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Adversarial decision making is aimed at determining strategies to anticipate the behavior of an opponent trying to learn from
our actions. One defense is to make decisions intended to confuse the opponent, although our rewards can be diminished.
This idea has already been captured in an adversarial model introduced in a previous work, in which two agents separately
issue responses to an unknown sequence of external inputs. Each agent’s reward depends on the current input and the
responses of both agents. In this contribution, (a) we extend the original model by establishing stochastic dependence
between an agent’s responses and the next input of the sequence, and (b) we study the design of time varying decision
strategies for the extended model. The strategies obtained are compared against static strategies from theoretical and
empirical points of view. The results show that time varying strategies outperform static ones.
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1. Introduction

Adversarial reasoning is largely about understanding the
minds and actions of one’s opponent. It is relevant to
a broad range of problems where the actors are actively
and consciously contesting at least some of each others’
objectives and actions (Kott and McEneany, 2007). The
field is also known as decision making in the presence of
adversaries or adversarial reasoning.

The threat of terrorism has fueled the investments
and interest in the development of computational tools
and techniques for adversarial reasoning, mostly oriented
to homeland defense, but it is possible to envisage less
dramatic applications in computer games, where the
user is the adversary and the computer characters are
provided with adversarial reasoning features in order to
enhance the quality, difficulty and adaptivity of the game,
which together improve the gaming experience. The
development of intelligent training systems is also an
interesting field.

More than twenty years ago, Thagard (1992) stated
that in adversarial problem solving, one must anticipate,
understand and counteract the actions of an opponent.
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Military strategies, business, and game playing all require
an agent to construct a model of an opponent that includes
the opponent’s model of the agent.

1.1. Related work. In the context of this contribution,
adversarial decision making is modeled as an imitation
game played by two agents, S and T , each of which
chooses an action to respond to an external event, without
knowing the choice of the other. Each of the agents
receives a payoff that depends on the choices of both
of them. When the same conflicting situation arises
many times (i.e., repeated encounters), the decision
making process becomes more difficult as the participants
have the possibility to learn the other’s strategy. The
more frequently T guesses S’s response, the smaller
the payoff S receives. The goal of agent S is thus to
maximize the total payoff attained after a sequence of
encounters. Examples of this type of imitation games
can be found in the military field, but also in problems
of real-time strategy games, government vs. government
conflicts, economic adversarial domains, team sports
(e.g., RoboCup), competitions (e.g., poker), etc. (Kott
and McEneany, 2007). Teaching and learning by imitation
has been recently applied to develop automatic car driving

{pjvi,dpelta}@decsai.ugr.es


618 P.J. Villacorta and D.A. Pelta

controllers in video-games (Cichosz and Pawełczak,
2014).

A key aspect of the aforementioned situation is the
fact that agent T , who is trying to learn what action S
will select at each moment given each of the external
events, does not know S’s motivations to choose each
of the actions available. In other words, T does not
have access to the payoff attained by S for each possible
outcome. Hence, the only information T can use to
predict S’s response consists of the observations collected
about S’s behavior in the past. Contrarily, S is aware
of the existence of an adversary aimed at learning its
behaviour, so it knows T will receive a payoff only
when its prediction matches S’s action. Therefore, the
information is clearly asymmetric in this problem.

Existing works on imitation games (McLennan and
Tourky, 2006; 2010a; 2010b) usually focus on theoretical
aspects of these games with complete information, such
as complexity issues (imitation games are proved to be
as complex as any general bi-personal game) and the
equivalence of the computation of optimal solutions to
the game, i.e., Nash equilibria, with other problems such
as proving Kakutani’s fixed-point theorem (McLennan
and Tourky, 2006). However, none of these works take
into account incomplete information based merely on
observations, like we will do in our model.

1.2. Game-theoretical considerations. In the model
outlined above, we analyze decision making strategies for
S in a context of repeated encounters against T . One
defense is to make decisions that are intended to confuse
T , although S’s rewards can be diminished. However, this
situation is of upmost interest in the case of adversarial
reasoning as what agent S wants is to make its behavior
as uncertain or unpredictable as possible. In other words,
S wants to force the presence of uncertainty in order to
confuse the adversary while its payoff is as less affected
as possible. Essentially, this is how S can defend against
an opponent who is trying to learn S’s decision rules.

Game theory is generally perceived as a natural
choice to deal with adversarial reasoning problems, and
is particularly appealing to model direct competitive
interactions between two agents, like the one described
above. Randomized strategies play a fundamental role
in game theory and have been extensively studied.
A brief survey of techniques where the combination
of game theory with other approaches is highlighted,
jointly with probabilistic risk analysis and stochastic
games, is presented by Kott and McEneany (2007).
Other direct examples that demonstrate in which sense
adversarial reasoning in general and game theory in
particular have been successfully used in real problems
are the so-called security games (Tambe, 2012; Paruchuri
et al., 2008; Amigoni et al., 2009). These models are
aimed at designing randomized strategies to defend an

area (sometimes an airport, a perimeter and the like)
against an adversary who first studies and learns the
defender’s strategy. Such models bear a clear resemblance
to the adversarial reasoning model described in this
contribution.

The type of interaction we are modeling has some
characteristics that make it different from usual games.
First, one of the agents does not know the payoff attained
by the adversary for each possible outcome. This makes
the traditional equilibrium to mixed strategies (Osborne
and Rubinstein, 1994) unfeasible since agent T cannot
compute its equilibrium strategy. Second, since the
interaction is repeated, both agents are expected to use
a randomized strategy to keep the adversary guessing,
and avoid easy learning of its actions. One might be
tempted to analyze the situation as a leader–follower
game, where S would play the role of the leader due
to the strategic advantage of having more information
about the payoffs than the opponent, and T would be
the follower. However, this approach is not appropriate
because S does not explicitly announce its strategy to
T , and therefore there is no explicit commitment like in
true leader–follower situations (Conitzer and Sandholm,
2006). The only information T has about S’s strategy
consists of empirical observations collected in the past,
and they may be (intentionally) deceptive. Assuming T is
aware of this, it would be unsafe for it to interpret them
as if they were reflecting S’s strategy. In other words,
the commitment of S is not reliable, and thus it is not
a true leader–follower situation because the follower T
will not trust the leader’s pseudo-commitment (Conitzer
and Sandholm, 2006). More details on game-theoretic
considerations can be found in the work of Villacorta et al.
(2013).

