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The paper deals with the modeling and fault-tolerant control of a real battery assembly system which is under implemen-
tation at the RAFI GmbH company (one of the leading electronic manufacturing service providers in Germany). To model
and control the battery assembly system, a unified max-plus algebra and model predictive control framework is introduced.
Subsequently, the control strategy is enhanced with fault-tolerance features that increase the overall performance of the
production system being considered. In particular, it enables tolerating (up to some degree) mobile robot, processing and
transportation faults. The paper discusses also robustness issues, which are inevitable in real production systems. As a
result, a novel robust predictive fault-tolerant strategy is developed that is applied to the battery assembly system. The last
part of the paper shows illustrative examples, which clearly exhibit the performance of the proposed approach.
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1. Introduction

Manufacturing systems, in particular, flexible ones,
should be capable of adapting to change in product
demands, shorter product life cycles, a higher product
variety, requirements for shorter delivery times, and
a higher quality and should allow responding to
the fast changes in the economical market. Indeed,
modern manufacturing systems proceed towards agile
manufacturing, which significantly increases these
demands (Gunasekaran, 1999). Model predictive control
(MPC) is able to meet these demands in many practical
production systems, especially in the continuous-time
framework (Rossiter, 2013; Prodan et al., 2013). Thus, as
the number of MPC applications constantly proliferates,
this recommends its application the industry-oriented
control tasks.
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Indeed, there exist many reasons for applying
MPC for control in the process industry. It is an
easy-to-tune model-based controller design procedure
that can handle multi-input multi-output processes and
constraints imposed on the inputs and outputs of
the system. Moreover, MPC can be employed for
structural changes, such as sensor and/or actuator
faults (Camacho and Bordons, 1997) and variations in
the system parameters (it is of special importance in
flexible manufacturing systems (De Schutter and Van
Den Boom, 2001)) by using a moving horizon approach,
in which the model and control strategy are continuously
updated. Such a policy is called fault-tolerant control
(FTC) (Blanke et al., 2006; Witczak, 2014).

A permanent increase in the complexity,
efficiency, and reliability of modern industrial system
necessitates continuous development of control and
fault diagnosis. A moderate combination of these
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two paradigms is intensively studied under the name
of FTC. FTC systems are divided into two distinct
classes (Zhang and Jiang, 2008): passive and active.
In passive FTC, controllers are designed to be robust
against a set of predefined faults; therefore, there is
no need for fault diagnosis, but such a design usually
degrades the overall performance. In contrast to passive
ones, active FTC schemes react to faults actively by
reconfiguring control actions in such a way that the system
stability and acceptable performance are maintained. To
attain this objective the control system relies on fault
detection and isolation (FDI) (Korbicz et al., 2004; Li
et al., 2007; Mrugalski, 2013; Witczak, 2007; Chen
et al., 2011) as well as an accommodation
technique (Blanke et al., 2006). Most of the existing
works treat the FDI and FTC problems separately.
Unfortunately, perfect FDI and fault identification are
impossible, and hence there is always an inaccuracy
related to this process.

The paper deals with the design and implementation
task of FTC for a battery assembly system, which
is described using the discrete event max-plus algebra
framework (Baccelli et al., 1992; Butkovic, 2010).
This strategy is further extended to deal with various
uncertainties, which are inevitable in certain production
systems. It should be pointed out that, to the authors’
knowledge, there are no works present in the literature that
deal with FTC for production systems described within
max-plus algebra framework.

The battery assembly system being investigated is
under construction at the RAFI company, which is one
of the leading electronic manufacturing service providers
in Germany. The paper considers a part of this system
that contains two transportation robots, assembly stations,
and input and output buffers. Such components are typical
for manufacturing processes, which belong to the class
of discrete-event systems (DESs) (Polak et al., 2004).
The DES is a discrete-state, event-driven system while
its state evolution depends entirely on the occurrence of
discrete events over time. Thus, in DESs, the state-space
of a system is naturally described by a discrete set like
{0, 1, 2, . . .} and the transitions are only observed at
the discrete instants in time. There are many different
modeling techniques for discrete-event systems, such as
Petri nets, extended state machines, event-graphs, formal
languages, generalized semi Markov processes, nonlinear
programming, automata, computer simulation models and
so on (see, e.g., the works of Sahner et al. (2012),
Abrams et al. (1992), Hillion and Proth (1989), Yan
et al. (2013) and the references therein). It should be
underlined that models describing a DES are nonlinear
in the conventional algebra. However, it is possible to
define a class of discrete-event systems, mostly called
max-plus linear discrete-event systems, in which there
is a synchronization without concurrency or selection.

