2 to be the
function that maps i and (b, a) to o′, then observation o′ is
correctly predicted by P 2.

The other case is when the agent takes action a such
that (b, a) causes an OPM transition. In this case, by
definition, the agent remains in the same i-th x-block.

Bottom-up learning of hierarchical models in a class of deterministic POMDP environments 615

Since M2’s belief b2 is not changed (i.e., Step (2a) of
Algorithm 2), if b2 is identical to i before taking the action,
then b2 remains identical to i after the action. The fact
that layer 2 does not make a prediction causes no problem
because observation o′ is correctly predicted by layer 1.

Thus, we can construct at least one M2 by which
perfect prediction is achieved. �

A3. Proof of Theorem 4

Proof. Consider the case when l = 2. In this proof, we
denote each value of b1:2ao(t) as b1, b2, a, and o; i.e., we
let (b1, b2) := b1:2(t), a := a(t), and o := o(t). Suppose
that b1ao(t), or equivalently (b1, a, o), is associated with
an OPM transition. Let M1’s belief after the transition be
b1′ = U1(b1, a, o).

First, since M2’s belief b2 is not changed when
(b1, a) causes an OPM transition (i.e., Step (2a) of
Algorithm 2), and since every OPM transition is an
OP transition, we know that ((b1, b2), a) causes an OP
transition to (b1′, b2) (*).

Next, we know from Lemma A1 that, since (b1, a)
causes an OPM transition to b1′, there exists at least one
action a′ such that (b1′, a′) causes an OPM transition
to b1. Since M2’s belief b2 is not changed when
(b1′, a′) causes an OPM transition, and since every OPM
transition is an OP transition, we know that there exists at
least one action a′ such that ((b1′, b2), a′) causes an OP
transition to (b1, b2). Given this and (*), we know that
(b1, b2) and (b1′, b2) are mutually observation-predictably
transitionable (**).

Because of (*) and (**), we know that b1:2ao(t) is
associated with an OPM transition. Thus, the theorem is
proven for the case of l = 2.

For l > 2, we can prove the theorem in the same
way as for l = 2, except that we need to use M1:l−1

instead of M1, where M1:l−1 is a single FSM that
works equivalently to layers M1,M2, . . . , and M l−1 (see
Section 4.3 for details regarding this technique). �

Received: 24 April 2014
Revised: 29 November 2014
Re-revised: 30 January 2015

	Introduction
	Related work
	Problem setup
	Environment
	Goal of learning
	Agent
	Layer 1
	FSM can perform perfect prediction
	Layer 2 and higher

	Bottom-up learning algorithm
	Making M1
	Adding M2 on top of M1
	Overview
	Discarding ignorable parts
	Optimization of M2

	Constructing M3 and higher layers
	Time complexity

	Numerical experiments
	Examples of environments without ao-loops
	Experiments and results
	Four-story building
	Ten four-story buildings

	Conclusion
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

