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The paper discusses the complex, agent-oriented hierarchic memetic strategy (HMS) dedicated to solving inverse paramet-
ric problems. The strategy goes beyond the idea of two-phase global optimization algorithms. The global search performed
by a tree of dependent demes is dynamically alternated with local, steepest descent searches. The strategy offers excep-
tionally low computational costs, mainly because the direct solver accuracy (performed by the hp-adaptive finite element
method) is dynamically adjusted for each inverse search step. The computational cost is further decreased by the strategy
employed for solution inter-processing and fitness deterioration. The HMS efficiency is compared with the results of a stan-
dard evolutionary technique, as well as with the multi-start strategy on benchmarks that exhibit typical inverse problems’
difficulties. Finally, an HMS application to a real-life engineering problem leading to the identification of oil deposits by
inverting magnetotelluric measurements is presented. The HMS applicability to the inversion of magnetotelluric data is
also mathematically verified.
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1. Introduction

Inverse problems form an important area of contemporary
research related to fundamental problems in science and
engineering. Among its numerous applications one
can find non-invasive geophysical exploration, tumor
characterization, and analysis of unknown materials.

Parametric inverse problems are usually formulated
as optimization ones, where the objective is to minimize
the misfit between the simulated and measured forward
solutions. When solving such problems, one usually
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faces some significant obstacles such as ill-conditioning,
existence of multiple local minima (multi-modality), and
possibly low regularity of the misfit functional. All
of them significantly reduce the usefulness of convex
optimization methods (such as gradient-based ones), as
well as simple stochastic mechanisms (Monte Carlo and
simple evolutionary schemes) because of

• the lack of guarantee of finding all solutions,

• enormous computational cost.

The main goal of this work is to obtain a global
inverse solver capable of finding many global and/or local
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solutions (misfit minima) with a satisfactory accuracy and
an acceptable computational cost. In order to achieve this
goal, the paper combines several different ideas: the hi-
erarchic genetic strategy (HGS) (see, e.g., Schaefer and
Kołodziej, 2003; Wierzba et al., 2003) to decrease the
cost of the main part of a global search (which consists of
finding the basins of attraction), cluster-based fitness de-
terioration (see, e.g., Beasley et al., 1993; Obuchowicz,
1997; Wolny and Schaefer, 2011), memetic algorithms
(see, e.g., Neri et al., 2012) composing various techniques
into a single population-based stochastic strategy in order
to gain efficiency and flexibility, and the evolutionary
multi-agent system (EMAS) (see, e.g., Cetnarowicz et al.,
1996), allowing more flexible, asynchronous processing
and easy embedding of local convex searches. The work
presented in this paper is an extension of the hybrid
model involving the global genetic search phase followed
by the local gradient phase, as applied for the inverse
resistivity logging measurement simulations with direct
current electrodes (Gajda-Zagórska et al., 2015), as well
as for the identification of the Young modulus for imprint
nanolithography (Barabasz et al., 2014).

The proposed strategy develops dynamically a tree
of dependent populations (demes) searching with various
levels of accuracy that grow from the root to the
leaves. Two types of individuals are utilized: passive
individuals, containing candidate solutions only, and
active individuals, consisting of computational software
agents. Both active and passive individuals are gathered
in demes governed by structural agents assigned to
the nodes of the population tree. Demes of passive
individuals are traditionally evolved by using common
selection and genetic operators. Active individuals
(agents) compete inside a deme one with another to
perform their actions producing offspring agents with
genotypes determined by traditional genetic operators or
by a convex optimization process. The search accuracy
is that associated to the solution of direct problems using
an hp-adaptive finite element method (hp-FEM), where h
(height) refers to the element size, and p to the polynomial
order of approximation, which can be adapted/modified
throughout the computational grid (Demkowicz, 2006).

The low computational cost is obtained primarily
by an economical global search performed by the tree
of demes, because the more detailed local searches
are activated mainly in the promising regions found
by the parental populations. The total number of
individuals is significantly lower than in the case of the
traditional, single population evolutionary search. The
main computational cost decrement is achieved via the
common inverse and forward error scaling, i.e., the
rough global search is performed with a low misfit
accuracy whereas the accuracy increases in the refined
searches performed by branches and leaves. Such a
policy minimizes the number of expensive hp-FEM solver

calls, which are necessary for accurate misfit evaluation.
Finally, the agent-oriented architecture based on the
EMAS idea allows economic and flexible invocation
of local gradient methods at least once for a single
solution and only if they outperform the stochastic search.
Moreover, the agent-based architecture facilitates parallel
evolution of deme populations.

We have verified our strategy by a series of
benchmark problems that mimic the optimization
landscape obtained in real-life inverse problems. The first
phase of benchmark tests leads to establishing the set of
the strategy’s parameters that assure its most economic
operation. In the second phase, we compare results of our
proposed strategy with those of other global optimization
methods executed using a comparable budget (computer
resources). In this paper, we compare the HMS with two
standard global optimization methods, i.e., the simple
evolutionary algorithm (SEA) and multi-start. We have
already performed a benchmark-based comparison with a
version of the HGS (Smołka and Schaefer, 2014).

We conclude the paper with the application of
our agent-based system to solve an inverse problem
consisting in identifying the resistivity of the underground
formation by using magnetotelluric measurements. The
magnetotelluric (MT) method is a passive electromagnetic
(EM) exploration technique which allows us to determine
the resistivity distribution in the subsurface of the area
of interest on scales varying from a few meters to
hundreds of kilometers. Commercial applications include
hydrocarbon, geothermal, underground water monitoring,
and, more recently, monitoring CO2 sequestration in
the subsurface. The method does not require artificial
power sources. Instead, natural power sources are used
to induce the phenomena. These natural sources are
nothing but electric currents within the ionosphere created
by deformations of the magnetosphere. The motivation
for the choice of the MT problem was the detection of
several local minima in an MT inversion performed by
means of a classical gradient method (Álvarez-Aramberri
et al., 2013).

The results of all comparative tests show a much
higher quality and number of extremes found by the
proposed agent-based system than by other reference
methods. Single population evolutionary algorithms
are able to find only a single solution within the
assumed budget. A multi-start method, which consists in
parallel execution of local gradient-type methods from a
number of random starting points, cannot in general find
satisfactory solutions, because within the assumed budget
only a small number of local processes can be invoked.

The paper concentrates on the algorithmic aspects of
the HMS, so we do not discuss implementation-related
issues here. Some notes on a sample implementation can
be found in the work of Smołka and Schaefer (2014) and
we refer the interested reader there.
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2. HMS architecture

The main idea of the HMS is to provide a global
optimization tool especially suited for solving difficult
inverse problems. The considered problems are difficult
because of their inherent multi-modality accompanied
by the nontrivial computational cost of direct problem
solution, which is necessary for evaluating the objective
that is the misfit between the observed and computed
values of a quantity of interest. Nevertheless, inverse
problems have also some advantageous features. First,
their theoretical global minimum value is well known
(and equal to zero). Although in practice this theoretical
value is never attained because of noise, modeling errors,
etc., we know at least that the objective function is
bounded from below by zero and that its takes values
close to this bound. This knowledge can be used, e.g.,
in the construction of stopping conditions for stochastic
evolution. Second, in some important cases, the cost of the
direct problem solution can be modulated by an assumed
accuracy of the solution: it is the case of hp-FEM direct
solvers (Demkowicz et al., 2007).