1.3. Aims and contribution. In a previous work
(Pelta and Yager, 2009), a model to study the balance
between the level of confusion induced and the payoff
obtained was proposed. The main conclusion of such a
study was that one way to produce uncertainty is through
decision strategies for S that contain a certain amount of
randomness. Here we focus on how to design decision
strategies that can be used by S in situations of repeated
conflicting encounters. Villacorta and Pelta (2012) show
how theoretical expressions can predict the expected
payoff attained by one of the agents when using certain
simple strategies, while Villacorta et al. (2013) analyze a
situation that is simpler than the one presented here. The
main difference with the model we will develop here is
that, in the study of Villacorta et al. (2013), the outcome
of an encounter does not affect the payoff attainable at
the next encounter, thus the model did not consider the
existence of different kinds of events.

The aim of this paper is twofold. First, we present
an extension to the original model in which statistical
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dependence is introduced between the action taken by
agent S and the next event to arise. This is an important
issue the agents should take into account before making a
decision, because the action selected will have influence
over the next event to arise at the next encounter, and
such an event determines the maximum payoff attainable
when the agents choose their actions. Second, decision
strategies for agent S that are not constant along time
but change at certain time steps in the iterated process
are proposed for this extended model. More specifically,
we tackle strategy design as a constrained non-linear
optimization problem whose solution gives both the exact
moment at which agent S must switch its strategy, and
which strategy it must use. The work departs from the
results shown by Villacorta and Pelta (2011) as well as
Villacorta et al. (2013), who developed such an idea on a
model with no statistical dependence between the events
and the actions.

In connection with the aforementioned objectives,
the experiments we will conduct are aimed at answering
the following questions:

1. Is there any substantial difference between the
theoretical expected payoff and the average payoff
attained by empirical simulations in the extended
model?

2. Do dynamic mixed strategies outperform a static
mixed strategy in terms of the expected payoff in the
extended model?

3. How are dynamic strategies affected by the number
of different periods employed?

The remainder of the work is organized as
follows. Section 2 describes the main characteristics
and components of the model used, including the novel
mechanism of statistical dependence between an action
and the next input. Section 3 deals with the need for
randomized strategies, both static and dynamic. The
analytical expression of the expected payoff attained by
S when using both the kinds of strategies is given and
explained in detail, and the need for an optimization
process for determining the best parameters in this
expression is motivated. In Section 4 we describe the
computational experiments performed and the results
obtained. Finally, conclusions and further work are
discussed in Section 5.

2. Adversarial model

We will first introduce the original adversarial model,
and after that we will extend it by adding a statistical
action–event dependence. The model we are dealing with
was presented by Pelta and Yager (2009) and consists of
two agents S and T (the adversary or imitator), a set of
possible inputs or events E = {e1, e2, . . . , en} issued

Agent S

Agent T

Payoff Calc.
p’= pijF(aj,ag) 

aj

guess = ag

reward = p’

Agent R

ei

record pair (ei ,aj)

aj

Fig. 1. Graphical representation of the model.

by the external environment (represented as a third agent
R), and a set of potential responses or actions A =
{a1, a2, . . . , am} that can be chosen as a response to an
event (see Fig. 1). The payoff function for agent S can be
expressed as a matrix P :

P (n×m) =

⎛
⎜⎜⎜⎜⎜⎝

p11 p12 . . . p1m
p21 p22 . . . p2m
p31 p32 . . . p3m

...
...

. . .
...

pn1 pn2 . . . pnm

⎞
⎟⎟⎟⎟⎟⎠

,

where pij is the reward attained by S when choosing
action aj to respond to event ei. This matrix is only known
by S.

The agents repeatedly engage in a conflict situation.
At each encounter, the agents issue responses to an
external event ei which is stochastically generated as
explained in Section 2.1. Agent S chooses an action aj
as a response to this event, taking into account the payoff
matrix P . Its aim is to maximize the accumulated reward
after a sequence of encounters. At the same time, agent
T tries to guess the action S will choose, possibly using
information about S’s past responses to the same event.
As a result of the agents’ decisions, a payoff is assigned to
them, as follows. If T ’s guess ag matches S’s action, then
T receives 1 and S receives 0, i.e., S gets no reward each
time T successfully guesses its choice. Otherwise, T gets
0 and S gets pij . This can be expressed as

p′ = pij ·F (ag, aj), (1)

where

F (a, b) =

{
0 if a = b,
1 otherwise.

Note that the above payoff scheme entails that no
partial similarity between the actions is allowed: T ’s
prediction either matches S’s action (and T gets 1 point)
or not (and T gets 0 points), but no partial matching is
possible.

After each encounter, agent T is informed of what
S had chosen. In our model, we assume T stores this
information in an observation matrix On×m, where oij
stands for the number of times that, in the past, agent S
has selected action aj as a response to event ei. T records
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Algorithm 1. Sequence of steps in the model.
for l = 1 to L do

A new input ei arises.
Agent T “guesses” an action ag, applying some
decision strategy
Agent S determines an action aj , applying its own
decision strategy
Calculate the payoff for S as indicated in Eqn. (1)
Agent T records the pair ei, aj

end for

a new pair (ei, aj) by increasing the entry oij by 1. As
mentioned before, this information can be used by T for
future predictions. Algorithm 1 describes the steps of the
model,L being the length of the sequence of inputs, which
we assume known in advance by both agents.