This class of DES can be described by a model that
is linear within the max-plus algebra (Baccelli et al.,
1992; Butkovic, 2010). This recommends its application
(instead of the more traditional approaches (Witczak,
2007)) for the task being undertaken.

Thus, the contribution of the paper is the design and
implementation of a robust FTC framework for a battery
assembly station, which makes it possible to minimize
energy consumption of autonomous robots driving the
system while satisfying all production-process-related
constraints. The proposed strategy has also an appealing
property of being able to deal with faults regarding mobile
robots, processing and transportation.

The paper is organized as follows. Section 2
introduces elementary definitions and concepts. The
battery assembly system is carefully described in
Section 3. Subsequently, Section 4 introduces the MPC
algorithm along with its implementation issues. Section 5
presents the details of the FTC algorithm. First, it is
shown how to design and implement FTC for mobile
robot faults. The proposed approach is then extended to
processing and transportation faults. Given a complete
FTC structure, the design strategy is suitably extended
to cope with the robustness problem which is outlined in
Section 6. Section 7 presents the results regarding the
abilities of the proposed approach and clearly exhibits its
performance. Finally, the last section concludes the paper.

2. Preliminaries

The main objective of this section is to provide essential
definitions and concepts that will be exploited in further
deliberations.

Definition 1. A fault is an unpermitted deviation of at
least one characteristic performance time of the system
from the nominal condition.

Definition 2. A failure is a permanent interruption of
the system ability to perform a required mission under
specified operating conditions.

Note that Definition 1 is based on the classical fault
definition provided in the well-known textbooks (see, e.g.,
Blanke et al., 2006), where the part “characteristic time”
is replaced by “characteristic property”, which has more
universal meaning. Thus, the provided definition can be
perceived as a special case of the general one.

After giving elementary definitions, it is possible to
explain the main mathematical concepts related to the
max-plus formalism as well as the max-plus linear system
framework.

2.1. Max-plus algebra and max-plus linear systems.
The (max,+) algebraic structure (Rmax,⊕,⊗) is defined as
follows:
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• Rmax = R ∪ {−∞}, where R is the field of real
numbers,

• ∀a, b ∈ Rmax, a⊕ b = max(a, b),

• ∀a, b ∈ Rmax, a⊗ b = a+ b.

The operations ⊕ and ⊗ are called the max-plus
algebraic addition and max-plus algebraic multiplication,
respectively. Let k ∈ N. Then the k-th max-plus algebraic
power of a ∈ R is denoted by a⊗

k

. For k > 0, let us
define ε such that ε⊗

k

= ε and ε⊗
0

= 0. The rules related
to the order of evaluation of max-plus algebraic operators
are the same as those of the conventional algebra. Thus,
the max-plus algebraic power has the highest priority,
while the max-plus algebraic multiplication has a higher
priority than the max-plus algebraic addition. The main
properties are

∀a ∈ Rmax : a⊕ ε = a and a⊗ ε = ε,
∀a ∈ Rmax : a⊗ e = a,

(1)

where ε = −∞ and e = 0 are the neutral elements for
the max-plus-algebraic addition and max-plus-algebraic
multiplication operations, respectively.