As a global optimization tool, the HMS tries
to combine the high-level exploratory ability with the
accuracy and efficiency of a local optimization method.
In contrast to two-phase methods in which local searches
are executed right after the completion of the global
phase, the HMS follows the overall idea of memetic
algorithms, i.e., it intermixes local-optimization-oriented
mechanisms into a global stochastic search machinery.
The global part follows the multi-population evolutionary
approach introduced by the HGS (Schaefer and Kołodziej,
2003). Namely, the global search is performed by
a collection of genetic populations. The populations
can evolve in parallel, but they are not mutually
independent. The structure of the dependency relation
is hierarchical (i.e., tree-like; see Fig. 1) with a
restricted number of levels. The HGS proved to have

Level 1
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Level 3

root deme

branch demes

leaf demes

U1

genetic spaces

low accuracy

high accuracy

U2

U3

Fig. 1. HGS-like evolutionary population tree.

considerable exploratory capabilities together with a good
search accuracy, especially with floating-point phenotype
encoding (Wierzba et al., 2003). The HMS naturally
tries to retain these abilities while going beyond the
HGS in some aspects. First of all, it adds local
optimization to the set of operations applied to the genetic
individuals. But this is performed carefully in order

to avoid the premature population convergence on the
one hand and high cost of running instances of a local
method from inappropriate points on the other. Namely,
some genetic individuals (but not necessarily all of them)
receive an identity and some intelligence, hence becoming
independent agents in a multi-agent system (MAS). The
decision of performing the local search becomes their
own responsibility. Moreover, the demes are managed
by special controller agents. The idea of turning a
passive genetic individual into an intelligent agent has
some further consequences. We have to redefine the
genetic operations in such a way that they can be applied
to agents. While it is straightforward for the mutation
and the crossover (although in this case a new agent is
activated), the selection cannot be performed in the simple
genetic (or evolutionary) way. Instead, we follow the
lines of the EMAS (Cetnarowicz et al., 1996; Byrski
et al., 2013), thus performing an operation analogous
to the tournament selection but realized as a two-agent
rendezvous.

In the sequel, we shall present the structure of the
HMS starting with a description of HMS agent types.

2.1. HMS agent types. The main HMS agent types
along with their interrelations are shown in Fig. 2. The
Master Agent (MA) is a global system coordinator.
Deme Agents (DAs) manage evolutionary populations
at various levels of the deme tree. DA specializations
differ primarily in the type of population they can
own. Evolutionary Agents (EAs) hold simple passive
collections of chromosomes, whereas Local Agents
(LAs) coordinate groups of Computational Agents (CAs).
Any CA, apart from holding an immutable genotype,
can perform one of the available actions, such as
local optimization method execution. The primary
responsibility of the Objective Agent (OA) is objective
computation, which typically involves calling an external
direct problem solver. In the following, we provide
detailed descriptions of HMS agent types.

MasterAgent

ObjectiveAgent
cache

DemeAgent
accuracyLevel

EvolutionaryAgent
passivePopulation

LocalAgent ComputationalAgent
genotype {readOnly}
lifeEnergy

*

1
*

ExternalSolver

Fig. 2. HMS agent types (UML class diagram).
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Master Agent (MA). As a global system coordinator,
it is started as a first agent in the HMS MAS. Its
responsibilities include performing system initialization
such as the activation of other essential agents, i.e., the
Objective Agent and a Deme Agent of the deme-tree
root. After the initialization, the Master Agent starts the
global loop of deme coordination and checks if the global
stopping condition is satisfied. The deme coordination
follows the lines of FIPA Contract-Net (FIPA, 2002). It
begins by sending a call for proposals (CFP) to all active
Deme Agents. Then, the MA waits for DA proposals and
accepts those that are not in conflict. This is shown in
Algorithm 1. DA proposals are in conflict when their

Algorithm 1. Master Agent (MA) algorithm.
1: create OA
2: create root location DA
3: repeat
4: send CFP to all active DAs
5: receive proposals from DAs
6: accept all non conflicting proposals
7: request fitness deterioration from OA
8: until global stop condition is satisfied.

corresponding activities cannot be executed in parallel.
Using the terminology of Byrski et al. (2013), they are
not local. In the current HMS realization, all actions are
local (note that, in contrast to Byrski et al. (2013), we do
not consider the migration), so all DA proposals can be
accepted by the MA.

Deme Agent (DA). It is a deme-tree node coordinator.
Each deme has an associated level of computational
accuracy stored as a property of the corresponding Deme
Agent. In fact, the Deme Agent is an abstract class with
two different specializations: the Evolutionary Agent and
the Local Agent.

Evolutionary Agent (EA). This is a simple (passive)
evolutionary population owner. Periodically, after
receiving the permission from the Master Agent, it
evolves its population for a fixed number of generations
(this sequence of genetic epochs is called a metaepoch),
and then sprouts a new deme from the current best
individual unless the sprout condition is not satisfied
(see Algorithm 2). Note that similar agents form the
structure of the globally balanced HGS (Jojczyk and
Schaefer, 2009). Creating the initial population in Line 2
has two different meanings. If an EA contains the tree
root deme, then the initial population is sampled using
the uniform probability distribution. Otherwise, the EA is
itself sprouted using its parent’s best individual as a seed.
In such a case, the initial population is sampled using the

Algorithm 2. Evolutionary Agent (EA) algorithm.
1: set accuracy level
2: create initial deme population
3: repeat
4: send proposal to MA
5: if MA has accepted proposal then
6: for all epochs in metaepoch do
7: perform selection
8: perform crossover and mutation
9: for all created individual do

10: request objective computation from OA
with stored accuracy

11: end for
12: end for
13: if best individual satisfies sprout condition then
14: sprout new child DA from best individual
15: end if
16: end if
17: until local stop condition is satisfied

normal distribution centered in the seed individual with
the standard deviation depending upon the tree level.

Local Agent (LA). The Local Agent owns a population
of Computational Agents and acts as a local scheduler of
their actions. Namely, it receives action proposals from
Computational Agents, selects one of them according
to a probability distribution, sends a proposal to the
Master Agent and, if the proposal is accepted, lets
the selected Computational Agent perform its action
(see Algorithm 3). The Local Agent’s responsibilities
include also some action coordination, such as checking
if a selected sprout action is allowed. Creating the
initial population is performed analogously as in the
case of an Evolutionary Agent, i.e., by sampling using
a proper probability distribution (different for root and
non-root demes). The only difference is the type created
individuals: passive chromosomes in the case of an
Evolutionary Agent and active Computational Agents in
the case of Local Agents.