2.1. Statistical dependence between events. In the
original model (Pelta and Yager, 2009) the events coming
from the environment were independent and randomly
generated following a uniform probability distribution.
Independence means there is no relation between the
current event, the current response and the next event.
Uniformly generated events means that, every time an
event is going to be generated, all of them are equally
probable. Notice that considering other probability
distributions different from the uniform one would not
change the methodology of the existing works about this
model (Villacorta and Pelta, 2012; 2011; Villacorta et al.,
2013). It just would require to repeat the experiments and
adjust the results, but the conclusions of such works do not
depend on the probability distribution employed because,
in the model considered so far, the agents’ decisions have
no influence on the forthcoming events, and therefore
the agents do not need to include any information about
the event probabilities in their decision strategies. Up to
now, the probability distribution of the events has been
considered an external, inalterable constraint.

However, extending the model by introducing
statistical dependence between the events of consecutive
stages is a different matter. We can think of several kinds
of dependence. The first one is the dependence between
the event of one stage and that of the next stage. The
question is, if this information is useful for an agent in
any way. In other words: before giving a response to
the current event, is it relevant for the decision maker
to know (in a probabilistic sense) which event will arise
next? The answer is no, because every time an event
arises the agent should try its best, disregarding the next
event since it will not be affected by the current decision.
With this kind of dependence, we would be in the same
setting mentioned above, i.e., it would be equivalent to
considering no dependence at all from the agents’ point of
view.

The second type of dependence is that between the
action taken in the current stage by one or both agents
and the next event to arise. That is why an arrow labeled
aj (action taken by S) goes from the agents back into
the environment (agent R) in Fig. 1. This setting will be
analyzed in the remainder of our study as it has interesting
implications. The most important is that, before making
a decision for the current event, an agent should consider
that its choice will affect not only the immediate payoff of
the current stage but also the maximum payoff attainable
in the next stage, since not all the events offer the same
range of payoffs. Such a consideration captures the fact
that some events may be rare or critical, so they provide
very high payoffs when the response is chosen properly,
while some others are less important, so they provide very
low payoffs regardless of the action chosen. With this in
mind, now a good action is not just the one that provides a
high payoff for the current event (immediate payoff) but
also causes events with very high rewards1 to be more
likely to arise at the next stage.

In our model, we introduce dependence only between
the action chosen by agent S and the next event to
arise. We assume that the information of such stochastic
dependence is available only to agent S, in the form of a
conditional probability matrix C with dimensions m × n
shown below:

C(m× n)

=

⎛
⎜⎜⎜⎝

P [X = e1|Y = a1] . . . P [X = en|Y = a1]
P [X = e1|Y = a2] . . . P [X = en|Y = a2]

...
. . .

...
P [X = e1|Y = am] . . . P [X = en|Y = am]

⎞
⎟⎟⎟⎠ .

The value Cij stands for the conditional probability
P [X = ej|Y = ai], so

∑
j P [X = ej|Y = ai] =

1 for every row i = 1, . . . ,m. In this expression,
X is the discrete random variable representing the next
event arising, and Y is the discrete random variable
representing the current action taken by agent S that, as
will be explained, is based on a randomized behavior rule.
Finally, let (π1, . . . , πn) be the probabilities of each event
to arise at the first step of the simulation. We cannot
give conditional probabilities in this case as there is no
previous action. For our experiments, we will take such
probabilities as uniform, πi = 1/n for i = 1, . . . , n.

3. Behavior of the agents

In the next subsections, we provide alternatives for
modeling the behavior of both agents.

3.1. Strategies for agent T . Different strategies for T
were proposed by Pelta and Yager (2009). One possible

1Those for which the values of the corresponding row of the payoff
matrix are all large.
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strategy is the so-called most frequent (MF), where agent
T selects the action ag that has been most frequently used
by S in the past when the event was ei. This strategy
is clearly unsafe because S could exploit it by avoiding
consecutively selecting the same action twice.

Another strategy for T performing reasonably well
is called proportional to frequency (PF): the probability
of selecting an action aj as a prediction to event ei is
proportional to Oij (the observed frequency from agent
S) (Pelta and Yager, 2009). This strategy is randomized
so it keeps S guessing during all the iterations. Although
more sophisticated strategies for T may be investigated in
the future, we will assume in the remainder of the work
that T uses this strategy.

From now on, we will focus our discussion on the
behavior of agent S.

3.2. Static mixed strategy for agentS. AgentS could
use a totally deterministic strategy that always selects the
action with the highest payoff as a response to the current
stimulus ei. However, this would be very easy to learn
for agent T , who would quickly predict this behavior
correctly after a low number of games. S could also
employ a totally random strategy that would select an
action in a totally random way. This behaviour would
be very hard to learn from observations but, on the other
hand, the payoff attained would be low because bad
actions (i.e., those with a low the payoff) may be selected
with the same probability that best actions.

A need exists here to get for a good balance between
confusion and payoff, as concluded by Pelta and Yager
(2009). Our objective now is to calculate the expected
payoff of new strategies.

We now borrow some concepts from game theory to
explain how the agents behave. A randomization over the
existing actions (responses) is called a mixed strategy. It
is a set of weights representing a probability distribution
over the actions (i.e., the sum of the weights is 1). When
a player has to choose an action, it uses this probability
distribution to make its decision. In our model, we are
interested in the best randomization, or in other words,
the set of weights that lead to the highest payoff when
playing against agent T . To be precise, we will consider
that an agent uses a specific mixed strategy (αi1, . . . , αim)
for each event ei, so it maintains n different strategies and
uses one of them according to the event ei for which it
must issue a response.

With these weights, it is possible to calculate the
so-called expected payoff for agent S, which is the sum
of all the possible outcomes of the game weighed by
the probability that each outcome eventually occurs. In
the adversarial model we are dealing with, this means
that we can weigh each payoff of the payoff matrix
P by the probability that agent S eventually gets that
payoff. This probability can be computed as the product of

the probabilities of several independent events happening
simultaneously. Agent S will attain payoff pij if three
conditions hold:

(i) Event ei must arise. We will refer to this probability
as P [I = ei]. In this case, I is the discrete random
variable representing the occurrence of each event at
the current stage.

