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This paper describes computationally efficient model predictive control (MPC) algorithms for nonlinear dynamic systems
represented by discrete-time state-space models. Two approaches are detailed: in the first one the model is successively
linearised on-line and used for prediction, while in the second one a linear approximation of the future process trajectory
is directly found on-line. In both the cases, as a result of linearisation, the future control policy is calculated by means of
quadratic optimisation. For state estimation, the extended Kalman filter is used. The discussed MPC algorithms, although
disturbance state observers are not used, are able to compensate for deterministic constant-type external and internal distur-
bances. In order to illustrate implementation steps and compare the efficiency of the algorithms, a polymerisation reactor
benchmark system is considered. In particular, the described MPC algorithms with on-line linearisation are compared with
a truly nonlinear MPC approach with nonlinear optimisation repeated at each sampling instant.
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1. Introduction

In the classical control techniques (e.g., PID, LQR) a
model of the process is only used off-line for controller
synthesis, while in model predictive control (MPC) it
is used on-line for prediction of the future process
trajectory. The control policy is calculated in MPC at each
sampling instant from an optimisation problem which
aims to minimise the predicted control errors (Camacho
and Bordons, 1999; Maciejowski, 2002; Rawlings and
Mayne, 2009; Tatjewski, 2007). The MPC approach has
many advantages, among which it is necessary to point out
its unique ability to take into account constraints imposed
on process variables as well as the ability to efficiently
control multiple-input multiple-output processes and
systems with difficult dynamic properties (e.g., delayed
ones). As a result, the MPC algorithms have been
successfully used in numerous advanced applications
(Qin and Badgwell, 2003). The most important current
research fields are: optimality, stability and robustness
(Mayne, 2014), on-line set-point optimisation for MPC
(Tatjewski, 2010), economic MPC (Ellis et al., 2014) and
fault-tolerant MPC (Patan and Korbicz, 2012).

In the majority of applications, input-output models

are used, typically linear ones. Applications of state-space
models are less frequent. On the other hand, state-space
models are more general and able to describe a very
wide class of dynamic systems. The treatment of
deterministic disturbances which affect the process is
very important to guarantee offset-free control. The
standard method is to augment the process state by the
states of deterministic disturbances (Maciejowski, 2002;
Gonzalez et al., 2008; Maeder and Morari, 2010; Muske
and Badgwell, 2002; Pannocchia and Bemporad, 2007;
Pannocchia and Rawlings, 2003; Rawlings and Mayne,
2009). As a result, one obtains extended state and output
equations. It is also possible to use the velocity form
state-space model, in which the extended state consists
of state increments and the output signals (Maciejowski,
2002; Wang, 2007).

An interesting alternative was suggested recently by
Tatjewski (2014), who described the MPC algorithm for
dynamic systems based on linear time-invariant models
with a new, straightforward MPC controller-observer
structure. Such an MPC algorithm is able to compensate
for the deterministic constant-type disturbances affecting
the process, possibly with white noise added under
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(asymptotically) constant set-point values. The
constant-type disturbances considered are crucial in
process control because they include unavoidable
modelling errors or piecewise-constant disturbances.
Relatively simple disturbance models are used. In
comparison with the cited augmented state formulations,
the methodology presented by Tatjewski (2014) only
requires estimation of the process state.

The objective of this paper is to use the disturbance
handling mechanism employed in the case of linear
systems and described by Tatjewski (2014) in
nonlinear MPC based on a general class of nonlinear
state-space models (it is only assumed that the model is
differentiable). Because direct application of a nonlinear
model leads to a nonlinear MPC optimisation problem,
two successive on-line linearisation approaches are
discussed. In the first one the model is linearised on-line
and used for prediction, in the second one a linear
approximation of the future process trajectory is directly
found on-line. In both the cases the future control
policy is calculated by means of easy-to-solve quadratic
optimisation problems. For state estimation, the extended
Kalman filter is used. This paper also extends the work of
Ławryńczuk (2014), where a few MPC algorithms with
on-line linearisation are discussed for dynamic systems
represented by neural models. In order to illustrate
implementation steps and compare the efficiencies of
the discussed MPC algorithms, a polymerisation reactor
benchmark system is considered. In particular, the MPC
algorithms with on-line linearisation are compared
with a truly nonlinear MPC approach with nonlinear
optimisation repeated at each sampling instant. The proof
that the algorithms guarantee offset-free control is given.

This paper is structured as follows. First, in Section 2,
the MPC problem is defined. Next, in Section 3, two
nonlinear MPC algorithms are discussed, i.e., MPC
with on-line model linearisation and MPC with on-line
trajectory linearisation. Section 4 details implementation
steps and compares the efficiency of the discussed
MPC algorithms for a polymerisation reactor benchmark
system. Finally, Section 5 concludes the paper.

2. Nonlinear state-space predictive control
problem formulation

2.1. State-space process description. The nonlinear
state-space model of a dynamic process is

x(k + 1) = f(x(k), u(k)), (1a)

y(k) = g(x(k)), (1b)

where x(k) ∈ R
nx denotes the state vector, u ∈ R

nu is
the vector of input (manipulated) variables and y ∈ R

ny is
the vector of output (controlled) variables. The nonlinear
functions f : Rnx+nu → R

nx and g : Rnx → R
ny

are assumed to be continuously differentiable. The state
equation may be rewritten for the sampling instant k,

x(k) = f(x(k − 1), u(k − 1)), (2a)

y(k) = g(x(k)). (2b)

2.2. Nonlinear state-space predictive control. The
core idea of MPC is to calculate repeatedly on-line not
only the values of the manipulated variables for the current
sampling instant k, but also some future control sequence.
Usually, the vector of increments

�u(k) =

⎡
⎢⎣

�u(k|k)
...

�u(k +Nu − 1|k)

⎤
⎥⎦ (3)

is calculated on-line. The symbol�u(k+p|k) denotes the
increment in the manipulated variables for the sampling
instant k + p calculated at the current instant k. Nu is the
control horizon. It is assumed that �u(k + p|k) = 0 for
p ≥ Nu. The increments are defined by

�u(k + p|k)

=

{
u(k|k)− u(k − 1) if p = 0

u(k + p|k)− u(k + p− 1|k) if p ≥ 1,

where the control signals for the sampling instant k + p
found at the current instant k are denoted by u(k + p|k).
The vector of decision variables (3) is successively found
on-line as a solution to an optimisation problem in which
differences between the set-point trajectory ysp(k + p|k)
and the predicted output values ŷ(k + p|k) over the
prediction horizon N ≥ Nu are minimised. Typically, the
following quadratic cost-function is used:

J(k) =

N∑
p=1

‖ysp(k + p|k)− ŷ(k + p|k)‖2Mp

+

Nu−1∑
p=0

‖�u(k + p|k)‖2Λp
, (4)

where ‖x‖2A = xTAx, the second part of the
cost-function minimises excessive control increments,
the and weighting matrices Mp � 0 and Λp � 0
(usually diagonal) are of dimensions ny × ny and nu ×
nu, respectively. Although the whole sequence of future
control increments (3) is calculated at each sampling
instant of the MPC algorithm, only its first nu elements
are applied to the process at the current sampling instant k,
i.e., u(k) = �u(k|k)+u(k−1), and the whole procedure
is repeated in the next sampling instant (k + 1).