For matrices X,Y ∈ R
m×n
max and X ∈ R

n×p
max ,

(X ⊕ Y )ij = xij ⊕ yij = max(xij , yij), (2)

(X ⊗ Z)ij =
n⊕

k=1

xik ⊗ zkj

= max
k=1,...,n

(xik + zkj), (3)

for all i, j. The matrix En is an n× n max-plus algebraic
identity matrix – (En)ii = 0 and (En)ij = ε for i �= j,
i, j = 1, . . . , n. Thus, the matrix power of A ∈ R

m×n
max is

defined as follows:

A⊗0

= En, A⊗k

= A⊗A⊗k−1

(4)

for k = 1, 2, 3, . . .. Further definitions and details related
to the max-plus algebra formalism are given by Baccelli
et al. (1992) and Butkovic (2010).

If the max-plus algebra framework is provided, then
it is possible to introduce discrete-event systems that can
be described by a model of the following form:

x(k + 1) = A⊗ x(k)⊕B ⊗ u(k), (5)

y(k) = C ⊗ x(k), (6)

where the index k is the event counter, while

• x(k) ∈ R
n
max represents the state typically

containing the time instants at which the internal
events occur for the k-th time,

• u(k) ∈ R
r
max is the input vector containing the time

instants at which the input events occur for the k-th
time,

• y(k) ∈ R
m
max are states for the output vector

containing the time instants at which the output
events occur for the k-th time,

and the system matrices are A ∈ R
n×n
max , B ∈ R

n×r
max , and

C ∈ R
m×n
max .

It should be also noted that the max plus framework
being employed is fully time-oriented. Indeed, the
parameters of matrices A, B, C denote specific time
instants describing the system behaviour. Similarly, input
u(k), state x(k) and output y(k) also represent the time of
the predefined operations.

2.2. Interval max-plus algebra. The objective of
this section is to provide a novel methodology that
can be employed to settle the robustness to parameter
uncertainties of the matrices A, B and C associated with
the system (5)–(6). This idea was initially employed to
analyze uncertain production systems (Cechlárová, 2005)
and will be here used for robust FTC purposes.

The (imax,+) algebraic structure (I(Rmax),⊕,⊗) is
defined as follows:

• I(Rmax) is a set of real compact intervals of the form
a = [a, ā],

• ∀a, b ∈ I(Rmax), a⊕ b = max(ā, b̄),

• ∀a, b ∈ I(Rmax), a⊗ b = [a+ b, ā+ b̄].

Similarly as in the previous point, for matrices X,Y ∈
I(Rmax)

m×n and X ∈ I(Rmax)
n×p,

(X ⊕ Y )ij = xij ⊕ yij = max(x̄ij , ȳij), (7)

(X ⊗ Z)ij =

n⊕

k=1

xik ⊗ zkj

+ max
k=1,...,n

(x̄ik + z̄kj), (8)

for all i, j. The linear system description (5)–(6) remains
almost the same; the only modification is that y(k) ∈
I(Rmax)

m. Since the general mathematical framework
is provided, it is possible to introduce the battery
assembly system for which a comprehensive design and
performance evaluation study will be performed.

3. Battery assembly station

Currently, the RAFI company is assembling a low
number of battery systems, which is realised by hand
mostly. Further regulations and predicted numbers of
high performance batteries will not allow this procedure
in future (Nair and Garimella, 2010). Therefore, a flexible
battery assembly system with autonomous robots will be
introduced for high-volume serial production. This new
production system is based on transport and manipulation
robots, with additional hand assembly stations. RAFI’s
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goals are to set up a battery assembly system providing
a maximal flexibility for upcoming variants of further
battery system products as well as a maximum quality
level and protection for products and staff (Chan, 2002).

At the first stage of expansion, only the transport
robots are implemented. The actual product to assemble
is a high performance battery system for domestic and
private usage to buffer renewable energy sources and
provide independent energy supply. An overview of the

1. Cell
2. AKAMODULE
3. High-strength battery tray
4. Thermal Isolation
5. Liquid Coolant Port
6. Coolant Interconnects

7. Electrical Interconnects
8. Main Connector Box
9. High Voltage Connection
10. BMS Master
11. Safety Control Unit

4

1

3

2

6

5

7

8
91011

Fig. 1. Overview of the battery assembly system.