(ii) Assuming that event ei has arisen, agent S must
select action aj as a response. We will note this
probabilityαij but can be formally written as P [Y =
aj |I = ei].

(iii) Finally, S will only get the score pij if agent T does
not successfully predict its response.

The probabilities involved in condition (ii) constitute
the mixed strategy we are searching for. The calculation
of the probability of conditions (i) and (iii) is described
below.

Condition (i): Marginal probability of an event. first
of all, recall that we had previously defined another
random variable X that represents the occurrence of each
event at the next stage. When the simulation advances
one step, P [I = ei] adopts the value of P [X = ei]
computed in the preceding step, for i = 1, . . . , n. Notice
that we are not given the probability distribution of I ,
so the values P [I = ei] have to be computed using the
known conditional probabilites of matrix C and the mixed
strategy of S mentioned in (ii).

Actually the only data we have about the marginal
probabilities P [I = ei] of the occurrence of the external
events are those of the first step of the game, P1[I =
ei] = πi. Recall that the decisions of agent S influence
the marginal probabilites, and such decisions are modeled
by the mixed strategy (αij , j = 1, . . . ,m) it employs for
each event ei. If we apply the theorem of total probability
to the first step, we have

P1[Y = aj ] =
∑
i

P [Y = aj |I = ei]P1[I = ei]

=
∑
i

αijπi, j = 1, . . . ,m.
(2)

The subscript of P indicates the step to which it
is referred. Once those values are known, they can
be substituted in the following expression, which results
from applying again the theorem of total probability since
[Y = aj], j = 1, . . . ,m constitute another partition of the
sample space:

P1[X = ei] =
∑
j

P [X = ei|Y = aj ]P1[Y = aj ]

=
∑
j

CjiP1[Y = aj ], i = 1, . . . , n.
(3)
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Now, the values P1[X = ei], i = 1, . . . , n, can be taken
as the values P2[I = ei]. The probability that an event
arises at the next step when the current step is number 1
is equivalent to the probability that an event arises at the
current step if the current step is number 2. Then, since the
values P2[I = ei], i = 1, . . . , n, are known, they can be
used to compute the same probabilities at Step 2, applying
the same expressions indicated above. In general, the
following equations can be applied recursively for k ≥ 2:

Pk[Y = aj ] =
∑
i

P [Y = aj |I = ei]Pk[I = ei] (4)

=
∑
i

αijPk−1[X = ei], j = 1, . . . ,m,

Pk[X = ei] =
∑
j

P [X = ei|Y = aj ]Pk[Y = aj ]

=
∑
j

CjiPk[Y = aj ], i = 1, . . . , n, (5)

Pk[I = ei] = Pk−1[X = ei].

Condition (iii): Probability of not being guessed.
Assume agent S is using a mixed strategy so that it
employs αij to select the action aj with payoff pij .
Assume that agent T uses strategy PF, and let us suppose
that a certain event ei has arisen Li times during the
repeated game. Then action aj will have been selected Li

· αij times, and this number is what agent T has recorded
in Oij . The probability that T selects action aj as a
prediction using PF is then

Pguessij =
Oij∑m
j=1 Oij

=
Li·αij

Li
= αij , (6)

with m being the number of actions available. Actually
the value Li is unknown as it depends on the sequence
of decisions made by S, but in the last expression it
is simplified and eventually disappears. Therefore the
probability of not being guessed correctly is 1 − Pguess =
1− αij .

Expected payoff with static mixed strategies. Using
the probabilities of the three conditions described above,
the expected payoff for agent S after a sequence of L
inputs when it uses weights α = (αij) to select its actions
has the following expression:

EPstatic(α) =

L∑
k=1

n∑
i=1

Pk[I = ei]

m∑
j=1

αij(1− αij)pij .

(7)
Notice that the probability that each event arises evolves
along time because it also depends on the choices made
by agent S.

Optimal strategy maximizing the expected payoff. If
we want to maximize the expected payoff, we have to
maximize expression (7) by computing the values of
the optimal weights αij . This leads to an optimization
problem with m × n variables since agent S uses a
different mixed strategy for each event (each strategy
having m variables) and there are n different events. It
can be expressed as

max
{αij}

⎧⎨
⎩

L∑
k=1

n∑
i=1

⎛
⎝Pk[I = ei]

m∑
j=1

αij(1 − αij)pij

⎞
⎠
⎫⎬
⎭

(8)
subject to

m∑
j=1

αij = 1, i = 1, . . . , n,

αij ≥ 0, i = 1, . . . , n, j = 1, . . . ,m. (9)

Recall that agent S, which is interested in solving the
problem to get the maximum reward, must know in
advance the number of repetitions or steps L that the game
will have, and should be aware that T will use PF as
well. If the value of L is unknown, the agent will have
to estimate it somehow. The optimization problem should
include all the terms of expression (7) that depend on the
values αij . Since the probabilitesPk also depend on them,
they must be part of the target function to be maximized.

3.3. Dynamic mixed strategy for agent S. In the
previous section we described a static strategy for agentS.
It was static in the sense that the same set of weights was
used during the game. We now propose changing these
weights along time. Although this concept was introduced
by Villacorta and Pelta (2011) as well as Villacorta et al.
(2013), the application to the extended model requires
the calculation of new expressions to predict the payoff
attained by S.