The consecutive predictions of the output variables
over the whole prediction horizon, i.e., the vectors ŷ(k +
1|k), . . . , ŷ(k + N |k), are calculated from a dynamic
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model of the process. In this work the nonlinear
state-space model (1a)–(1b) is used.

As mentioned in Introduction, the MPC approach
makes it possible to efficiently take account of some
constraints. A typical MPC optimisation problem solved
on-line at each sampling instant is

min
�u(k)

{J(k)} ,

subject to (5)

umin ≤ u(k + p|k) ≤ umax, p = 0, . . . , Nu − 1,

�umin ≤ �u(k + p|k) ≤ �umax,

p = 0, . . . , Nu − 1,

ymin ≤ ŷ(k + p|k) ≤ ymax, p = 1, . . . , N,

where the vectors umin, umax ∈ R
nu define the

constraints imposed on the magnitude of the manipulated
variables, the vectors �umin, �umax ∈ R

nu define the
constraints imposed on the increments of the manipulated
variables, and the vectors ymin, ymax ∈ R

ny define the
constraints imposed on the magnitude of the predicted
output variables.

The total number of decision variables of the MPC
algorithm is nuNu while the number of constraints is
4nuNu + 2nyN . In practice, however, it is necessary to
take into account the fact that satisfaction of the hard
output constraints ymin ≤ ŷ(k + p|k) ≤ ymax may be
not possible (in such a case the feasible set of the MPC
optimisation problem (5) is empty). A conceptually better
method is to use soft output constraints (Maciejowski,
2002; Tatjewski, 2007). The predicted values of the
output variables may temporarily violate the original hard
constraints, but this enforces the existence of the feasible
set. The MPC optimisation problem with soft output
constraints is

min
�u(k)

εmin(k+p)
εmax(k+p)

{
N∑

p=1

‖ysp(k + p|k)− ŷ(k + p|k)‖2Mp

+

Nu−1∑
p=0

‖�u(k + p|k)‖2Λp

+ ρmin

N∑
p=1

∥∥εmin(k + p)
∥∥2

+ ρmax

N∑
p=1

‖εmax(k + p)‖2
}
,

subject to

umin ≤ u(k + p|k) ≤ umax, p = 0, . . . , Nu − 1,

�umin ≤ �u(k + p|k) ≤ �umax,

p = 0, . . . , Nu − 1,

ymin − εmin(k + p) ≤ ŷ(k + p|k)
≤ ymax + εmax(k + p),

p = 1, . . . , N,

εmin(k + p) ≥ 0, εmax(k + p) ≥ 0,

p = 1, . . . , N. (6)

When necessary (i.e., when the feasible set is empty),
the original hard output constraints are temporarily
relaxed. The vectors εmin(k + p), εmax(k + p) ∈ R

ny ,
which determine the degree of constraint violation for
consecutive sampling instants over the prediction horizon
(p = 1, . . . , N ), are the additional decision variables of
the MPC optimisation problem (6). They have positive
values only when the corresponding hard constraints
are violated. The number of decision variables of the
resulting MPC algorithm is nuNu + 2nyN , the number
of constraints is 4nuNu + 4nyN and ρmin, ρmax > 0
are penalty coefficients. In order to reduce computational
complexity, one may assume that the same vectors
εmin(k), εmax(k) ∈ R

ny are used over the whole
prediction horizon. In such a case, the number of decision
variables drops to nuNu + 2ny while the number of
constraints is 4nuNu + 2nyN + 2ny.

3. Nonlinear state-space predictive control
with on-line linearisation and quadratic
optimisation

3.1. Prediction model. In this work it is assumed that
the state vector is affected by a state disturbance vector
ν(k) ∈ R

nx and the outputs by a disturbance vector
d(k) ∈ R

ny . In such a case, the nonlinear state-space
model (1a)–(1b) becomes

x(k + 1) = f(x(k), u(k)) + ν(k),

y(k) = g(x(k)) + d(k).

The unknown vector ν(k) may be assessed as the
difference between the measured state x(k) and the
state calculated from the state equation for the sampling
instant k,

ν(k) = x(k)− f(x(k − 1), u(k − 1)).

Moreover, it is assumed that the same state disturbance
acts on the process over the whole prediction horizon,
which means that

ν(k + 1|k) = . . . = ν(k +N |k) = ν(k). (7)

The state disturbance model presented above was
discussed by Tatjewski (2014; 2007), but only for linear
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systems described by the state equation x(k + 1) =
Ax(k)+Bu(k)+ν(k). The predicted state vector for the
sampling instant k + p is calculated at the current instant
k from

x̂(k + p|k) = x(k + p|k) + ν(k), (8)

where x(k + p|k) denotes the state vector obtained from
the state equation (2a). For p = 1, one has

x̂(k + 1|k) = f(x(k), u(k|k)) + ν(k), (9)

and for p = 2, . . . , N , the following recurrent formula is
used:

x̂(k + p|k) = f(x̂(k + p− 1|k), u(k + p− 1|k))
+ ν(k). (10)

Since it is assumed that the state vector is not
measured, the state estimate x̃(k) is used in place of x(k).
The vector ν(k) is then calculated from

ν(k) = x̃(k)− f(x̃(k − 1), u(k − 1)), (11)

and Eqn. (9) becomes

x̂(k + 1|k) = f(x̃(k), u(k|k)) + ν(k). (12)

The unmeasured output disturbance vector is
calculated similarly to the state one (Tatjewski, 2014;
2007) as the difference between the measured output
vector y(k) and the output calculated from the output
equation for the sampling instant k,

d(k) = y(k)− g(x(k) + ν(k))

= y(k)− g(f(x(k − 1), u(k − 1)) + ν(k)).

Similarly to Eqn. (7), it is assumed that the same output
disturbance acts on the process over the whole prediction
horizon, i.e.,

d(k + 1|k) = · · · = d(k +N |k) = d(k). (13)

Similarly to Eqn. (8), the predicted output vector for the
sampling instant k + p is calculated at the current instant
k from

ŷ(k + p|k) = y(k + p|k) + d(k),

where y(k+ p|k) denotes the output vector obtained from
the output equation (2b). One has

ŷ(k + p|k) = g(x̂(k + p|k)) + d(k). (14)

When the state is not measured but estimated, the
output disturbance vector is calculated from

d(k) = y(k)− g(x̃(k) + ν(k))

= y(k)− g(f(x̃(k − 1), u(k − 1)) + ν(k)). (15)

Taking into account Eqns. (12), (10) and (14), the output
predictions are

ŷ(k + 1|k) = g(f(x̃(k), u(k|k)) + ν(k)) + d(k) (16)

and

ŷ(k + p|k) = g(f(x̂(k + p− 1|k), u(k + p− 1|k))
+ ν(k)) + d(k) (17)

for p = 2, . . . , N . It is necessary to emphasise the fact
that the state may be measured or estimated, but the output
vector must always be measured.

To summarise, the state prediction equations (12) and
(10) are very similar to the output prediction ones (16)
and (17): in both the cases the predicted vector is a sum
of a model output and of a disturbance estimate. The
DMC prediction model is used (originally applied in the
dynamic matrix control algorithm (Tatjewski, 2007)), in
which it is assumed that the same disturbance acts on the
process over the whole prediction horizon (Eqns. (7) and
(13)).

3.2. Predictive control optimisation problem refor-
mulation. Defining the following set-point trajectory
and the predicted output trajectory vectors of length nyN :

ysp(k) =

⎡
⎢⎣

ysp(k + 1|k)
...

ysp(k +N |k)

⎤
⎥⎦ , ŷ(k) =

⎡
⎢⎣

ŷ(k + 1|k)
...