Computational Agent (CA). It is an active individual
of the HMS genetic population. It owns an immutable
genotype consisting of an encoded domain point (a
chromosome) and a level of computational precision. The
precision level must be consistent with the owning Local
Agent’s level. The mutable part of a Computational
Agent’s state includes a nonnegative memetic parameter
called life energy. It is exchanged during the
Computational Agent’s action execution such that the total
energy remains constant within each deme. Only agents
with positive life energy are considered active (alive) and
take part in system evolution. There exists a set of actions
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Algorithm 3. Local Agent (LA) algorithm.
1: set accuracy level
2: create initial deme population
3: repeat
4: send CFP to all active CAs
5: receive action proposals from CAs and choose one
6: send corresponding proposal to MA
7: if MA has accepted the proposal then
8: if CA action creates new individual then
9: create new CA

10: else if chosen action is SPROUT then
11: if sprouting can be performed then
12: create new child DA
13: end if
14: end if
15: end if
16: until local stop condition is satisfied

from which an active Computational Agent chooses one
at a time to perform. Which actions are actually available
depends on parameters such as life energy, the objective
value, the precision level, and others. Finally, the action
is performed only if permitted by the owning Local Agent
(see Algorithm 4).

Algorithm 4. Computational Agent (CA) algorithm.
1: set accuracy level according to LA’s level
2: request objective computation from OA with stored

accuracy
3: repeat
4: remain temporarily inactive
5: until objective value is obtained
6: while life energy > 0 do
7: receive CFP from owning LA
8: choose an available action
9: send the corresponding proposal to LA

10: if received permission from LA then
11: perform chosen action
12: update life energy
13: end if
14: end while{CA permanently inactive}

There is an energy quantum related to each action,
which is spent (during GET it can sometimes be gained)
by a Computational Agent during action execution.
Currently, the following actions are considered (cf. Byrski
et al., 2013): GET, MUTATE, CROSSOVER, LOCOPT
and SPROUT. In all tests prepared for this paper, we set
all action energies to 1 and the initial CA energy to 5.

The GET action is a two-agent stochastic duel during
which proper quantum energy moves from the loser
to the winner. A Computational Agent with a lower
(i.e., closer to the global minimum) objective value has

more chances to win. MUTATE and CROSSOVER
are straightforward counterparts of the corresponding
genetic (or evolutionary) operations such as, e.g., the
normal mutation and the arithmetic crossover. The
SPROUT action is inspired by the child branch sprouting
operation, which is fundamental in the HGS (Schaefer and
Kołodziej, 2003). In the HMS, it produces a new deme
together with its Deme Agent and an initial population of
Computational Agents. Obviously, SPROUT makes no
sense at the leaf level, where it can be optionally replaced
with LOCOPT. LOCOPT is local optimization method
execution started from the agent’s decoded chromosome.
In the current realization, LOCOPT is allowed only at the
leaves.

Action selection is determined by a given probability
distribution. The probability of LOCOPT can be
computed using a formula like the following:

pLOCOPT = p0 + (1− p0)
s

1 + objective
, (1)

where 0 ≤ p0 < 1 is the guaranteed probability and
s > 0 is close but not equal to 1 to allow selecting
other actions. Thus, the better the objective value, the
more strongly LOCOPT is preferred. Other actions
available according to the current life energy receive equal
remaining probability. The same formula can also be used
for computing SPROUT probability at non-leaf levels.

Objective Agent (OA). In a real HMS application
(i.e., in solving inverse problems), the objective value is
computed externally by a specialized direct solver. The
responsibility of an Objective Agent (typically, one in
the whole system) is to provide a proper solver gateway,
i.e., to execute the solver process (or several parallel
processes) properly and to transfer the input data to the
solver and the output back to the HMS. Of special interest
for us is the case of computing the objective by means of
a direct hp-FEM solver when the direct problem solution
is Lipschitz continuous with respect to the parameters.
This property is not straightforward and has to be proved
in any particular case. In Section 4.4 this is shown for
the magnetotelluric problem (see Remark 1), which is
our real-world test case. Then, we can adapt the solver
accuracy to the assumed accuracy of HMS tree demes;
see Algorithm 5. Finally, we know the dependency
between the solver accuracy and the computational cost
of the direct problem solution (for details, see Barabasz
et al., 2014; Gajda-Zagórska et al., 2015) which in turn
is the main unit component of the overall HMS cost.
Therefore, we can optimize the overall cost by modulating
the deme accuracy.

Additional Objective Agent activities may include
caching solver results, solver instance pooling (in the
case of parallel execution) and scheduling objective
computations according to a sophisticated optimizing
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Algorithm 5. Objective computation with hp-FEM direct
solver (see Section 4.4).

1: input: tree level j, parameter value
2: compute relative FEM error erel

3: while erel < Ratio(j) do
4: execute 1 step of hp adaptation
5: solve problem on new fine and coarse meshes
6: compute new value of erel

7: end while
8: return objective computed by means of final mesh

policy (e.g., a diffusion-based one (Grochowski et al.,
2006)).

Quite a special kind of additional OA activity
is the deterioration of the objective function. The
latter is a proper objective modification that leads to
the leveling of central regions of attraction basins of
already found local and global minima (Beasley et al.,
1993; Obuchowicz, 1997). The idea is to discourage
the evolutionary individuals from exploring already
well-recognized areas. In this paper, we adopt the
cluster-based fitness deterioration technique described
by Wolny and Schaefer (2011). Namely, after a request
from the MA, all gathered objective data (in this case,
the points at which the objective has been computed) at
selected accuracy levels are clustered (currently, using the
DBSCAN algorithm (Ester et al., 1996)). Afterwards, for
each recognized cluster, we construct the ellipsoidal clus-
ter extension

CE = {x ∈ R
N : (x− x)TΣ−1(x− x) ≤ 1}

determined by its center x and a symmetric matrix
Σ, which in our case is the cluster unbiased sample
covariance matrix (cf. Wolny and Schaefer, 2011). Then,
each cluster extension contributes to the deterioration by
the following formula:

f(x) := f(x) + fmaxΨ(x), (2)

where Ψ is a well-known bump function

Ψ(x)

=

⎧
⎨

⎩

exp

(

1− 1

1− (x−x)TΣ−1(x− x)

)

for x ∈ CE,

0 otherwise.
(3)

and fmax is the maximal objective value over the cluster.
Ψ is an infinitely smooth function and its support is
exactly the considered ellipsoid. Note that, in contrast
to the standard (cf. Wolny and Schaefer, 2011), we
do not make use of simple Gaussian functions because
they are positive everywhere, which destroys the desired
zero-value feature of inverse problem global minima.