First, we define a period as a series of consecutive
inputs for which S will use the same weights to answer.
The static mixed strategy described above can be viewed
as a single period, because the weights computed by S do
not change along time. Now the idea is to define several
periods and calculate the optimal mixed strategy for every
period. The length of a period is the duration of the period,
i.e., the number of events during which agent S will use
the same mixed strategy. In order to gain flexibility and
achieve a higher reward, we can define a different number
of periods of different length for each event. We will call
Nh

i the length of the h-th period of event ei.
The next example illustrates this concept. Suppose

that we have an input sequence of length L and that a
given event ei is expected to arise Li = 100 times along
the sequence. Then, we can define, for instance, 4 periods
of lengths N1

i = 30, N2
i = 10, N3

i = 20 and N4
i = 40.
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Fig. 2. Example of different periods for each event in a model instance with 4 different events. The letters inside each rectangle
represent the length of that period and the mixed strategy to be used in it.

For a given period, the set of optimal weights is different
from that of other periods because the distribution of the
payoffs in a row of the payoff matrix may differ a lot
from other rows. Figure 2 shows another example of
different dynamic mixed strategies for each event, with
a different number of periods and/or different moments
of change. The length of the whole input sequence is
L = 1000. Suppose there exist n = 4 different kinds
of inputs in our model and m = 4 different actions, so a
mixed strategy is a vector of 4 weights. If the inputs are
uniformly distributed, then each event is expected to arise
about 250 times, so the sum of the lengths of the periods
for any event should be 250.

In order to calculate the best randomization under
this scenario, we need to obtain the expression of the
expected payoff for a dynamic strategy. The basics to
obtain the expected payoff are again premises (i), (ii)
and (iii) stated in Section 3.2, as explained next. Some
new issues have to be taken into account to address the
dynamic situation with statistical dependence.

Estimation of the number of occurrences of an event.
Before computing the probabilities of conditions (i) and
(iii), recall that in the dynamic case the number Li of
occurrences of an event is unknown and depends on the
sequence of decisions made by S. We are able to compute
only the marginal probability Pk[I = ei] of each event at
step k. However, that information, together with the total
number of steps L of the game, is enough to estimate Li,
since Li =

∑L
k=1 Pk[I = ei]. In general, let Lk

i be the
estimated number of times event ei has arisen after k steps
of the game, which can be computed as

Lk
i =

k∑
t=1

Pt[I = ei]. (10)

Since this is an estimation based on probabilities, it is
expected to be a real (not integer) value. However, this
number will be used as a summation limit in the next
section, so in that case it has to be rounded to the nearest
integer.

Condition (i): Marginal probability of an event.
From now, we will focus only on one single event ei. Let
(αh

ij)j=1,...,m be the set of weights agent S uses to choose
an action as a response to an input of type ei during the
h-th period. Then, within a given period, αh

ij represents
the probability that S selects action aj when event ei has
already arisen, also expressed as P h[Y = aj |I = ei].
The novel part is that the values P h[Y = aj |I = ei]
are different from one period h1 to another h2, but the
calculation method is the same as described in Eqns. (4)
and (5). In this case, we must be careful to substitute
the adequate values of P h[Y = aj |I = ei] according
to the period h to which step k (of the Pk[Y = aj ] being
computed) belongs. In a more formal way, Eqn. (4) can
be rewritten to consider a distinct mixed strategy for each
period as follows:

Pk[Y = aj ]

=
∑
i

PHi(k)[Y = aj|I = ei]Pk[I = ei]

=
∑
i

α
Hi(k)
ij Pk−1[X = ei], j = 1, . . . ,m.

(11)

Function Hi maps an absolute step k : 1 ≤ k ≤ L to the
period h whose set of weights (αh

ij)j=1,...,m must be used
to issue a response within the dynamic strategy for event
ei. It is based on the estimation of the number of times
that ei has arisen after k − 1 steps as follows:

Hi(k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if Lk−1
i < N1

i ,
2 if N1

i ≤ Lk−1
i < N1

i +N2
i ,

3 if N1
i +N2

i ≤ Lk−1
i < N1

i +N2
i +N3

i ,
...

The above changes only affect the computation of
the estimated number of times each event arises along the
simulation, see (10).

Condition (iii): Probability of not being guessed. This
is the only part from our previous results (Villacorta
and Pelta, 2011; Villacorta et al., 2013) that remains
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unchanged so the explanations of this section can also be
found in those works. The difficult part of the expression
we need involves the computation of the probability of
not being guessed. After the first period of length, say,
N1

i , the observation matrix O has the following values in
row i (representing absolute frequencies of the responses
given in the past by S to inputs of type ei):

T (n×m) =

⎛
⎝

. . . . . . . . . . . . . . . . . . . . . . .
N1

i ·α1
i1 . . . N1

i ·α1
im

. . . . . . . . . . . . . . . . . . . . . . .

⎞
⎠ .

The probability of not being guessed PNG during the
first period is (1-α1

ij), according to the same explanation
as given in Section 3.2. This reasoning becomes more
complicated when considering row i of the observation
matrix at the end of the second period, whose length is
N2

i :

T (n×m)

=

⎛
⎝

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
N1

i α
1
i1 +N2

i α
2
i1 . . . N1

i α
1
im +N2

i α
2
im

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⎞
⎠ .

According to the values of the former matrix after 2
periods, the probability at the end of the second period
that agent T selects action aj as a prediction is

Pguessij =
Oij∑m
j=1 Oij

=
N1

i α
1
ij +N2

i α
2
ij

N1
i +N2

i

,

so the probability of not being guessed at the end of the
second period is

PNGij = 1− Pguess =
N1

i (1 − α1
ij) +N2

i (1− α2
ij)

N1
i +N2

i

.

What happens in between, i.e., during the second
period? The probability of not being guessed changes at
every step because the number of times each response has
been observed by T varies along time. This variation can
be modeled as follows. At a certain step s of the second
period (s is measured from the beginning of the period,
so 0 ≤ s ≤ N2

i , with N2
i being the length of the second

period), the probability that T correctly predicts response
j to event i is

Pguessij =
Oij∑m
j=1 Oij

=
N1

i α
1
ij + sα2

ij

N1
i + s

,

and the probability of not being guessed is then

PNGij = 1− Pguess =
N1

i (1 − α1
ij) + s(1− α2

ij)

N1
i + s

.