ŷ(k +N |k)

⎤
⎥⎦ ,

the additional variables vectors of length nyN ,

εmin(k) =

⎡
⎢⎣

εmin(k + 1)
...

εmin(k +N)

⎤
⎥⎦ ,

εmax(k) =

⎡
⎢⎣

εmax(k + 1)
...

εmax(k +N)

⎤
⎥⎦ ,

and the weighting matricesM = diag(M 1, . . . ,MN ) of
dimensions nyN × nyN and Λ = diag(Λ0, . . . ,ΛNu−1)
of dimensionsnuNu×nuNu, the minimised cost-function
used in the optimisation task (6) becomes

J(k) = ‖ysp(k)− ŷ(k)‖2M + ‖�u(k)‖2Λ
+ ρmin

∥∥εmin
∥∥2 + ρmax ‖εmax‖2 .

Defining the input constraints vectors of length
nuNu,

umin =

⎡
⎢⎣

umin

...
umin

⎤
⎥⎦ , umax =

⎡
⎢⎣

umax

...
umax

⎤
⎥⎦ ,

�umin =

⎡
⎢⎣

�umin

...
�umin

⎤
⎥⎦ , �umax =

⎡
⎢⎣

�umax

...
�umax

⎤
⎥⎦ ,
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and the output constraints vectors of length nyN ,

ymin =

⎡
⎢⎣

ymin

...
ymin

⎤
⎥⎦ , ymax =

⎡
⎢⎣

ymax

...
ymax

⎤
⎥⎦ ,

the general MPC optimisation problem with soft output
constraints (6) can be expressed as

min
�u(k)

εmin(k)
εmax(k)

{
‖ysp(k)− ŷ(k)‖2M + ‖�u(k)‖2Λ
+ ρmin

∥∥εmin(k)
∥∥2 + ρmax ‖εmax(k)‖2

}
,

(18)

subject to

umin ≤ u(k) ≤ umax,

�umin ≤ �u(k) ≤ �umax,

ymin − εmin(k) ≤ ŷ(k) ≤ ymax + εmax(k),

εmin(k) ≥ 0, εmax(k) ≥ 0.

If the nonlinear model (1a)–(1b) is used in MPC, the
output predictions are nonlinear functions of the decision
variables of the algorithm, i.e., the calculated control
moves �u(k). In consequence, the MPC optimisation
problems (5), (6) or (18) are nonlinear tasks which
must be solved on-line in real time. Although in some
applications, e.g., in active noise control (Bismor, 2015),
on-line nonlinear optimisation is used, in general it may be
time-consuming and very difficult from a computational
point of view (e.g., non-convex or multi-modal problems).
That is why two computationally efficient alternatives
with on-line linearisation are considered, which result in
quadratic optimisation problems. They may be efficiently
solved on-line.

In the first case the model is successively linearised
on-line for the current operating point, while in the
second case a linear approximation of the predicted
output trajectory is found on-line. Although the necessity
of the computational efficiency of MPC has been
recognised in the literature (Tatjewski, 2007; Tatjewski
and Ławryńczuk, 2006), the algorithms with simple
successive on-line model linearisation are predominant,
(e.g., Colin et al., 2007; Mu et al., 2005). More
advanced MPC algorithms with on-line linearisation and
the nonlinear free trajectory are described, e.g., by Arahal
et al. (1998), Ławryńczuk (2007), or Tatjewski and
Ławryńczuk (2006). In all of these works input-output
models are used. MPC algorithms for state-space
models and with simple on-line model linearisation are
described by Lee and Ricker (1994), algorithms with
successive linearisation and a nonlinear free trajectory
are described by Ławryńczuk (2014) and Megı́as
et al. (1999), linearisation along the set-point vector is
analysed by Kuure-Kinsey et al. (2006), while more

advanced linearisation methods are thoroughly discussed
by Ławryńczuk (2014). Unfortunately, in many cases the
state estimation problem is not addressed (Ławryńczuk,
2014; Megı́as et al., 1999), which is crucial in the
case of the state-space approach. Finally, for state-space
models it is possible to formulate an MPC scheme with
a Newton-type optimisation algorithm (de Oliveira and
Biegler, 1995). An alternative to on-line linearisation is
MPC with feedback linearisation (Deng et al., 2009).

3.3. State-space predictive control with on-line model
linearisation: The MPC algorithm with nonlinear
prediction and linearisation (MPC-NPL). Using the
Taylor series expansion method, the linear approximation
of the nonlinear state-space model (2a) is

x(k) = f(x̄(k − 1), ū(k − 1))

+A(k)(x(k − 1)− x̄(k − 1))

+B(k)(u(k − 1)− ū(k − 1)),

y(k) = g(x̄(k)) +C(k)(x(k) − x̄(k)),

where the measurement vectors x̄(k − 1) = x̃(k − 1),
x̄(k) = x̃(k) and ū(k − 1) define the current operating
point of the process, whereas the vectors x(k − 1), x(k)
and u(k−1) are arguments (independent variables) of the
linearised model. Thanks to a proper change of variables
with respect to the current operating point, one obtains

x(k) = A(k)x(k − 1) +B(k)u(k − 1), (19a)

y(k) = C(k)x(k). (19b)

The matrices of the linearised model, of dimensions nx ×
nx, nx × nu and ny × nx, respectively, are calculated
analytically on-line from the general equations,

A(k) =
∂f(x(k − 1), u(k − 1))

∂x(k − 1)

∣∣∣∣∣ x(k−1)=x̄(k−1)
u(k−1)=ū(k−1)

,

B(k) =
∂f(x(k − 1), u(k − 1))

∂u(k − 1)

∣∣∣∣∣ x(k−1)=x̄(k−1)
u(k−1)=ū(k−1)

,

C(k) =
dg(x(k))

dx(k)

∣∣∣∣
x(k)=x̄(k)

. (20)

The linearised state equation (19a) may be used to
calculate from the prediction equations (9) and (10) the
predicted states

x̂(k + 1|k) = A(k)x̃(k) +B(k)u(k|k) + ν(k),
x̂(k + 2|k) = A(k)x̂(k + 1|k) +B(k)u(k + 1|k) + ν(k),
x̂(k + 3|k) = A(k)x̂(k + 2|k) +B(k)u(k + 2|k) + ν(k).

...

The state predictions may be expressed as functions of the
increments in the future control increments which are the
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decision variables of the predictive control algorithm,

x̂(k + 1|k) = B(k)�u(k|k) + . . . ,

x̂(k + 2|k) = (A(k) + I)B(k)�u(k|k)
+B(k)�u(k + 1|k) + . . . ,

x̂(k + 3|k) = (A2(k) +A(k) + I)B(k)�u(k|k)
+ (A(k) + I)B(k)�u(k + 1|k)
+B(k)�u(k + 2|k) + . . . , (21)

...