2.2. Population structure. As stated before, the HMS
genetic population is decomposed into dependent demes
forming a dynamically changing tree of the fixed maximal
depth m. Genetic individuals, i.e., computing agents,
located at the tree levels close to the root, perform the
chaotic and inaccurate search. When approaching the
leaves, the search becomes more and more focused and
the accuracy is increased (see Fig. 1). The variability
of the search accuracy results from the diversity of the
genotype encoding precision used at different tree levels.
The latter depends on the encoding type. In the case of
binary encoding (as in the simple genetic algorithm), it
can be achieved by the binary genotype length variation,
whereas in the case of real number encoding (as in the
simple evolutionary algorithm), it can be realized by
appropriate phenotype scaling. The latter case is used
in the prototype implementation of the HMS, so here
we present some details. The description follows those
presented in existing papers (Wierzba et al., 2003; Jojczyk
and Schaefer, 2009).

In real number encoding, both phenotypes and
genotypes are vectors from R

N . We assume that the
solution domain is a box

D = [a1, b1]× · · · × [aN , bN ],

and we take a sequence of scaling factors ηi ∈ R such
that η1 > η2 > . . . ηm−1 > ηm = 1. Then, the genetic
universum at the tree level j is

Uj =

[

0,
b1 − a1

ηj

]

× · · · ×
[

0,
bN − aN

ηj

]

, (4)

and the encoding mapping at the level j is defined as

D � x �−→
{
xk − ak

ηj

}N

k=1

∈ Uj . (5)

Moreover, we define the scaling mapping,

scalei,j : Ui � x �→ ηi
ηj

x ∈ Uj .

In such genetic universa, the search at lower levels is
more chaotic because the mutation acts stronger, and
less precise because of limitations in the real number
representation. It is possible to use various genetic
operators in such encoding. Among the most important
ones, we select the normal mutation

yi = xi +N (0, σmut
j ), i = 1, . . . , N,

where N (0, σmut
j ) is a normally distributed random

variable with standard deviation σmut
j set separately for

each level j, and the arithmetic crossover

yi = x1
i + U([0, 1])(x2

i − x1
i ), i = 1, . . . , N,
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where U([0, 1]) is a random variable distributed uniformly
over the interval [0, 1]. Both operators are used
in our sample implementation. Furthermore, we
exploit the classical fitness-proportional (roulette-wheel)
selection in passive populations (on Evolutionary Agents),
additionally preserving the best individual of each
generation. A newly sprouted deme’s population
is sampled according to the N -dimensional Gaussian
distribution centered at the properly encoded fittest
individual of the parent process with the diagonal
covariance matrix taking values (σsprout

j )2 on the diagonal.
The sprout cannot be performed in population P at level j
if there exists a population P ′ at level j + 1 such that

|y − scalei,i+1(y)| < cj , (6)

where y is the best individual in P , y is the average
phenotype of P ′, and cj is a branch comparison constant.

Finally, it should be mentioned that further utilization
of the knowledge gathered during multi-level enhanced
genetic evolution is possible by means of the clustering
technique, in which better approximation of attraction
basins of the local minima can be developed, allowing yet
more precise application of local optimization methods.

3. Benchmark tests

In order to prove HMS abilities to find the global
minimum in multi-modal cases, we performed two
benchmark tests. The test setup in both the cases was as
follows. The HMS tree had three levels with Evolutionary
Agents at the root and middle levels, and Local Agents
at the leaf level, which seems to be quite a standard
layout for an overall optimization. The proportional
(roulette-wheel) selection, the normal mutation and the
arithmetic crossover were chosen as genetic operators.
First, we ran the HMS against both functions 30 times
till the global minimum was reached with the assumed
accuracy of 10−4. The choice of such a type of test
influenced the setting of the HMS stopping conditions.
Namely, the global stopping condition was satisfied if
a leaf approached the global minimum with the given
accuracy, whereas a leaf stopping condition was satisfied
if the leaf approached the global minimum or if a fixed
number of its consecutive metaepochs were ineffective,
i.e., there was no significant variation in the leaf’s
population average fitness. To make this stopping
condition applicable to active populations, we need to
adapt the notion of the genetic epoch. Namely, in the case
of an LA population, it is simply a CA action execution
sequence of the length equal to the initial population size.
After the HMS terminated, we counted its objective calls,
which set the computational budget for two comparative
classical stochastic optimization methods: the simple
evolutionary algorithm (SEA) and the multi-start. The
comparative methods were also run 30 times.

The first benchmark was the 10-dimensional Ackley
path function with domain [−5, 5]10. It is a standard
global optimization test with one hard-to-find global
zero-valued minimum surrounded by numerous other
local minima with greater values. This makes it similar
to a few important inverse problem objectives, such as the
magnetotelluric problem (see Section 4). A special feature
of the Ackley function is its flatness outside the narrow
attraction basin of the global minimum, which makes it
still more similar to the MT problem. The execution
parameters for the 10D Ackley function are summarized
in Table 1. Note that the metaepoch length parameter is
specially adapted to Local Agents (see above). Similarly,
the population size in this case is not constant; in our
simulations it varied between 4 and 8.

Table 1. HMS execution parameters (Ackley 10D).
Root Middle Leaf

Population (initial) 50 10 4
Metaepoch length 2 2 2
Encoding scale 4.0 2.0 1.0
Mutation rate 0.2 0.05 0.01
Crossover rate 0.5 0.5 0.5
Mutation std. dev. 5.0 1.0 0.2
Sprout std. dev. – 2.0 1.0
Sprout min. dist. – 2.0 1.0

The obtained HMS objective call means are shown
in Table 2. The cost of local method application is
included in the leaf level cost. The averages from Table 2

Table 2. Average number of objective evaluations (Ack-
ley 10D).

Root Middle Leaf Total

1022.8 584.7 4493.6 6101.1

allowed us to compute the predicted cost for the SEA and
multi-start. Taking the average cost of running the local
method from HMS executions, we set the starting pool
size for multi-start to 70. Similarly, estimating the average
cost of running the evolutionary algorithm, also on the
basis of HMS runs, we set the initial SEA population size
to 100. The SEA genetic parameters were set according
to the corresponding HMS parameters from the leaf level,
i.e., the crossover rate was set to 0.5, the mutation rate to
0.01, and the mutation standard deviation to 0.2. Table 3
shows the average obtained minimum values for all the
three methods. Neither the SEA nor the multi-start ever
succeeded in reaching the actual global minimum, which
the HMS managed to do in every run. Full statistics are
shown in a concise way in Fig. 3. Horizontal bars indicate
minimum, mean and maximum, respectively. The width
of the ‘violin’ indicates the distribution of values.

The second benchmark was the product of three
reflected and vertically translated Gaussian functions over
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Table 3. Average values of computed global minimum (Ack-
ley 10D).