components of the battery system is shown in Fig. 1.
Currently, two different main systems with two different
voltage ratings are built. The two main formats are
a rack-based and a box-based system. These systems
are built by either a rack or box housing, two battery
modules and a main battery management system. For the
rack-based system, two voltage ratings (1000 V and 400
V) are available. This makes two different sets of cables
and insulation material necessary for the assembly. The
production system contains two assembly cycles (Fig. 3).
The first cycle is operated with two types of transportation
robots (transportation robots type 1 and 2). This task
will be realised by KUKA omniRob (Fig. 2) and covers
the assembly of the battery frames for the two different

multi-kinematics flexible

autonomous omnidirectional
motion

Fig. 2. KUKA omniRob: the transportation robot.

products. The second cycle is operated with three types of
transportation robots (transportation robots type 3, 4 and
5) and covers the final assembly of the products.

Assembly
cycle 1

Battery
cells

Battery
module

Battery
system

Assembly
cycle 2

Fig. 3. Assembly process.

The sequence of the first production cycle (Fig. 4)
starts with the robots in a starting setting. The robot of
type 1 moves in the next step to the frame storage to
pick up an empty battery module frame. In the next step
the battery module controller is assembled into the frame.
In the next step the robot moves with the battery frame
aboard to the cell mounting station. The basic cells are fed
by the robot of type 2 from the cell storage. It is assumed
that this robot, in its own cycle, is able to get the number
of basic cells needed to produce one battery. The next
step is the assembly of an appropriate number of basic
lithium-ion cell packages into the battery frames. The
number of basic cells assembled into the module frame
depends on the rated voltage of the battery module. For
the 1000 V external voltage battery system, an internal
100 V battery module is used. 45 cells packages are
mounted into the 100 V battery module. For the 400 V
external voltage, a 24 V battery module is used, and
therefore 11 cells are assembled into the 24 V battery
module.

The final assembly of the battery module is moved to
the relevant battery stores. Finally, the robot returns to the
starting position.

Pick up module
frame

Mount battery
controller

Pick up battery
cells

Wire up and
install cover

Mount battery
cells

Start/Stop

Start/Stop

Fig. 4. Assembly process cycle 1.

The sequence of the second production cycle
(Fig. 5) also starts with the robots in a starting position.
Depending on the final product, the robot of type 3 moves
either to the storage of the box housings or alternatively
to a hand assembly station to pick up additional parts and
wiring for the 1000 V rack version, and then to the rack
housing storage to pick up the housings and bring them to
the assembly station. In parallel, the robot of type 4 moves
to the battery storage and picks up either 24V or 100V
battery modules and brings them to the assembly station.
The next step is the assembly of the battery controllers
into the housings. Finally, the assembled product is moved
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with a robot of type 5 to either the final rack or the
box storage. From this point, the robot returns to the
starting position. It should also be pointed out that the

Pick up
additional wiring

Start/Stop

Final assembly

Pick up box
housig

Pick up rack
housig

Assembly battery
modules

Pick up battery
modules

Fig. 5. Assembly process cycle 2.

storages for cell packages and frames can only be accessed
by one robot at a time. Since the general description
is provided, it is possible to use a max-plus framework
to provide its mathematical model that will be used for
further deliberations related to predictive control and its
further extensions towards fault tolerance.

3.1. Max-plus linear model. Due to the space
constraints, let us consider the first production cycle in
the battery assembly system (see Fig. 4). In this part of
the system, there are two types of transportation robots
and five assembly processing units:

• P1 represents the “Pick up module frame” unit,

• P2 represents the “Mount battery controller” unit,

• P3 is the “Pick up battery cells” unit,

• P4 is the “Mount battery cells” unit,

• P5 stands for the “Wire up and install cover” unit.

The processing times for P1, P2, . . . , P5 are d1, d2, d3, d4,
d5, respectively. The transportation times are as follows:

• t1 is the transportation time from start to P1,

• t2 is the transportation time from start to P3,

• t3 is the transportation time from P1 to P2,

• t4 is the transportation time from P2 to P4,

• t5 is the transportation time from P3 to P4,

• t6 is the transportation time from P4 to P5.