It is assumed, similarly to MPC algorithms based
on time-invariant linear models (Camacho and Bordons,
1999; Tatjewski, 2007), that the predicted trajectory is
a sum of the forced trajectory which depends only on
the future (on the future control moves �u(k)) and the
free state trajectory which depends only on the past. From
Eqn. (21), the state vector predicted over the prediction
horizon, of length nxN , is

x̂(k) =

⎡
⎢⎣

x̂(k + 1|k)
...

x̂(k +N |k)

⎤
⎥⎦

= P (k)�u(k) + x0(k), (22)

where the structure of the matrix P (k), of dimensionality
nxN × nuNu, is defined by Eqn. (23) and the state free
trajectory vector

x0(k) =

⎡
⎢⎣

x0(k + 1|k)
...

x0(k +N |k)

⎤
⎥⎦ ,

is of length nxN . It is calculated from Eqns. (12) and (10)
taking into account only the past, i.e., assuming that u(k+
p|k) = u(k − 1) for p = 1, . . . , N . One obtains

x0(k + 1|k) = f(x̃(k), u(k − 1)) + ν(k), (24)

and

x0(k+p|k) = f(x0(k+p−1|k), u(k−1))+ν(k), (25)

for p = 2, . . . , N . In order to calculate the predicted
output trajectory it is also assumed, in the same way it
is done for state prediction in Eqn. (22), that the predicted
output trajectory is a sum of forced and free trajectories.

From the linearised output equation (19b), one has

ŷ(k) = C̃(k)P (k)�u(k) + y0(k), (26)

where the matrix C̃(k) = diag(C(k), . . . ,C(k)) is of
dimensions nyN×nxN . The output free trajectory vector

y0(k) =

⎡
⎢⎣

y0(k + 1|k)
...

y0(k +N |k)

⎤
⎥⎦

is of length nyN . It is calculated from Eqn. (14) taking
into account only the past, i.e., the free state trajectory

y0(k + p|k) = g(x0(k + p)) + d(k). (27)

On-line model linearisation leads to the output prediction
equation (26), which is a linear function of the calculated
future control policy �u(k). This means that the general
MPC optimisation problem (18) can be transformed to the
following quadratic optimisation task:

min
�u(k)

εmin(k)
εmax(k)

{∥∥∥ysp(k)− C̃(k)P (k)�u(k)− y0(k)
∥∥∥
2

M

+ ‖�u(k)‖2Λ
+ ρmin

∥∥εmin(k)
∥∥2 + ρmax ‖εmax(k)‖2

}
,

(28)

subject to

umin ≤ J�u(k) + u(k − 1) ≤ umax,
�umin ≤ �u(k) ≤ �umax,

ymin − εmin(k) ≤ C̃(k)P (k)�u(k) + y0(k)
≤ ymax + εmax(k),

εmin(k) ≥ 0, εmax(k) ≥ 0,

where the vector

u(k − 1) =

⎡
⎢⎣

u(k − 1)
...

u(k − 1)

⎤
⎥⎦ (29)

is of length nuNu and the matrix

J =

⎡
⎢⎢⎢⎣

Inu×nu 0nu×nu . . . 0nu×nu

Inu×nu Inu×nu . . . 0nu×nu

...
...

. . .
...

Inu×nu Inu×nu . . . Inu×nu

⎤
⎥⎥⎥⎦ (30)

is of dimensions nuNu × nuNu.
Algorithm 1 summarises calculations carried out

on-line at each sampling instant k of the MPC-NPL
approach. The proof that the algorithm guarantees
offset-free control is given in Appendix.

3.4. State-space predictive control with on-line tra-
jectory linearisation: The MPC algorithm with non-
linear prediction and linearisation along the predicted
trajectory (MPC-NPLPT). The MPC-NPL algorithm
calculates at each sampling instant on-line a linear
approximation of the nonlinear state-space model taking
into account the values of the (estimated) state x̃(k), x̃(k−
1) and the most recent available control signals u(k − 1).
The same linearised model is recurrently used for state
and output prediction calculation for the whole prediction
horizon. Because the linearised model describes well
properties of the process only in some neighbourhood
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P (k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B(k) . . . 0nx×nu

(A(k) + Inx×nx)B(k) . . . 0nx×nu

...
. . .

...(
Nu−1∑
i=1

Ai(k) + Inx×nx

)
B(k) . . . B(k)

(
Nu∑
i=1

Ai(k) + Inx×nx

)
B(k) . . . (A(k) + Inx×nx)B(k)

...
. . .

...(
N−1∑
i=1

Ai(k) + Inx×nx

)
B(k) . . .

(
N−Nu∑
i=1

Ai(k) + Inx×nx

)
B(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (23)

Algorithm 1. MPC-NPL algorithm with state estimation.

Step 1. The current state vector x̃(k) is estimated, the
output vector y(k) is measured.

Step 2. The matrices A(k), B(k), C(k) of the
local linear approximation (19a)–(19b) of the nonlinear
model (1a)–(1b) are calculated for the current operating
point of the process from Eqns. (20).

Step 3. The matrix P (k) is calculated from Eqn. (23).

Step 4. The state disturbance vector ν(k) is estimated
from Eqn. (11), the output disturbance vector d(k) is
calculated from Eqn. (15).

Step 5. The nonlinear model of the process (1a)–(1b)
is used to find nonlinear free state trajectory x0(k)
from Eqns. (24) and (25) and the nonlinear free output
trajectory y0(k) from Eqn. (27).

Step 6. The quadratic optimisation problem (28) is solved
to calculate the future control increments vector �u(k).

Step 7. The first nu elements of the sequence �u(k) are
applied to the process, i.e., u(k) = �u(k|k) + u(k − 1).

Step 8. At the next sampling instant, i.e., k := k + 1, the
algorithm goes to Step 1.

of the operating point, it may give insufficient control
accuracy when the set-point trajectory changes rapidly
and significantly.

In order to increase prediction accuracy (and control
accuracy), a more advanced approach is discussed, in
which the predicted trajectory is linearised for some
future control scenario, not for an operating point defined
by past signals. Furthermore, trajectory linearisation and
optimisation of the future control scenario are repeated
a few times at each sampling instant in the internal
iterations.

Let t be the index of internal iterations (t =
1, . . . , tmax). In the internal iteration t, the predicted

nonlinear output trajectory

ŷt(k) =

⎡
⎢⎣

ŷt(k + 1|k)
...

ŷt(k +N |k)

⎤
⎥⎦

is linearised along the future input trajectory

ut−1(k) =

⎡
⎢⎣

ut−1(k|k)
...

ut−1(k +N |k)

⎤
⎥⎦ ,

found in the previous internal iteration (t − 1). The
input trajectory ut−1(k) corresponds to the predicted
output trajectory ŷt−1(k); i.e., the output trajectory may
be calculated for the input one from the model of the
process. Taking into account the general output prediction
equations (14), (16) and (17), it is calculated from

ŷt−1(k + 1|k) = g(x̂t−1(k + 1|k)) + d(k)

= g(f(x̃(k), ut−1(k|k)) + ν(k))

+ d(k) (31)

and

ŷt−1(k + p|k) = g(x̂t−1(k + p|k)) + d(k)

= g(f(x̂t−1(k + p− 1|k),
ut−1(k + p− 1|k)) + ν(k))

+ d(k), (32)

for p = 2, . . . , N . The input trajectory ut−1(k), along
which the output trajectory is linearised on-line, may
be initialised using the last nu(Nu − 1) elements of
the future control sequence calculated at the previous
sampling instant (k − 1) and not applied to the process.