As stated before, notice that this probability changes
at every step within a period. Now, it is possible to

generalize this reasoning to obtain the probability of not
being guessed at step s of the h-th period (0 ≤ s ≤ Nh

i ):

PNGij =

∑h−1
k=1 N

k
i (1− αk

ij) + s(1− αh
ij)∑h−1

k=1 N
k
i + s

. (12)

If we want to express such a probability as a function
of the number t of times that event ei has arisen, we can
rewrite the above expression as follows:

PNGij (t)

=

∑Ui(t)−1
k=1 Nk

i (1− αk
ij) + Yi(t)(1 − α

Ui(t)
ij )

t
, (13)

Ui(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if t < N1
i ,

2 if N1
i ≤ t < N1

i +N2
i ,

3 if N1
i +N2

i ≤ t < N1
i +N2

i +N3
i ,

...

Yi(t) = t−
Ui(t)−1∑
k=1

Nk
i .

FunctionUi maps the number of occurrences of event
ei (including the present one) to the period whose weights
should be used at the current stage, according to the
dynamic strategy for event ei. It is similar to the function
Hi defined in the previous section, but its argument is not
a step of the simulation but the number of times event ei
has arisen. It is basically a formalism, rather than a true
mathematical function. Similarly, function Yi computes
the number of times that event ei has arisen during the cur-
rent period of the dynamic strategy, which is equivalent
to the value of s in expression (12). In other words, it
is the number of occurrences of ei, but counted from the
beginning of the current period.

Expected payoff with dynamic mixed strategies. The
expression of the total expected payoff with dynamic
strategies is shown below. It is a generalization of (7),
using (13) as the probability of not being guessed. The
marginal probabilities of each event Pk[I = ei] explained
in the previous section do not appear explicitly in this
expression, but recall that the estimates Li depend on such
probabilities:

EPdyn((α
h
ij), (N

h
i ))

=

n∑
i=1

�Li�∑
k=1

m∑
j=1

α
Ui(k)
ij ·PNGij (k)· pij . (14)
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Optimal strategy maximizing the expected payoff.
Recall that the values Li ultimately depend on the values
αh
ij . If we want to maximize the expected payoff

according to this expression, the optimization problem
must contain all those unknown weights simultaneously.
The number of periods Hi of a dynamic strategy is not
part of the optimization process and must be set by the
user. For simplicity, we will consider that number to be
the same for all events, so Hi = H for all i = 1, . . . , n.
The length of the periods for strategy i should equal the
number of times that each event ei is expected to arise,
Li:

∑Hi

h=1 N
h
i = Li, i = 1, . . . , n. These should

be additional constraints in the optimization process that
will be carried out to determine the optimal values of the
weights αh

ij and the periods Nh
i that we are searching.

With this approach, the number of unknown
parameters is greater than that of static mixed strategies.
Instead of computing only m × n weights, we have
to compute H sets of weights per event, and all these
variables are related because they mutually influence
the probabilities of the events that will arise, so the
problem cannot be broken down into smaller optimization
problems as proposed by Villacorta and Pelta (2011). In
total, the problem being solved has (n×m×H)+(n×H)
unknown variables. In this sum, the first product is
the number of weights αh

ij . A dynamic strategy has H
periods, and there are m weights in each period. Since we
allow more flexibility, S maintains a different strategy for
each event so there are n independent dynamic strategies
with H ×m weights each. The second product represents
the lengths of the periods, which are positive integers.
Recall that the optimal length Nh

i of every period is
being optimized, and there are H periods in each of the
n dynamic strategies used by S. The problem is thus a
non-linear mixed optimization one. The above summation
yields 120 unknown real variables for a simple instance of
our adversarial model with m = 5 actions, n = 5 events
and dynamic strategies with H = 4 different periods,
which means that the complexity of the problem makes
it hard to solve using exact mathematical optimization
methods. Formally, the optimization problem can be
described as

max
{αh

ij∪Nh
i }

⎧⎨
⎩

n∑
i=1

�Li�∑
k=1

m∑
j=1

α
Hi(k)
ij ·PNGij (k)· pij

⎫⎬
⎭ (15)

subject to

m∑
j=1

αh
ij = 1, i = 1, . . . , n, h = 1, . . . , H,

αh
ij ≥ 0, i = 1, . . . , n, j = 1, . . . ,m,

h = 1, . . . , H

H∑
h=1

Nh
i = Li, i = 1, . . . , n.

Recall that

Li =
L∑

k=1

Pk[I = ei], i = 1, . . . , n.

4. Experiments and results

The experiments we conducted are aimed at answering the
following questions:

1. Is there any substantial difference between the
theoretical expected payoff and the average payoff
attained by empirical simulations?

2. Do dynamic mixed strategies outperform a static
mixed strategy in terms of the expected payoff?

3. How are dynamic strategies affected by the number
of different periods employed?

In order to answer these questions, we follow the next
steps.

Model configuration. The parameter configuration of
the model instance that has been used in the empirical
evaluation of strategies was the following:

• number of events and actions: n = m = 5,

• length of the input sequences: L = 500,

• matrix of conditional probabilities:

C =

⎛
⎜⎜⎜⎜⎝

0.2 0.5 0.15 0.1 0.05
0.4 0.1 0.25 0.05 0.2
0.15 0.2 0.4 0.1 0.15
0.1 0.1 0.2 0.5 0.1
0.3 0.4 0.3 0 0

⎞
⎟⎟⎟⎟⎠

.