HMS Multi-start SEA

Average 5.27 · 10−9 3.17 2.57
Best 1.96 · 10−10 1.65 1.3

Fig. 3. Global minima statistics (Ackley 10D).

the 4-dimensional box [−5, 5]4,

f2(x) =

3∏

i=1

[
1− exp

(−(x−mi)
TAi(x−mi)

)]
, (7)

where m1 = (3, 2, 1, 0), m2 = (1,−3,−1, 3), m3 =
(−2.5, 2, 2, 2) and

A1 =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ ,

A2 =

⎡

⎢
⎢
⎣

0.2 0 0 0
0 0.1 0 0
0 0 0.1 0
0 0 0 0.2

⎤

⎥
⎥
⎦ ,

A3 =

⎡

⎢
⎢
⎣

1.5 0 0 0
0 2 0 0
0 0 1.5 0
0 0 0 1

⎤

⎥
⎥
⎦ .

Benchmark f2 has three separate zero-valued global
minima m1, m2 and m3 with no other local minima.
The difficulty of finding the global minima is graded.
Here m2 has the broadest attraction basin, so it is fairly
easily reachable. Then m1 is steeper, hence more difficult
to find. The main problem is reaching m3. Outside
their attraction basins, one can find quite large plateaus,

which can cause serious trouble for gradient optimization
methods. Thus, the aim of this test is to check the
compared methods’ abilities of finding all global minima.

The HMS execution parameters for benchmark f2
are gathered in Table 4. The obtained HMS objective call

Table 4. HMS execution parameters (three Gaussians).
Root Middle Leaf

Population (initial) 50 10 4
Metaepoch length 2 2 2
Encoding scale 4.0 2.0 1.0
Mutation rate 0.4 0.1 0.01
Crossover rate 0.5 0.5 0.5
Mutation std. dev. 10.0 1.0 0.1
Sprout std. dev. – 2.0 1.0
Sprout min. dist. – 2.0 1.0

means are shown in Table 5. This time, to make things

Table 5. Average number of objective evaluations (three Gaus-
sians).

Root Middle Leaf Total Weighted

6901.5 1135.1 1655.2 9691.8 3183.8

still more similar to MT computations, instead of a simple
sum of different-level costs, we used a weighted cost

c = cleaf +
cmiddle

3
+

croot

6
, (8)

expressing the fact that in real problems the leaf
computations are the most expensive ones, whereas the
root calls are the cheapest. The denominators in (8)
are taken from MT simulations, cf. see Section 5. As
the comparative methods operated at the top level of
accuracy, i.e., the leaf level, based on Table 5 we set
the multi-start starter pool size to 50 and the SEA initial
population to 70. As in the Ackley 10D case, we set the
SEA genetic parameters accordingly to the corresponding
HMS leaf-level parameters. We stopped the SEA right
after exceeding 4000 calls. The main results of the test
are shown in Table 6. The HMS successfully found all

Table 6. Statistics of finding all global minima (three Gaus-
sians).

HMS Multi-start SEA

Fully successful runs 30/30 16/30 0/30
Avg. number of mins 3 2.47 0

three minima in every execution. The multi-start failed in
almost half of the runs. Moreover, in two runs it found
only one global minimum. The SEA never succeeded,
obtaining an average computed global minimum of 0.57
and a best found solution with the value of 0.18. As
the results show, the three Gaussians benchmark is quite
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a difficult optimization test, despite its relatively low
dimensionality. The source of the difficulty is the small
volume of global minima’s attraction basins and the
presence of significant plateaus.

4. Magnetotelluric inverse problem

The solar wind produces a radiation pressure that causes a
compression on the day-side and a tail on the night-side
onto the magnetosphere. Due to this interaction,
hydromagnetic waves are created. When those waves
reach the ionosphere, they induce an EM field that works
as a power source in magnetotellurics. Depending upon
the type of source we are dealing with, the geomagnetic
fluctuations range between the frequencies of 10−3 −
105 Hz, which allows us to make measurements with a
resolution that ranges from a few meters to hundreds of
kilometers (Vozoff, 1972)

The magnetotelluric (MT) technique is used to
determine a resistivity map of the Earth’s subsurface
by performing electromagnetic (EM) measurements.
The main difference of MT with respect to other
geophysical measurement acquisition scenarios (e.g.,
marine controlled electromagnetic measurements)
is that MT uses natural electromagnetic radiation
sources generated within the ionosphere, instead of
human powered antennas. Thus, acquisition of MT
measurements is rather inexpensive, and can cover
large areas. Applications of MT measurements include
hydrocarbon (oil and gas) exploration and finding suitable
regions for storage of CO2.

4.1. Forward problem. MT measurements are
governed by electromagnetic phenomena, which can
be described by Maxwell’s equations. When the
electrical field depends only upon two spatial variables
(x, z), then two independent and uncoupled modes are
derived from these equations, namely, transverse elec-
tric (TE) and transverse magnetic (TM). The TE mode
involves (Ey, Hx, Hz) field components while TM uses
(Hy, Ex, Ez). We focus on the TE mode and we solve the
equation for Ey .

We decouple Maxwell’s equations by
pre-multiplying both sides of Faraday’s law by μ−1

and applying the curl operator. Then, after incorporating
Ampere’s law, we substitute component by component
the result into the double curl operator on the electric field
to obtain the equation for the y-component of the electric
field:

−Δu− k2u = f in Ω ⊂ R
2, (9)

where Ω is a simply connected bounded domain with a
Lipschitz boundary and u(x, z) = Ey(x, z), (x, z) ∈ Ω.
σ, (σ > σ0 > 0 in Ω) is the electrical conductivity field,
k2 = ω2με − jμωσ, where ω �= 0 is the wave frequency,

ε, μ ∈ R, ε, μ > 0 stand for the permittivity and
permeability of the medium considered. f = −jωμJ

imp
y ,

where J imp
y is a prescribed, impressed electric current

density radiating in the y-direction.
To obtain the corresponding variational formulation,

we pre-multiply Eqn. (9) by a test function v ∈
H1

0 (Ω;C). After integrating by parts and incorporating
the Dirichlet boundary conditions over ΓD = ∂Ω, the
following abstract variational formulation (suitable for
finite element computations) is obtained:
{

Find u(σ) ∈ H1
0 (Ω;C) such that

b(σ;u(σ), v) = F (v), ∀v ∈ H1
0 (Ω;C),

(10)

with

b(σ;u, v) =

∫

Ω

∇v ∇u−
∫

Ω

k2 v u (11)

F (v) =

∫

Ω

v f, (12)

where now we assume that σ ∈ L∞(Ω) and J imp
y ∈

L2(Ω;C). The exact solution u(σ) = Ey to the problem
(10) is called the primal forward solution.

Let us define now the functionals Li : H1
0 (Ω;C) →

C associated with the receiving antennas occupying Ωi

domains, respectively, i = 1, . . . ,M ,

Li(v) =
1

meas(Ωi)

∫

Ωi

v. (13)

Now, we are able to define the set of dual forward
problems,
{

Find G(σ) ∈ H1
0 (Ω;C) such that

b(σ; v,G(σ)) = Li(v), ∀v ∈ H1
0 (Ω;C),

(14)

for each receiving antenna, i = 1, . . . ,M .