Using the Taylor series expansion method, the linear
approximation of the nonlinear output trajectory ŷt(k)
along the input trajectory ut−1(k), i.e., linearisation of the
function ŷt(ut(k)) : RnuNu → R

nyN , is

ŷt(k) = ŷt−1(k) +Ht(k)(ut(k)− ut−1(k)). (33)
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The control values ut(k) calculated at the current internal
iteration t are the arguments of the function ŷt(k),
whereas the vectors ut−1(k) and ŷt−1(k) are fixed for
the current initial iteration. The matrix of the derivatives
of the predicted output trajectory with respect to the future
control signals is of dimensions nyN × nuNu and it has
the general structure

Ht(k)

=
dŷ(k)

du(k)

∣∣∣∣∣∣ ŷ(k)=ŷt−1(k)

u(k)=ut−1(k)

=
dŷt−1(k)

dut−1(k)

=

⎡
⎢⎢⎢⎢⎢⎣

∂ŷt−1(k + 1|k)
∂ut−1(k|k) · · · ∂ŷt−1(k + 1|k)

∂ut−1(k +Nu − 1|k)
...

. . .
...

∂ŷt−1(k +N |k)
∂ut−1(k|k) · · · ∂ŷt−1(k +N |k)

∂ut−1(k +Nu − 1|k)

⎤
⎥⎥⎥⎥⎥⎦
.

(34)
From the output prediction equations (31) and (32), it is
possible to calculate the entries of the matrix Ht(k). The
general formulae for trajectory linearisation are

∂ŷt−1(k + 1|k)
∂ut−1(k + r|k) =

∂g(x̂t−1(k + 1|k))
∂ut−1(k + r|k)

× ∂f(x̃(k), ut−1(k|k))
∂ut−1(k + r|k) , (35)

for r = 0, . . . , Nu − 1, and

∂ŷt−1(k + p|k)
∂ut−1(k + r|k)
=

∂g(x̂t−1(k + p|k))
∂ut−1(k + r|k) (36)

× ∂f(x̂t−1(k + p− 1|k), ut−1(k + p− 1|k))
∂ut−1(k + r|k) ,

for p = 2, . . . , N , r = 0, . . . , Nu − 1. Using the vector
u(k − 1) defined by Eqn. (29) and the matrix J defined
by Eqn. (30), the linear approximation of the nonlinear
predicted output trajectory (33) becomes

ŷt(k) = Ht(k)J�ut(k) + ŷt−1(k)

+Ht(k)(u(k − 1)− ut−1(k)). (37)

On-line trajectory linearisation leads to the output
prediction equation (37), which is a linear function
of the future control policy �ut(k) calculated for
the current sampling instant k and at the internal
iteration t. Furthermore, the general MPC optimisation
problem (18) can be transformed to the following

quadratic optimisation task:

min
�ut(k)

εmin(k)
εmax(k)

{∥∥ysp(k)−Ht(k)J�ut(k)− ŷt−1(k)

−Ht(k)(u(k − 1)− ut−1(k))
∥∥2

+ ‖�ut(k)‖2Λ
+ ρmin

∥∥εmin(k)
∥∥2 + ρmax ‖εmax(k)‖2

}
,

subject to (38)

umin ≤ J�ut(k) + u(k − 1) ≤ umax,
�umin ≤ �ut(k) ≤ �umax,

ymin − εmin(k) ≤ Ht(k)J�ut(k) + ŷt−1(k)
+Ht(k)(u(k − 1)− ut−1(k))

≤ ymax + εmax(k),
εmin(k) ≥ 0, εmax(k) ≥ 0.

More than one internal iteration may be necessary if
the set-point changes in the consecutive sampling instants
are significant, i.e., when

N0∑
p=0

(ysp(k − p)− y(k − p))2 ≥ δy. (39)

If the difference between the future control increments
calculated in two consecutive internal iterations is not
significant, i.e., when

∥∥�ut(k)−�ut−1(k)
∥∥2 < δu, (40)

the internal iterations are terminated. The parameters N0,
δy > 0 and δu > 0 are adjusted experimentally.

Algorithm 2 summarises calculations carried out
on-line at each sampling instant k of the MPC-NPLPT
approach. The proof that the algorithm guarantees
offset-free control is given in Appendix.

3.5. State estimation. The classical extended Kalman
filter (Simon, 2006) is used for state estimation. For this
purpose, the model of the process is

x(x) = f(x(k − 1), u(k − 1)) + w(k − 1),

y(x) = g(x(k)) + v(k),

where w(k − 1) and v(k) are the process and observation
(measurement) noises, respectively. They are assumed to
be zero mean, Gaussian and uncorrelated noises with
covariance matrices Q(k − 1) = E([w(k − 1)wT(k −
1)]) and R(k) = E([v(k)vT(k)]), respectively. State
estimation requires successive on-line model linearisation

F (k − 1) =
∂f(x(k − 1), u(k − 1))

∂x(k − 1)

∣∣∣∣
x(k−1)=x̃(k−1|k−1)

,

H(k) =
∂g(x(k))

∂x(k)

∣∣∣∣
x(k)=x̃(k|k−1)

.

When constant matrices F and H are used, one obtains
the Kalman filter for linear systems.



Nonlinear state-space predictive control with on-line linearisation and state estimation 841

Algorithm 2. MPC-NPLPT algorithm with state
estimation.

Step 1. The current state vector x̃(k) is estimated, the
output vector y(k) is measured.

Step 2. The state disturbance vector ν(k) is estimated
from Eqn. (11), the output disturbance vector d(k) is
calculated from Eqn. (15).
Step 3. The first internal iteration (t = 1): the predicted
output trajectory ŷ0(k) is calculated for the assumed
input trajectory u0(k) using the nonlinear model from
Eqns. (31) and (32).

Step 4. The nonlinear model (1a)–(1b) is used to find
the linear approximation of the predicted trajectory ŷ1(k)
along the trajectory u0(k); i.e., the entries of the matrix
H1(k) given by Eqn. (34) are found from Eqns. (35) and
(36).

Step 5. The quadratic optimisation problem (38) is solved
to calculate the future control increments vector �u1(k).

Step 6. If the condition (39) is satisfied, the internal
iterations are continued for t = 2, . . . , tmax.

Step 6.1. The predicted output trajectory ŷt−1(k)
is calculated for the input trajectory ut−1(k) =
J�ut−1(k)+u(k−1) using the nonlinear model from
Eqns. (31) and (32).
Step 6.2. The nonlinear model is used to find the linear
approximation of the predicted trajectory ŷt(k) along
the trajectory ut−1(k); i.e., the entries of the matrix
Ht(k) given by Eqn. (34) are found from Eqns. (35)
and (36).
Step 6.3. The quadratic optimisation problem (38) is
solved to calculate the future control increments vector
�ut(k) for the current internal iteration.
Step 6.4. If the condition (40) is satisfied or t > tmax,
the internal iterations are terminated. Otherwise, the
internal iteration index is increased, i.e., t := t + 1,
the algorithms goes to Step 6.1.

Step 7. The first nu elements of the sequence �ut(k) are
applied to the process, i.e., u(k) = �ut(k|k) + u(k− 1).

Step 8. At the next sampling instant, i.e., k : = k+1, the
algorithm goes to Step 1.