These times are clearly depicted in Fig. 6. It is defined
that

• ui(k) denotes the time instant at which the i-th robot
reaches the individual assembly station,

• xi(k) denotes the time instant at which the i-th
processing unit starts performing a desired task,

Pick up module
frame

Mount battery
controlleru k( )1

d1 d2

t3

t4

transporting
robots of type2

Pick up battery
cells

Mount battery
cellsu k( )2

d3

t2 t5

d4

Wire up and
install cover

t6

d5

t1

transporting
robots of type1

x k( )1 x k( )2

x k( )3 x k( )4 x k( )5

y k( )

Fig. 6. Details of the assembly process cycle 1.

• y(k) stands for the time of delivering the final
product.

Note that a processing unit starts performing its
operation on a new product (battery) if it has finished
performing the previous one. If it is assumed that each
operation starts as soon as all components of the assembly
operation are available, then the system can be described
by the following state space model:

x1(k + 1) = max(x1(k) + d1, u1(k) + t1),

x2(k + 1) = max(x1(k + 1) + d1 + t3, x2(k) + d2)

= max(x1(k) + 2d1 + t3, x2(k) + d2, u1(k)

+ t1 + d1 + t3),

x3(k + 1) = max(x3(k) + d3, u2(k) + t2),

x4(k + 1) = max(x2(k + 1) + d2 + t4, x3(k + 1) + d3

+ t5x4(k) + d4)

= max(x1(k) + 2d1 + t3 + d2 + t4, x2(k)

+ 2d2 + t4, x3(k) + 2d3 + t5, x4(k)

+ d4, u1(k) + t1 + d1 + t3 + d2 + t4,

u2(k) + t2 + d3 + t5),

x5(k + 1) = max(x4(k + 1) + d4 + t6, x5(k) + d5)

= max(x1(k) + 2d1 + t3 + d2 + t4 + d4 + t6,

x2(k) + 2d2 + t4 + d4 + t6, x3(k) + 2d3

+ t5 + d4 + t6, x4(k) + 2d4 + t6, x5(k)

+ d5, u1(k) + t1 + d1 + t3 + d2 + t4

+ d4 + t6, u2(k) + t2

+ d3 + t5 + d4 + t6),

y(k) = x5(k) + d5.

The above equations can be described within the
max-plus algebra framework (5)–(6):

x(k + 1) = A⊗ x(k)⊕B ⊗ u(k), (9)

y(k) = C ⊗ x(k), (10)

while a detailed description of the system matrices is
given in Fig. 7. Since the analytical description of the
system is given, it is possible to introduce the processing
and transportation times. Table 1 describes these times in
the form of exact values and intervals, respectively. The
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A =

⎡

⎢⎢⎢⎢⎣

d1 ε ε ε ε
2d1 + t3 d2 ε ε ε

ε ε d3 ε ε
2d1 + t3 + d2 + t4 2d2 + t4 2d3 + t5 d4 ε

2d1 + t3 + d2 + t4 + d4 + t6 2d2 + t4 + d4 + t6 2d3 + t5 + d4 + t6 2d4 + t6 d5

⎤

⎥⎥⎥⎥⎦
,

B =

⎡

⎢⎢⎢⎢⎣

t1 ε
t1 + d1 + t3 ε

ε t2
t1 + d1 + t3 + d2 + t4 t2 + d3 + t5

t1 + d1 + t3 + d2 + t4 + d4 + t6 t2 + d3 + t5 + d4 + t6

⎤

⎥⎥⎥⎥⎦
,

C = [ε, ε, ε, ε, d5].

Fig. 7. Matrices of the battery assembly system.

Table 1. Nominal as well as interval processing and transporta-
tion times for the battery assembly system.

Nominal time Interval time [min]

d1 6 [4,7]
d2 3 [3,4]
d3 5 [4,6]
d4 8 [6,10]
d5 3 [3,4]
t1 4 [3,5]
t2 4 [3,5]
t3 2 [2,3]
t4 4 [3,5]
t5 4 [3,5]
t6 4 [3,5]

first case corresponds to the perfect knowledge of these
times and results in the system matrices of the form

A =

⎡

⎢⎢⎢⎢⎣

6 ε ε ε ε
14 3 ε ε ε
ε ε 5 ε ε
21 10 14 8 ε
33 22 26 20 3

⎤

⎥⎥⎥⎥⎦
,

B =

⎡

⎢⎢⎢⎢⎣

4 ε
12 ε
ε 4
19 13
31 25

⎤

⎥⎥⎥⎥⎦
,

C = [ε, ε, ε, ε, 3].