4.2. hp-FEM approximation. Using an hp-FEM
finite dimensional internal approximation Vhp ⊂
H1

0 (Ω;C) (see Demkowicz, 2006), we obtain the discrete
versions of both primal and dual forward problems (10),
(14)

{
Find uh,p(σ) ∈ Vhp such that

b(σ;uh,p(σ), v) = F (v), ∀v ∈ Vhp,
(15)

{
Find Gi

h,p(σ) ∈ Vhp such that

b(σ; v,Gi
h,p(σ)) = Li(v), ∀v ∈ Vhp,

(16)

for each receiving antenna, i = 1, . . . ,M .
To control the discretization error by performing

grid refinements, we use the two-dimensional (2D)
hp-adaptive algorithm described by Demkowicz (2006).
It incorporates two basic components:
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• Fine grid solution: giving an existing coarse mesh
uhp, we refine the mesh in both h and p to obtain
a finer mesh. Its solution is denoted by uh/2,p+1.
The hp refined grid provides a reference solution
that is used for comparison purposes and to decide
what areas of the computational mesh contain larger
errors.

• Optimal mesh selection: given the fine mesh
solution, we use it to determine optimal mesh
refinements on the coarse mesh by minimizing the
projection based interpolation error (see Demkowicz,
2006).

The optimization algorithm contains the following
steps:

1. For each element in the coarse mesh, we select
between p and h refinements. Using the
projection-based interpolation error, we select the
refinement that provides the biggest error decrease
rate by comparing the fine and coarse mesh solutions.

2. We determine which elements to refine by computing
the maximum decrease rate over all elements,
and selecting for refinements those that exhibit an
error decrease rate larger than a fraction of the
maximum. In our case, we select 1/3, as suggested
by Demkowicz (2006).

3. We determine an optimal order of approximation for
the elements to be refined: if p-refined is selected,
then we increase p by one. If h-refinement wins, then
we determine the value of the new polynomial orders
of approximation for those new elements that yield
the biggest descent rate.

For goal-oriented adaptivity where the main
objective is to accurately approximate L(Ey), we employ
the adjoint problem to represent the error in the quantity
of interest. Thus, the corresponding refinement strategy is
based on minimizing the error in the quantity of interest
rather than an arbitrary energy norm (for details, see
Pardo et al., 2006).

4.3. Inverse problem. Our aim is to obtain the
impedance, a suitable physical magnitude to perform the
inversion. To do so, the magnetic field is obtained from
Maxwell’s equations as

Hx(σ) =
1

jωμ

∂Ey(σ)

∂z
, (17)

and then impedance Z is computed according to

Z = Zyx =
Ey

Hx
. (18)

The impedance at each antenna is a nonlinear functional
gi(σ) computed from two linear quantities:

gi(σ) =
Li(Ey(σ))

Li(Hx(σ))

= jωμLi(u(σ))

(

Li

(
∂u(σ)

∂z

))−1 (19)

for i = 1, . . . ,M , whose derivative with respect to an
arbitrary variable s (in particular, the conductivity σ) can
be obtained from the formula

∂gi(σ)

∂s
=

1

(Li(Hx))2

(
∂Li(Ey)

∂s
Li(Hx)

− ∂Li(Hx)

∂s
Li(Ey)

)

,

(20)

where all the above partial derivatives are distributional
ones. Let us denote by diobs the measured value of
impedances at the antennas, which correspond to the
quantities gi(σ), where σ ∈ L∞(Ω) is the real, unknown
conductivity distribution.

We introduce the stepwise representation of the
conductivity function σ as a member of a family

D = {ξ ∈ L∞(Ω); ξ(x) =
∑

i=1,...,n ξiχi(x),

0 < ξmin
i ≤ ξi ≤ ξmax

i < +∞},
(21)

where {χi}i=1,...,n are the indicator functions of
the disjoint covering {Ωi}i=1,...,n of domain Ω
(
⋃

i=1,...,nΩi = Ω,Ωi ∩ Ωj , i �= j). This representation
is utilized by the hp-FEM computing of the primary and
dual Galerkin problems (15), (16). Next, we define for
σ ∈ D the approximate impedance functions

gihp(σ) = jωμLi(uh,p(σ))

(

Li

(
∂uh,p(σ)

∂z

))−1

.

(22)
The inverse problem under consideration reads as follows:
Find σ̂ ∈ D such that, for all σ ∈ D,

lim
h→0

p→+∞

{
1

2M

M∑

i=1

∣
∣gih,p(σ̂)− diobs

∣
∣2
}

≤ lim
h→0

p→+∞

{
1

2M

M∑

i=1

∣
∣gih,p(σ) − diobs

∣
∣2
}

.

(23)

4.4. Common error scaling. The hp-FEM adaptation
is performed by solving forward primal and dual problems
for quantities of interest Li, i = 1, . . . ,M . The relative
hp-FEM error scaling is selected based on the following
result.

Proposition 1. Assuming gi(σ) = diobs, i = 1, . . . ,M,
the misfit function might be evaluated as the product of
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the squared norms of the relative hp-FEM errors of pri-
mal and dual solutions added to the squared norm of the
absolute hp-FEM errors of primal solutions obtained for
all coordinates of the logging curve plus the square of the
error associated with the inverse problem, i.e.,

1

2M

M∑

i=1

∣
∣
∣gih/2,p+1(σ) − gi(σ)

∣
∣
∣
2

≤ A ‖erel(σ)‖20,1
(

M∑

i=1

∥
∥εirel(σ)

∥
∥2
0,1

)

+ B ‖uh,p(σ)− u(σ)‖20,1
+ C ‖σ − σ‖2L∞(Ω) ,

(24)

where erel(σ) = uh/2,p+1(σ)− uh,p(σ) is the relative hp-
FEM error in solving the forward primal problem (15),
εirel(σ) = Gi

h/2,p+1(σ) − Gi
h,p(σ), i = 1, . . . ,M are the

relative hp-FEM errors in solving the forward dual prob-
lems (16) and A,B,C are positive constants.

We start with a useful lemma which is a particular
case of a more general result obtained for the AC logging
data inversion (see Smołka et al., 2015, Proposition 9).

Lemma 1. The distance between the approximated and
exact quantities of interest might be evaluated as the prod-
uct of the squared norms of the relative hp-FEM errors of
primal and dual solutions added to the squared norm of
the absolute hp-FEM errors of primal solutions obtained
for all coordinates of the logging curve plus the square of
the error associated to the inverse problem, i.e.,

M∑

i=1

∣
∣Li(uh/2,p+1(σ))− Li(u(σ))

∣
∣2

≤ C′ ‖erel(σ)‖20,1
(

M∑

i=1

∥
∥εirel(σ)

∥
∥2
0,1

)

+ C′′ ‖uh,p(σ)− u(σ)‖20,1
+ C′′′ ‖σ − σ‖2L∞(Ω) .