4. Simulations

4.1. Polymerisation reactor benchmark. In order to
evaluate and compare the discussed MPC algorithms,
a polymerisation reaction taking place in a jacketed
continuous stirred tank reactor (Doyle et al., 1995) is
considered. The reaction is the free-radical polymerisation
of methyl methacrylate with azo-bis-isobutyronitrile as
the initiator and toluene as the solvent. The output y
(number average molecular weight, NAMW) [kg kmol−1]
is controlled by manipulating the inlet initiator flow rate u

[m3 h−1]. Under some technological assumptions (Doyle
et al., 1995), the continuous-time fundamental model of
the polymerisation reactor is comprised of four nonlinear
ordinary differential equations and one algebraic output
equation,

ẋ1(t) = 60− 10x1(t)− 2.4568x1(t)
√
x2(t),

ẋ2(t) = 80u(t)− 10.1022x2(t),

ẋ3(t) = 0.0024121x1(t)
√

x2(t) + 0.112191x2(t)

− 10x3(t),

ẋ4(t) = 245.978x1(t)
√

x2(t)− 10x4(t),

y(t) =
x4(t)

x3(t)
.

The initial operating conditions are u = 0.028328 m3

h−1, y = 20000 kg kmol−1, x1 = 5.3745 kmol m−3,
x2 = 2.2433 × 10−1 kmol m−3, x3 = 3.1308 ×
10−3 kmol m−3, x4 = 6.2616 × 10−1 kmol m−3. The
continuous-time state-space model is discretised with the
sampling time Ts = 1.8 s by means of Euler’s method,

x1(k + 1) = x1(k) + Ts

(
60− 10x1(k)− 2.4568α(k)

)
,

x2(k + 1) = x2(k) + Ts

(
80u(k)− 10.1022x2(k)

)
,

x3(k + 1) = x3(k) + Ts

(
0.0024121α(k)

+ 0.112191x2(k)− 10x3(k)
)
,

x4(k + 1) = x4(k) + Ts

(
245.978α(k)− 10x4(k)

)
,

y(k) =
x4(k)

x3(k)
, (41)

where
α(k) = x1(k)

√
x2(k). (42)

The following MPC strategies are compared:

(a) the linear MPC algorithm (Tatjewski, 2014; 2007),

(b) the discussed nonlinear MPC-NPL algorithm with
successive on-line model linearisation,

(c) the discussed nonlinear MPC-NPLPT algorithm with
successive on-line trajectory linearisation,

(d) the “ideal” MPC algorithm with nonlinear
optimisation (MPC-NO).

The linear algorithm and algorithms with on-line
linearisation require on-line quadratic optimisation.
Because the MPC-NO strategy uses for prediction
the nonlinear model without any simplifications, it
requires on-line nonlinear optimisation. Parameters of all
algorithms are the same: N = 10, Nu = 3, Mp =
1, Λp = 5 × 1010, the additional parameters of the
MPC-NPLPT algorithm are N0 = 3, δy = 100 and δu =
0.00001 (tuning is described elsewhere (Ławryńczuk,
2014)), the constraints are umin = 0.003, umax = 0.06.
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The process is simulated by the system described by Eqns.
(41) and (42), and the same set of equations is used as
the model in all nonlinear MPC algorithms. For state
estimation, the Kalman filter is used in the linear MPC
algorithm while the extended Kalman filter is used in all
nonlinear ones. Their parameters are the initial value of
the predicted covariance estimate is P (1|0) = 100I4×4

and the covariance matrices of process and observation
noises are Q = 0.1I4×4 and R = 1, respectively.

4.2. Implementation of the linear MPC algorithm
for the benchmark process. The linear MPC algorithm
(Tatjewski, 2014) with the state disturbance model (7) and
the output disturbance model (13) is used. For prediction
the algorithm uses a linear model

x(k + 1) = Ax(k) +Bu(k),

y(k) = Cx(k),

whose parameters correspond to the nominal operating
point of the process. Model matrices are

A =

⎡
⎢⎢⎣

6.6509× 10−1 −4.1818× 10−1 0 0
0 6.9693× 10−1 0 0
3.4274× 10−5 3.7763× 10−3 0.7 0
3.4951 4.1868× 101 0 0.7

⎤
⎥⎥⎦ ,

B =

⎡
⎢⎢⎣

0
2.4
0
0

⎤
⎥⎥⎦ ,

C =
[
0 0 −6.3881× 106 3.1940× 102

]
.

4.3. Implementation of the MPC-NPL algorithm for
the benchmark process. For the nonlinear state-space
model defined by Eqns. (41) and (42), from Eqn. (20) the
matrices of the linearised model (19a)–(19b) are

A(k) =

⎡
⎢⎢⎣

a1,1(k) a1,2(k) 0 0
0 a2,2 0 0
a3,1(k) a3,2(k) a3,3 0
a4,1(k) a4,2(k) 0 a4,4

⎤
⎥⎥⎦ ,

B(k) =

⎡
⎢⎢⎣

0
b2,1
0
0

⎤
⎥⎥⎦ ,

C(k) =
[
0 0 c1,3(k) c1,4(k)

]
,

where

a1,1(k) = 1 + Ts(−10− 2.4568
√
x̃2(k − 1)),

a1,2(k) = −1.2284Ts
x̃1(k − 1)√
x̃2(k − 1)

,

a2,2 = 1− 10.1022Ts,

a3,1(k) = 0.0024121Ts

√
x̃2(k − 1),

a3,2(k) = Ts

(
0.00120605

x̃1(k − 1)√
x̃2(k − 1)

+ 0.112191

)
,

a3,3 = 1− 10Ts,

a4,4 = 1− 10Ts,

a4,1(k) = 245.978Ts

√
x̃2(k − 1),

a4,2(k) = 122.989Ts
x̃1(k − 1)√
x̃2(k − 1)

,

b2,1 = 2.4,

c1,3(k) = − x̃4(k)

(x̃3(k))2
,

c1,4(k) =
1

x̃3(k)
.

One may note that the the extended Kalman filter
matrix F (k) is the same as the model matrix A(k) used
in MPC, but H(k) = C(k − 1). The state disturbances
are estimated from Eqn. (11), which gives

ν(k)

= [x̃1(k) x̃2(k) x̃3(k) x̃4(k)]
T (43)

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1− 10Ts)x̃1(k − 1) + 60Ts

−2.4568Tsα̃(k − 1)

(1− 10.1022Ts)x̃2(k − 1) + 80Tsu(k − 1)

0.112191Tsx̃2(k − 1) + (1− 10Ts)x̃3(k − 1)
+0.0024121Tsα̃(k − 1)

x̃4(k − 1)(1− 10Ts) + 245.978Tsα̃(k − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where α̃(k − 1) = x̃1(k − 1)
√
x̃2(k − 1) whereas the

output disturbance is estimated from Eqn. (15), which
gives

d(k) = y(k)−
(
(1− 10Ts)x̃4(k − 1) (44)

+ 245.978Tsα̃(k − 1) + ν4(k)
)

×
(
0.112191Tsx̃2(k − 1)

+ (1− 10Ts)x̃3(k − 1)

+ 0.0024121Tsα̃(k − 1) + ν3(k)
)−1

.