Payoff matrices. 15 different matrices were tested. For
each matrix, a set of m payoffs is defined, and every row
of the matrix has a permutation of the same set. The
payoffs of every matrix are summarized in Table 1. The
rest of the rows of each matrix are different permutations
of the set displayed in the table. An extra column is
shown, containing the maximum total payoff attainable
by S after 500 events if it always chooses the action with
the largest payoff and is never guessed. This is the ideal
situation that would only occur when there is no adversary,
so it is taken as a reference.
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As can be seen in the table, the matrices are
characterized by an increasing difference between the
payoff attained when choosing the best action, the
second-best action, and so on. When this difference
is big, it becomes much more important to achieve
a good balance between the payoff attained and the
confusion caused, since choosing low payoff actions to
induce confusion leads to a great loss in the payoff when
compared with the greatest-payoff action.

Table 1. Set of payoffs associated with each payoff matrix.
Payoff First row Max. reward
matrix after 500 ev.

M1 1 0.9 0.95 0.8 0.85 500
M2 0.8 0.9 0.6 0.7 1 500
M3 1 0.85 0.7 0.4 0.55 500
M4 1 0.6 0.8 0.4 0.2 500
M5 0.25 0.01 0.5 1 0.75 500
M6 1.1 0.95 0.9 1.05 1 550
M7 1.2 1 1.1 0.9 0.8 600
M8 1.3 1 1.15 0.85 0.7 650
M9 1.2 1.4 1 0.8 0.6 700
M10 1.5 1 0.75 1.25 0.5 750
M11 0.8 0.6 0.4 1.5 1 750
M12 0.8 0.6 0.4 1.75 1 875
M13 0.8 0.6 0.4 2 1 1000
M14 0.8 0.6 0.4 2.25 1 1125
M15 0.8 0.6 0.4 2.5 1 1250

Evaluation of a strategy. When a strategy is evaluated
empirically, Algorithm 1 is run 100 independent times
and the payoff attained by S is annotated. This value is
transformed into a percentage over the maximum payoff
attainable in one 500-event execution (see Table 1). The
average of such percentages is taken as the empirical
payoff of the strategy.

Optimization algorithm. An important point is the
optimization method employed to solve the problems
formalized in (8) and (15). A 4-period dynamic mixed
strategy in an adversarial model with n = 5 events and
m = 5 actions has 120 variables (100 real numbers
representing the weights of the strategies at each period,
and 20 integer values representing the lengths of the
periods for each event) to be optimized. This represents
a very hard optimization problem, so we have made use
of a heuristic optimization method called differential evo-
lution (DE) because it is particularly well suited for real
optimization. A lot of variants of DE have been proposed
since it was first introduced by Storn and Price (1997)
as well as Price et al. (2005). We have employed an
enhanced auto-adaptive variant called self-adaptive DE
(SADE (Qin et al., 2009)), which shows specially good
performance in high-dimensionality problems. We used a

Java implementation that is freely available2 and has been
already used in machine learning studies that ultimately
require real optimization (Triguero et al., 2011). No
formal study has been conducted to tune the parameters
of the algorithm but some preliminary experiments led to
the following values:

• crossover operator: binomial crossover,

• crossover probability: 0.5 for static strategies and 0.9
for dynamic strategies,

• scaling factor: 0.5 for both static and dynamic
strategies,

• population size: 50,

• number of iterations: 50000.

In order to answer the first question asked at the
beginning of this section, it is necessary to evaluate
empirically and theoretically one (or more) mixed strategy
and check that both results match. We could pick any
arbitrary strategy for this, but we decided to employ the
strategies obtained after applying a basic DE optimization
algorithm. The steps were the following:

1. For each payoff matrix, run a fast, basic DE twice
(once to get an optimized static strategy and once
more to get a 4-period dynamic strategy) with the
above parameters. As a result, we get 15 optimized
static strategies and 15 optimized dynamic strategies.
Since the only goal here is to compare the expected
payoff with empirical values, it is not important to do
several independent runs of the optimization process.

2. Evaluate every strategy theoretically, applying
expressions (7) or (14) as required if the strategy is
static or dynamic. As a result, we get 15 expected
payoff values corresponding to static strategies and
15 values corresponding to dynamic strategies.

3. Evaluate every strategy empirically by running
Algorithm 1 100 independent times. The total payoff
is annotated after each run, and the mean of the
100 resulting values is taken as the empirical payoff
of the strategy. As a result, we get 15 empirical
payoff values corresponding to the static strategies
and another 15 corresponding to dynamic strategies.

4. Compare the expected and empirical payoff every
strategy to check the differences and the variability.
Recall that the expected payoff indicates the average
behavior, and that is why several independent runs
are required when empirically evaluating a strategy.

2http://sci2s.ugr.es/EAMHCO/src2/advancesDEs.zip.

http://sci2s.ugr.es/EAMHCO/src2/advancesDEs.zip
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Fig. 3. Empirical (gray boxes) and expected payoff (lines out-
side the boxes) for every payoff matrix using the opti-
mized static and dynamic strategies. Values expressed as
percentages over the maximum possible. Data of the em-
pirical payoff after 100 runs are depicted in gray boxes
while the expected payoff is represented by lines outside
the boxes. Static mixed strategies (a), 4-period dynamic
mixed strategies (b).

Figures 3(a) and 3(b) show a comparison of the expected
and empirical payoff of the static and dynamic mixed
strategies found in Step 1. The comparison was done as
indicated in Step 4. The plots confirm an almost perfect
matching between the expected and the empirical average
payoff attained.

In the case of dynamic strategies, one of the most
difficult parts is the correct estimation of the number
of occurrences of each event. These values were also
annotated in the simulations of the optimized 4-period
dynamic strategies, in order to contrast them with the
theoretical estimation. The results are displayed in
Fig. 4, which only shows 4 of the 15 payoff matrices
(M1,M5,M10 and M15) because the results on the others
are analogous. An almost perfect matching was achieved
between the expected and the empirical average number
of events of each type.
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Fig. 4. Number of occurrences of each event during a 500-step
simulation with 4-period dynamic strategies for 4 of the
payoff matrices. Empirical (gray boxes) and expected
values (lines outside the boxes) after 100 independent
runs with each payoff matrix. M1 (a), M5 (b), M10 (c),
M15 (d).