(25)

Proof. (Proposition 1) For simplicity write a =
uh/2,p+1(σ), b = u(σ) and denote by a,z , b,z their partial
derivatives with respect to the variable z. Now, we can
evaluate

∣
∣
∣gih/2,p+1(σ)− gi(σ)

∣
∣
∣ = jωμ

∣
∣
∣
∣
Li(a)

Li(a,z )
− Li(b)

Li(b,z )

∣
∣
∣
∣ .

(26)
The right-hand-side of the above expression is less than or

equal to the following:

∣
∣
∣
∣
Li(a)

Li(a,z )
− Li(b)

Li(a,z )

∣
∣
∣
∣+
∣
∣Li(b)

∣
∣

∣
∣
∣
∣

1

Li(a,z )
− 1

Li(b,z )

∣
∣
∣
∣

=
1

|Li(a,z )|
∣
∣Li(a)− Li(b)

∣
∣

+

∣
∣Li(b)

∣
∣

|Li(a,z )| |Li(b,z )|
∣
∣Li(a,z −b,z )

∣
∣ . (27)

Because we consider positive frequencies of a
cosmic propagation, it is possible to establish a universal
constant α > 0 that bounds from below |Li

(
∂u
∂z

) | for all
solutions u to (13) and for all i = 1, . . . ,M . Moreover,
all solutions to (13) are bounded from above in H1

0 (Ω),
so we have the net universal constant β < +∞ that is
greater than or equal to Li(u) for all solutions to (13)
and for all i = 1, . . . ,M . Next, all functionals Li

(
∂u
∂z

)

are uniformly Lipschitz continuous on H1
0 (Ω) with the

constant L1. Finally,

∥
∥uh/2,p+1(σ)− u(σ)

∥
∥
1,0

≤ ∥∥uh/2,p+1(σ) − u(σ)
∥
∥
1,0

+ ‖u(σ)− u(σ)‖1,0
≤ ‖uh,p(σ)− u(σ)‖1,0 + L0 ‖σ − σ‖L∞(Ω) .

Summing up (26) and (27), we have

∣
∣
∣gih/2,p+1(σ)− gi(σ)

∣
∣
∣

≤ C1

∣
∣Li(uh/2,p+1(σ)) − Li(u(σ))

∣
∣

+ C2 ‖uh,p(σ) − u(σ)‖1,0
+ C3 ‖σ − σ‖L∞(Ω) ,

(28)

where C1 = jωμ/α, C2 = C1βL1/α, C3 = (C2 + 1)L0

and L0 is the Lipschitz constant of the function that maps
the conductivity to the solution of the primal problem (13),
i.e., σ → u(σ) in norms ‖·‖1,0 and ‖·‖L∞(Ω) (see Smołka
et al., 2015, Lemma 4). Using twice the simple inequality
(a+ b)2 ≤ 2a2 + 2b2, we obtain

∣
∣
∣gih/2,p+1(σ) − gi(σ)

∣
∣
∣
2

≤ C1

∣
∣Li(uh/2,p+1(σ))− Li(u(σ))

∣
∣2

+ C2 ‖uh,p(σ)− u(σ)‖21,0
+ C3 ‖σ − σ‖2L∞(Ω) ,

(29)

for other constants C1, C2, C3.
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Coupling (29) with the result of Lemma 1, we obtain

1

2M

M∑

i=1

∣
∣
∣gih/2,p+1(σ) − gi(σ)

∣
∣
∣
2

≤ C1C
′

2M
‖erel(σ)‖20,1

(
M∑

i=1

∥
∥εirel(σ)

∥
∥2
0,1

)

+
C1C

′′ + C2

2M
‖uh,p(σ)− u(σ)‖20,1

+
C1C

′′′ + C3

2M
‖σ − σ‖2L∞(Ω) .

(30)

It is sufficient to set

A =
C1C

′

2M
,

B =
C1C

′′ + C2

2M
,

C =
C1C

′′′ + C3

2M

to finish the proof. �

Remark 1. The first right-hand side component
of (25) expresses the influence of the relative forward
errors (primal and dual ones) imposed on the hp-FEM
refinement process. The second one is proportional to the
square of the FEM error, which decreases to zero during
hp refinements. The third component is evaluated from
below by Cδ2j , where δj is the accuracy in the inverse
search domain D utilized by the j-th level HMS branch.
In order to make the hp-HMS inversion at the j-th level
computationally economic, we should keep the first and
third components comparable. In other words, decreasing
‖erel(σ)‖0,1 and

∥
∥εirel(σ)

∥
∥
0,1

below the quantity

Ratio(j) =

√
δj
M

4

√
C

A

does not improve the accuracy of fitness evaluation.

5. Sample magnetotelluric simulations

5.1. Domain description. We consider a 2D formation
of a subsurface consisting of horizontally layered media
with some 2D inhomogeneities. We model the source as
an infinitely long (in the x and y directions) volumetric
rectangular surface located at the ionosphere. This allows
us to treat the electromagnetic fields as plane waves that
propagate in the vertical direction towards the Earth’s
surface (Vozoff, 1972).

The physical problem is illustrated in Fig. 4. The
computational domain of 2500 km × 130 km, consists
of air and layered media with 2D inhomogeneities
located at the center of the domain (in the x
direction). The horizontal length of the domain where the
inhomogeneities are considered is 10 km.

The physical domain is surrounded by a perfectly
matched layer (PML) (Berenger, 1994) used to truncate
the computational domain, and we consider the same
relative permittivity and permeability in all materials
(equal to one). The dark gray, middle gray and light gray
regions in the lower half of the figure are filled with soil
(or rock) deposits characterized by different conductivities
σ1 − σ4. Receivers A1 − A7 are located at the Earth’s
surface, and are represented with the inverted t-marks ⊥ .
The source, located at the ionosphere, is represented with
a thin dark gray rectangle at the top of the figure.

5.2. Results. In our simulations we used the
goal-oriented hp-adaptive finite element method solver,
which computed both the impedance and its partial
derivatives at the receivers in one run. For the simulations,
the solver operated at three accuracy levels: 70%,
20% and 3%, meaning the maximal relative FEM error
percentage. The ‘exact’ values diobs were computed using
the same solver with the accuracy of 1.2%. The HMS
was executed with the same deme-tree layout as in the
case of Ackley and three Gaussians. However, this time
the computations were much more expensive. Therefore,
in this case we performed only five executions of all
three comparative methods, i.e., HMS, multi-start and
SEA. The HMS execution parameters are summarized in
Table 7. Every HMS run lasted about 32 hours. The
simulations were executed on a single node of a Linux
cluster with 16 Intel R© Xeon R© CPU E5620 at 2.40 GHz
and 16 GB of total memory available. Our simulation at
this point utilizes one core only; however, it is possible
to speed it up by linking to a parallel MUMPS solver,
which delivers around 60% efficiency up to 16 cores. It

Table 7. HMS execution parameters (MT).
Root Middle Leaf

Population (initial) 20 10 5
Metaepoch length 2 2 2
Encoding scale 16384.0 128.0 1.0
Mutation rate 0.2 0.05 0.01
Crossover rate 0.5 0.5 0.5
Mutation std. dev. 3.0 0.6 0.1
Sprout std. dev. – 1.0 0.2
Sprout min. dist. – 1.0 0.2

turned out that the average time of FEM computations
was about 45 s for the accuracy level of 70%, 1.5min for
the accuracy level of 20% and 4.5min for the accuracy
level of 3%. This justifies the weighted cost formula (8)
applied in the three Gaussian test and actually appropriate
in this case. The obtained HMS objective call means are
shown in Table 8. After appropriate estimations, we
set the multi-start initial pool size to 100 and the initial
SEA population to 40. The SEA genetic parameters were
set as in the previous tests. During the computations,
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Fig. 4. Domain geometry.