The nonlinear state free trajectory may be found
from Eqns. (10) and (12) using the state equations (41)
and remembering that u(k + p|k) = u(k − 1) for
p = 0, . . . , Nu − 1. For the first sampling instant of the
prediction horizon one has

x̂0
1(k + 1|k) = (1− 10Ts)x̃1(k) + 60Ts

− 2.4568Tsα̃(k) + ν1(k),
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x̂0
2(k + 1|k) = (1 − 10.1022Ts)x̃2(k)

+ 80Tsu(k − 1) + ν2(k),

x̂0
3(k + 1|k) = 0.112191Tsx̃2(k) + (1− 10Ts)x̃3(k)

+ 0.0024121Tsα̃(k) + ν3(k),

x̂0
4(k + 1|k) = (1 − 10Ts)x̃4(k)

+ 245.978Tsα̃(k) + ν4(k),

where α̃(k) = x̃1(k)
√

x̃2(k), whereas for p = 2, . . . , N
one obtains

x0
1(k + p|k) = (1− 10Ts)x

0
1(k + p− 1|k) + 60Ts

− 2.4568Tsα
0(k + p− 1|k) + ν1(k),

x0
2(k + p|k) = (1− 10.1022Ts)x

0
2(k + p− 1|k)

+ 80Tsu(k + p− 1) + ν2(k),

x0
3(k + p|k) = 0.112191Tsx

0
2(k + p− 1|k)

+ (1− 10Ts)x
0
3(k + p− 1|k)

+ 0.0024121Tsα
0(k + p− 1|k) + ν3(k),

x0
4(k + p|k) = (1− 10Ts)x

0
4(k + p− 1|k)

+ 245.978Tsα
0(k + p− 1|k) + ν4(k),

where

α0(k + p− 1|k) = x0
1(k + p− 1|k)

√
x0
2(k + p− 1|k).

The output free trajectory is calculated for the state free
one, from Eqn. (17) and the output equation (41), which
gives

ŷ0(k + p|k) = x0
4(k + p|k) + ν4(k)

x0
3(k + p|k) + ν3(k)

+ d(k),

for p = 1, . . . , N .

4.4. Implementation of the MPC-NPLPT algorithm
for the benchmark process. The state and output
disturbances are estimated in the same way it is done
in the MPC-NPL algorithm, from Eqns. (43) and (44),
respectively. The predicted nonlinear state trajectory for
the internal iteration t is found from Eqns. (12) and
(10) using the state equations (41). For the first sampling
instant of the prediction horizon one has

x̂t
1(k + 1|k) = (1− 10Ts)x̃1(k) + 60Ts

− 2.4568Tsα̃(k) + ν1(k),

x̂t
2(k + 1|k) = (1− 10.1022Ts)x̃2(k)

+ 80Tsu
t(k|k) + ν2(k),

x̂t
3(k + 1|k) = 0.112191Tsx̃2(k)

+ (1− 10Ts)x̃3(k)

+ 0.0024121Tsα̃(k) + ν3(k),

x̂t
4(k + 1|k) = (1− 10Ts)x̃4(k)

+ 245.978Tsα̃(k) + ν4(k),

where α̃(k) = x̃1(k)
√
x̃2(k), whereas for p = 2, . . . , N

one obtains

x̂t
1(k + p|k) = (1− 10Ts)x̂

t
1(k + p− 1|k) + 60Ts

− 2.4568Tsα
t(k + p− 1|k) + ν1(k),

x̂t
2(k + p|k) = (1− 10.1022Ts)x̂

t
2(k + p− 1|k)

+ 80Tsu
t(k + p− 1) + ν2(k),

x̂t
3(k + p|k) = 0.112191Tsx̂

t
2(k + p− 1|k)

+ (1− 10Ts)x̂
t
3(k + p− 1|k)

+ 0.0024121Tsα
t(k + p− 1|k) + ν3(k),

x̂t
4(k + p|k) = (1− 10Ts)x̂

t
4(k + p− 1|k)

+ 245.978Tsα
t(k + p− 1|k) + ν4(k),

where

αt(k + p− 1|k) = x̂t
1(k + p− 1|k)

√
x̂t
2(k + p− 1|k).

The predicted nonlinear output trajectory is
calculated from Eqn. (17) and the output equation (41),
which gives

ŷt(k + p|k) = x̂t
4(k + p|k) + ν4(k)

x̂t
3(k + p|k) + ν3(k)

+ d(k),

for p = 1, . . . , N . The linear approximation of the
predicted trajectory ŷt(k) along the trajectory ut−1(k) is
calculated from the general Eqns. (35) and (36). For the
benchmark model (41), one obtains

∂ŷ(k + p|k)
∂ut−1(k + r|k) =

(
∂x̂t−1

4 (k + p|k)
∂ut−1(k + r|k)x

t−1
3 (k + p|k)

− xt−1
4 (k + p|k)∂x̂

t−1
3 (k + p|k)

∂ut−1(k + r|k)

)

× 1

(x̂t−1
3 (k + p|k))2 ,

for p = 1, . . . , N and r = 0, . . . , Nu − 1, where

∂x̂t−1
n (k + 1|k)

∂ut−1(k + r|k) = 0, n = 1, 3, 4,

∂x̂t−1
2 (k + 1|k)

∂ut−1(k + r|k) = 80Ts
∂ut−1(k|k)

∂ut−1(k + r|k) ,

and

∂x̂t−1
1 (k + p|k)

∂ut−1(k + r|k) = (1 − 10Ts)
∂x̂t−1

1 (k + p− 1|k)
∂ut−1(k + r|k)

− 2.4568Ts
∂αt−1(k + p− 1|k)
∂ut−1(k + r|k) ,
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∂x̂t−1
2 (k + p|k)

∂ut−1(k + r|k) = (1− 10.1022Ts)
∂x̂t−1

2 (k + p− 1|k)
∂ut−1(k + r|k)

+ 80Ts
∂ut−1(k + p− 1|k)
∂ut−1(k + r|k) ,

∂x̂t−1
3 (k + p|k)

∂ut−1(k + r|k) = 0.112191Ts
∂x̂t−1

2 (k + p− 1|k)
∂ut−1(k + r|k)

(1− 10Ts)
∂x̂t−1

3 (k + p− 1|k)
∂ut−1(k + r|k)

+ 0.0024121Ts
∂αt−1(k + p− 1|k)
∂ut−1(k + r|k) ,

∂x̂t−1
4 (k + p|k)

∂ut−1(k + r|k) = (1− 10Ts)
∂x̂t−1

4 (k + p− 1|k)
∂ut−1(k + r|k)

+ 245.978Ts
∂αt−1(k + p− 1|k)
∂ut−1(k + r|k) ,

for p = 2, . . . , N , where

∂αt−1(k + p− 1|k)
∂ut−1(k + r|k)

=
∂x̂t−1

1 (k + p− 1|k)
∂ut−1(k + r|k)

√
x̂t−1
2 (k + p− 1|k)

+
x̂t−1
1 (k + p− 1|k)

2
√
x̂t−1
2 (k + p− 1|k)

∂x̂t−1
2 (k + p− 1|k)
∂ut−1(k + r|k) ,

and

∂ut−1(k + p|k)
∂ut−1(k + r|k)

=

{
1 if p = r, p > r and r = Nu − 1,

0 otherwise.
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Fig. 1. Simulation results of the linear MPC algorithm; the ini-
tial condition of the process is known.

1 20 40 60 80 100 120
0

1

2

3

4

5

6
×10−2

k

u

1 20 40 60 80 100 120

2

2.5

3

3.5

4

4.5
×104

k

y
sp
,
y

ysp

Fig. 2. Simulation results: the MPC-NPL algorithm with on-
line model linearisation and quadratic optimisation
(dashed line with circles), the MPC-NO algorithm with
on-line nonlinear optimisation (solid line with dots); the
initial condition of the process is known.