(11)

In the case of the second one, it is assumed that these times
are known up to a given interval, which results in

A =

⎡

⎢⎢⎢⎢⎣

[4, 7] ε ε ε ε
[10, 17] [3, 4] ε ε ε

ε ε [4, 6] ε ε
[16, 26] [9, 13] [11, 17] [6, 10] ε
[25, 41] [18, 28] [20, 32] [15, 25] [3, 4]

⎤

⎥⎥⎥⎥⎦
,

B =

⎡

⎢⎢⎢⎢⎣

[3, 5] ε
[9, 15] ε

ε [3, 5]
[15, 24] [10, 16]
[24, 39] [19, 31]

⎤

⎥⎥⎥⎥⎦
,

C = [ε, ε, ε, ε, [3, 4]].

(12)

Note that, due to the properties of max-plus algebra, most
of the constraints involved in the system (depicted in
Fig. 6) are naturally incorporated in (9)–(10). However,
specific performance constraints have to be introduced
separately. This is the purpose of the next section.

3.2. Handling constraints. The system constraints are
as follows:

• First of all, the designed system has to follow some
predefined time trajectory that can be defined as
scheduling constraints of the form

xj(k) ≤ tref,j(k), j = 1, . . . , n, (13)

where tref,j(k) is the upper bound of xj(k) at time k.

• The second constraint is related to the robot
performance,

ui ≤ ui(k) ≤ ūi, i = 1, . . . , r. (14)

The lower bound ui corresponds to the maximum
speed of the robot. The upper bound ūi corresponds
to the minimum speed of the robot. Crossing this
limit means that the energy consumption of robot
drives rises drastically.

• The last constraint is the change rate one,

uj(k + 1)− uj(k) ≥ zj, j = 1, . . . , r, (15)

where zj > 0 is the upper bound of the change rate.

Since the system is described within max-plus algebra
along with suitable constraints, it is possible to develop a
control strategy that will enable its optimal performance.



Towards robust predictive fault-tolerant control for a battery assembly system 855

4. Constrained model predictive control

Irrespective of the system type (continuous or discrete),
constraints and control quality measures are inevitable
in modern industrial systems. As mentioned in the
introductory part of this paper, MPC is a perfect candidate
to settle this challenging problem. Indeed, one of
the core advantages of MPC is its natural ability of
handling constraints. The proposed framework is based
on the general idea of MPC for max-plus linear systems
described by De Schutter and Van Den Boom (2001).
Note that, according to Definition 1, a violation of a
scheduling constraint (13) means faulty behaviour of the
system, which will be analyzed within the subsequent
sections of this paper. Here, it is assumed that the system
is fault-free, and hence all constraints being imposed (i.e.,
(13)–(15)) can be satisfied.

Thus, within the proposed framework, MPC, along
with max-plus algebra, is to be used to minimize the
robot’s energy consumption. This can be perceived as a
kind of economic MPC for which the energy consumption
is the most important goal. Finally, the problem boils
down to finding the input sequence u(k), . . . , u(k+Np−
1) that minimizes the cost function J(u),

J(u) = −
Np−1∑

j=0

r∑

i=1

qiui(k + j), (16)

where qi > 0, i = 1, . . . ,m, is a positive weighting
constant corresponding to the relative importance of the
energy consumption of the i-th robot, while Np stands for
the prediction horizon. The main advantage of (16) over
the quadratic criteria employed in the case of continuous
systems is that there is no need for using the relatively
time consuming quadratic programming. Instead, taking
into account the linear constraints (13)–(15), an efficient
linear programming framework can be used.