Table 8. Average number of objective evaluations (MT).
Root Middle Leaf Total Weighted

398.2 629.9 148.6 1176.7 424.9

it appeared that the objective function has several flat
regions where gradient methods got stuck, revealing many
local minima of a mediocre or even poor value. Hence, in
the comparisons we emphasize the good minima, i.e., the
ones with the objective value less than a given threshold.
In Table 9, we show the total number of such minima
found in all runs for 2 threshold values. Figure 5 shows

Table 9. Total number of ‘good’ minima found (MT).
Upper bound HMS Multi-start SEA

1 · 10−10 4 2 0
5 · 10−10 35 21 0

a comparison of all minimal values obtained by the three
methods.

The results show that both the HMS and multi-start
win by far to the SEA. The advantage of the HMS over
multi-start is more apparent in the best minima area.
Namely, the HMS found twice as many minima smaller
than 10−10 as multi-start and 1.7 times as many minima
smaller than 5·10−10 as multi-start, cf. Table 9. Moreover,
Fig. 5 shows that multi-start is more prone to getting stuck
in poor local minima.

6. Conclusions

The proposed strategy, HMS, constitutes a significant
extension of the standard, two-phase global optimization

Fig. 5. All minima statistics (MT).

strategies composed of the global search phase followed
by a couple of local convex searches. The essence of
this extension is the application of the adaptive hierarchic
genetic search alternating with the local searches with
dynamically adapted accuracy. The genetic multi-deme
component, together with the inter-processing of solutions
(clustering of individuals) and fitness deterioration, allows
a broad, global search, along with concentrating local
searches in the basins of attraction of the deepest local
minima. An additional novelty is introduction of the
active individuals (computing agents) and agent-based
distributed computing, governing the whole strategy.
Contrarily to traditional inversion algorithms, our hybrid
strategy delivers multiple solutions in the case of misfit
multimodality, which enables an expert in the field
to determine the best possible solution as well as the
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uncertainty level.
The HMS offers an exceptionally low computational

cost, which is crucial in solving inverse parametric
problems involving partial differential equations. First,
the hierarchic structure of demes decreases the number of
individuals searching with a high accuracy. The number
of fitness evaluations is additionally decreased by the
conditional sprouting and redundancy reduction as well as
the restrictive deme stopping condition. Next, the global
search is boosted by concurrent identification of separate
basins of attractions by separate well fitted leaf-demes. A
huge cost reduction is caused by the dynamical adaptation
of the accuracy of the self-adaptive hp goal-oriented
finite element method applied as the forward solver (see
Algorithm 5). This accuracy is adapted to the inverse error
at the particular level of the population tree, which reduces
the cost of the given fitness evaluation for the root and
branch demes.

Simulations show the main HMS advantages over
the standard global optimization methods (evolutionary
algorithm and multi-start) for the Ackley and three
Gaussian peaks benchmarks that exhibit typical difficulty
characteristics of the inverse parametric problems
(objective multimodality and ill conditioning). Another
computational example shows the HMS behavior for the
difficult, real-life engineering problem of magnetotelluric
data inversion, originated by oil deposit investigation.
Apart from the simulation study of the HMS efficiency,
the theoretical verification of the common error scaling
was performed, which is necessary for the computational
cost reduction shown in Proposition 1 and Remark 1.

The tests we performed were of the “finite budget”
type. We intended to provide the HMS with enough
resources to obtain satisfactory solutions, and then check
the results of standard global optimization methods
running within the same computational budget. In our
case, the budget is determined by the forward server calls,
because in the case of parametric inverse problems their
total CPU time exceeds the cost of all other operations
by no less than two orders of magnitude. For instance,
the least expensive, 70%-accuracy MT solver run lasted
about 45 seconds, whereas the most expensive of the other
operations, i.e., the objective deterioration (including the
clustering), took a fraction of a second. Every MA
global loop (see Section 2.1) featured much more than
10 solver calls at various accuracy levels and at most
one objective deterioration request. Therefore, the cost
of the other operations does not affect the comparison
results of the method noticeably. On the other hand,
all methods were implemented and run in a distributed
environment, so the wall time of each computational
run completion depended significantly on the background
load of all nodes, scheduling policy, etc. Because the
main goal of the paper was to analyze the algorithmic
aspects of the proposed strategy, we have not refined

the implementation and scheduling policies. It will be
the subject of our future research based on our former
result concerning agent-based “diffusive scheduling” in
distributed environments (Grochowski et al., 2006).
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and Pardo, D. (2015). A hybrid method for inversion of 3D
DC resistivity logging measurements, Natural Computing
14(3): 355–374. DOI: 10.1007/s11047-014-9440-y.

Grochowski, M., Smołka, M. and Schaefer, R. (2006).
Architectural principles and scheduling strategies for
computing agent systems, Fundamenta Informaticae
71(1): 15–26.

Jojczyk, P. and Schaefer, R. (2009). Global impact balancing in
the hierarchic genetic search, Computing and Informatics
28(2): 181–193.

Neri, F., Cotta, C. and Moscato, P. (Eds.) (2012). Hand-
book of Memetic Algorithms, Studies in Computational
Intelligence, Vol. 379, Springer, Heidelberg.

Obuchowicz, A. (1997). The evolutionary search with soft
selection and deterioration of the objective function, Pro-
ceedings of the 6th International Conference on Intel-
ligent Information Systems IIS’97, Zakopane, Poland,
pp. 288–295.

Pardo, D., Demkowicz, L., Torres-Verdı́n, C. and Tabarovsky, L.
(2006). A goal-oriented hp-adaptive finite element method
with electromagnetic applications, Part I: Electrostatics,
International Journal for Numerical Methods in Engineer-
ing 65(8): 1269–1309.

Schaefer, R. and Kołodziej, J. (2003). Genetic search reinforced
by the population hierarchy, in K.A. De Jong, R. Poli
and J. Rowe (Eds.), Foundations of Genetic Algorithms 7,
Morgan Kaufman, San Francisco, CA, pp. 383–399.
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