4.5. Comparison of MPC algorithms for the bench-
mark process. The set-point trajectory consists of three
steps: at the instant k = 2 it changes from the nominal
operating point (y = 20000) to ysp = 30000, at the instant
k = 40 it changes to ysp = 40000, and at the instant
k = 80 it changes to ysp = 20000. The unmeasured input
step disturbance at the instant k = 20 changes from 0 to
−0.005, at the instant k = 60 it changes from −0.005
to −0.01; the unmeasured output step disturbance at the
instant k = 100 changes from 0 to 2000.

4.5.1. Case I: Initial condition known, no noise. First
it is assumed that the initial condition of the process is
known; i.e., the initial conditions of the process and of
the filter are the same, and the process is not affected
by measurement noise. Simulation results of the linear
MPC algorithm are shown in Fig. 1. Unfortunately, for the
first two set-point changes, the steady-state is not reached.
Next, Fig. 2 compares simulation results of the MPC-NPL
algorithm with on-line model linearisation and quadratic
optimisation to those of the “ideal” MPC-NO algorithm
with on-line nonlinear optimisation. The trajectories of
the MPC-NPL algorithm are a little bit slower, but it
works well: it follows the set-point changes, and quickly
compensates for input and output disturbances, and the
steady-state is always reached. Next, Fig. 3 compares
simulation results of the MPC-NPLPT algorithm with
on-line trajectory linearisation and quadratic optimisation
to those of the MPC-NO algorithm. On-line predicted
trajectory linearisation leads to the same control accuracy
as in the MPC-NO algorithm. Figure 4 depicts real and
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Fig. 3. Simulation results: the MPC-NPLPT algorithm with on-
line trajectory linearisation and quadratic optimisation
(dashed line with circles), the MPC-NO algorithm with
on-line nonlinear optimisation (solid line with dots); the
initial condition of the process is known.

estimated state trajectories in the MPC-NPLPT scheme.
At the beginning, due to a perfect initial condition of
the filter, they are the same, but as the first disturbance
appears (k = 20), they start to be different. Despite
these discrepancies and disturbances, the discussed MPC
algorithms provide offset-free control. Table 1 compares
the nonlinear MPC algorithms in terms of the sum of
squared control errors.
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Fig. 4. Real state trajectories (solid line) and the estimated state
trajectories (dashed line) in the MPC-NPLPT algorithm
with on-line trajectory linearisation and quadratic opti-
misation; the initial condition of the process is known.
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Fig. 5. Simulation results: the MPC-NPLPT algorithm with on-
line trajectory linearisation and quadratic optimisation
(dashed line with circles), the MPC-NO algorithm with
on-line nonlinear optimisation (solid line with dots); the
initial condition of the process is not known and the out-
put of the process is additionally affected by measure-
ment noise.

4.5.2. Case II: Initial condition not known, addi-
tional output noise. Next, it is assumed that the initial
condition of the process is not known, the initial state
of the filter is x̃ = [4 0.3 0.001 40]

T, and the process
output is additionally affected by noise with normal
distribution with zero mean and standard deviation 250.
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Fig. 6. Real state trajectories (solid line) and the estimated state
trajectories (dashed line) in the MPC-NPLPT algorithm
with on-line trajectory linearisation and quadratic op-
timisation; the initial condition of the process is not
known and the output of the process is additionally af-
fected by measurement noise.
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Table 1. Comparison of summmarised squared control errors of
the nonlinear MPC algorithms.

Algorithm Case I Case II

MPC-NPL 1.8827 × 109 2.0045 × 109

MPC-NPLPT 1.8512 × 109 1.8666 × 109

MPC-NO 1.8512 × 109 1.8666 × 109

Figure 5 compares trajectories of MPC-NPLPT and
MPC-NO algorithms, Figure 6 depicts real and estimated
state trajectories. Also in this case, despite noise, the
MPC-NPLPT algorithm gives control accuracy the same
as the MPC-NO scheme. All nonlinear MPC algorithms
provide offset-free control.

Computational time of the MPC algorithms
is as follows: MPC-NPL algorithm—2.33 s,
MPC-NPLPT—2.99 s, MPC-NO—14.47 s (Intel Core
i5-2540M processor).

5. Conclusions

This work discusses two computationally efficient
nonlinear MPC algorithms for dynamic systems described
by state-space models and with state estimation. The
model or the predicted trajectory is successively
linearised on-line, which leads to quadratic optimisation.
The presented algorithms are straightforward in
implementation because the disturbance handling
mechanism used by Tatjewski (2014) in the case of linear
systems is adopted. The process state itself is estimated,
the disturbance state observer is not used, but the
algorithms compensate for deterministic constant-type
disturbances. Implementation and efficiency of the
algorithms are demonstrated for a polymerisation reactor
benchmark for which the MPC algorithm with trajectory
linearisation gives the same performance as the MPC
scheme with nonlinear optimisation.
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Appendix

To prove that the MPC-NPL algorithm with state
estimation guarantees offset-free control, the reasoning is
similar to that used for the linear MPC algorithm with
the discussed state and output disturbance estimations
(Tatjewski, 2014). It is assumed that the set-point is
(asymptotically) constant, ysp(k) = ysp, and feasible at
steady-state; all disturbances are constant and the process
is asymptotically stable. In steady state, the process state
and its estimate stabilise at xss and x̃ss, respectively;
the solution to the MPC optimisation problem (18) is
�u(k) = 0nuNu,1, the cost-function has its lowest
possible value 0, and the input of the process stabilises
at uss. From Eqn. (26), it follows that ysp = y0(k + p|k)
for p = 1, . . . , N . From Eqns. (24) and (11), one has

x0(k + 1|k) = f(x̃ss, uss) + ν(k)

= f(x̃ss, uss) + x̃ss − f(x̃ss, uss) = x̃ss.

Analogously, from Eqns. (25) and (11), for p = 2, . . . , N
one obtains

x0(k + p|k) = f(x0(k + p− 1|k), uss) + ν(k)

= f(xss, uss) + x̃ss − f(x̃ss, uss) = x̃ss.

From Eqns. (27) and (15), one has

ysp = y0(k + p|k) = g(x0(k + p)) + d(k)

= g(x̃ss) + yss − g(x̃ss) = yss,

which means that at steady-state the offset-free
stabilisation is guaranteed (ysp = yss).

For the MPC-NPLPT algorithm, from Eqn. (33) it
follows that ut(k) = ut−1(k), and only one (initial)
internal iteration is necessary, which results in state and
output free trajectories. They are calculated in the same
way it is done in the MPC-NPL scheme, which means that
at steady-state the offset-free stabilisation is guaranteed.

Received: 10 July 2014
Revised: 24 January 2015


	Introduction
	Nonlinear state-space predictive control problem formulation
	State-space process description
	Nonlinear state-space predictive control

	Nonlinear state-space predictive control with on-line linearisation and quadratic optimisation
	Prediction model
	Predictive control optimisation problem reformulation
	State-space predictive control with on-line model linearisation: The MPC algorithm with nonlinear prediction and linearisation (MPC-NPL)
	State-space predictive control with on-line trajectory linearisation: The MPC algorithm with nonlinear prediction and linearisation along the predicted trajectory (MPC-NPLPT)
	State estimation

	Simulations
	Polymerisation reactor benchmark
	Implementation of the linear MPC algorithm for the benchmark process
	Implementation of the MPC-NPL algorithm for the benchmark process
	Implementation of the MPC-NPLPT algorithm for the benchmark process
	Comparison of MPC algorithms for the benchmark process
	Case I: Initial condition known, no noise
	Case II: Initial condition not known, additional output noise


	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [597.600 842.400]
>> setpagedevice