4.1. Static vs. dynamic strategies: Performance
comparison. We now analyze the performance of both
static and dynamic mixed strategies by comparing their
expected payoff to answer the second question asked
above. For this experiment, the strategies tested are
the best ones obtained for each payoff matrix after 5
independent runs of the SADE optimization algorithm.
The results are shown in Table 2 and Fig. 5.

Table 2. Payoff attained by static and dynamic strategies found
by SADE, as a percentage over the maximum.

Strategy: M1 M2 M3 M4 M5 M6 M7 M8

Static 72.5 65.4 59.3 54.6 50.7 73.2 67.6 63.4
Dyn H = 4 73.0 67.0 62.0 57.6 53.5 73.7 68.9 65.5

Strategy: M9 M10 M11 M12 M13 M14 M15

Static 60.1 55.9 50.6 46.7 43.8 41.6 39.9
Dyn H = 4 62.6 58.2 54.4 51.4 49.0 47.6 46.2

The most important conclusion from this figure is
the following. In all the payoff matrices tested, the
optimal 4-period dynamic mixed strategy consistently
outperformed the optimal static strategy. The differences
are statistically significant (p = 6.1 × 10−5) at any
significance level according to a paired Wilcoxon signed
rank test with the two samples of Table 2 (the samples are
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Fig. 6. Improvement achieved with dynamic mixed strategies for different numbers of periods. Average results over 5 independent
runs of the SADE optimization algorithm for each payoff matrix. L = 500 steps (a), L = 1000 steps (b).
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Fig. 5. Expected payoff of the best static and 4-period dynamic
strategies found by SADE in 5 independent runs. Values
expressed as percentages over the maximum possible.

paired due to the payoff matrices they share). Recall that
each value of the table does not come from a simulation
but from a prediction made using the expressions, so it
is not influenced by random factors apart from the payoff
matrix generated for each scenario. Notice that the greater
gain in performance was achieved in matrices M11 to
M15, which are those where the highest payoff is much
greater than the rest. This is a particularly encouraging
result for problems in which it is very important to do the
best action as many times as possible because its payoff is
much greater than that of the rest of the alternatives.

4.2. On the influence of the number of peri-
ods. In order to provide insights into the impact the
number of periods of a dynamic mixed strategy has
over the performance, an experimental sampling with
different number of periods was done. Again, the SADE
optimization algorithm was run 5 times independently to
find a dynamic strategy with a fixed number of periods,

and the average of the best solutions found in the 5 runs
was annotated. This was repeated for H ∈ {1, 2, 4, 6, 10}
in two different contexts: one with L = 500 steps and one
with L = 1000 steps, in order to assess how the number
of steps affects the conclusions. The improvements for
each payoff matrix with respect to the optimal static mixed
strategy (H = 1) are displayed in Fig. 6.

Figure 6(a) shows that increasing the number of
periods causes a severe improvement at the beginning,
but becomes less pronounced after 4 periods, reaching
its maximum at 10 periods. This means that using more
than 4 periods hardly enhances performance. Therefore
our choice of H = 4 was a good one to show the
benefits of the dynamic strategies approach (although
some additional gains are also observed for up to 10
periods). Further, it is confirmed once again that dynamic
mixed strategies provide a higher improvement when
applied to more difficult payoff matrices. For instance,
M15 is the most difficult one and where the improvement
is the largest, followed by M14 and M13. The same
happens for matrices M5, M4 and M3, and also for M10,
M9 and M8.

In Fig. 6(b) the trend is similar, but the improvement
is gradual and continues growing until reaching 20 periods
(although the gain when moving from 15 to 20 is quite
small). Since 1000 steps are being considered here, we
can expect that there is more room for improvement using
more periods because there is more time available to
switch to a new strategy. Intuitively, this should be done
when T has learnt S’s strategy and can no longer be
deceived, except by switching to a new set of weights.

Notice that the optimal value of H also depends on
the length of the simulation, since it is necessary to play
a given strategy for long enough (before switching to a
different one) in order to cause the intended manipulation,
reflected in how agent T ’s observation matrix changes.
For this reason, the improvement is small after H = 4
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and stops at H = 10 when the number of steps is 500,
but keeps growing gradually until H = 20 when 1000
steps are played. The trend of Fig. 6(b) also confirms
that SADE still works well when increasing the number of
unknowns, as additional gains are achieved with H = 15
and H = 20 in several cases, provided that the simulation
is long enough. Therefore, the little and subsequently no
improvement at all after H = 10 in Fig. 6(a) is due to
the number of steps of the simulation (too short for using
strategies with more than 10 periods), and not to a failure
of the optimization process.

5. Conclusion and further work

An extension to an existing adversarial model was
proposed consisting in introducing statistical dependence
between actions and the next event. Static and dynamic
mixed strategies for an agent in this extended model
were successfully designed using heuristic optimization
methods. Analytical expressions of the expected
payoff for both strategies were provided and validated
also from an empirical point of view. The design
of good strategies was tackled as a non-linear mixed
optimization problem and solved using heuristic
techniques. Furthermore, dynamic mixed strategies
found by the SADE optimization algorithm showed to
outperform the best static mixed strategies found by the
same algorithm in all the scenarios tested, especially
when the difference between the payoff of the best action
and the payoff of the rest of actions becomes greater. All
of these results are encouraging.

Further work on this topic will include investigating
expressions that do not depend on the prior knowledge
of an external parameter about the game that is to be
played (in this case, the length of the input sequence), and
also more complex time varying strategies that take into
account some on-line conditions of the current state of the
game. Other interesting aspects of the model concerning
practical issues of the applicability of these strategies,
such as establishing minimum thresholds for the payoff
or studying to what extent such a variance in the results
can be accepted in a real situation, will be addressed too.
On-line learning mechanisms for agent T might also be
investigated.
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