The first task towards the computational framework
is to eliminate direct influence of x(k+1), . . . , x(k+Np−
1) on the scheduling constraints (13). For this purpose, let

x̃(k +Np − 1) = M ⊗ x(k)⊕H ⊗ ũ(k), (17)

where

ũ(k) =

⎡

⎢⎢⎢⎣

u(k)
u(k + 1)

...
u(k +Np − 1)

⎤

⎥⎥⎥⎦ ,

x̃(k +Np − 1) =

⎡

⎢⎣
x(k + 1)

...
x(k +Np − 1)

⎤

⎥⎦ .

Using (5)–(6), it can be shown that

H =

⎡

⎢⎢⎢⎣

B ε · · · ε
A⊗B B · · · ε

...
...

. . .
...

A⊗k+Np−2 ⊗B A⊗k+Np−3 ⊗B · · · B

⎤

⎥⎥⎥⎦ ,

M =

⎡

⎢⎢⎢⎣

A
A⊗2

...
A⊗k+Np−1

⎤

⎥⎥⎥⎦ .

Thus, substituting (17) into the scheduling constraints (13)
allows formulating a linear optimisation problem of the
following form: Given an initial condition x(k), obtain
the optimal input sequence ũ(k)∗ by solving

ũ(k)∗ = argmin
ũ(k)

J(u) (18)

under the constraints (13)–(15).
To summarize, the control algorithm is structured as

Algorithm 1.

Algorithm 1. Max-plus MPC.
Step 0. Set k = 0.

Step 1. Measure the state x(k) and obtain ũ(k)∗ by sol-
ving the constrained optimization problem (18).

Step 2. Use the first vector element of ũ(k)∗ (i.e., u(k)∗)
and feed it into the system (5)–(6).

Step 3. Set k = k + 1 and go to Step 1.

Since the max-plus MPC algorithm is provided, it is
possible to implement it for the battery assembly system
described by (9)–(10).

4.1. Implementation details. In order to guarantee
full production effectiveness, the battery assembly system
has to be connected tightly to the manufacturing execution
system (MES), which itself is connected to the RAFI
advanced planning and scheduling system (APS) Felios,
where all dispositive factors, like raw materials and
production capacity, are optimally allocated, while at
the top level the APS is connected to the enterprise
resource planning (ERP) system SAP. The RAFI APS is
in place to fulfill RAFI’s made-to-order manufacturing
strategy, due to a certain risk in storing partly assembled
or fully assembled battery systems (Vincent, 1999). The
MES is an intermediate system that will take care of
product definition and scheduling as well as resource
management.

With detailed information on product configuration
and all general production conditions, the MES provides
current production state x(k) to the MPC max-plus
control system as well as scheduling constraints tref for
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the entire prediction horizon Np. Having this information,
the MPC max-plus control framework calculates the input
u(k)∗ = [u∗

1(k), u
∗
2(k)]

T , which is composed of the time
instant at which the first and second robots reach the
individual assembly station, respectively. This task is
realised according to Algorithm 1.

An overview of the MPC max-plus control strategy
for the battery assembly system is portrayed in Fig. 8.
Finally, it should be noted that the MES also provides

RAFI APS

(FELIOS)

MES

MPC Max,+

x uu f t ref

Fig. 8. Overview of MPC max-plus: MES configuration.

the actual time at which the robot reaches an individual
assembly station that is denoted by uf (k). However, this
information will be used in a subsequent part of this paper,
which is devoted to FTC.

5. Fault-tolerant control of the battery
assembly station

The main objective of this section is to provide tools that
are to be useful while handling faults that can appear in
the battery assembly station. These faults are divided into
two groups:

• mobile robot faults,

• process faults.

A detailed discussion of these emerging issues is provided
in the subsequent parts of this section.

5.1. Handling mobile robot faults. The objective
of this point is to enhance the proposed MPC max-plus
strategy with mobile robot fault-tolerance features. The
causes of such faults may have different roots, which can
be divided into

mechanical issues: power loss, tyre problems, drive
problems, etc.,

infrastructure issues: bad surface, slow charging,
obstacles, etc.

Figure 9 provides an outline of the FTC system regarding
the above-mentioned faults.

RAFI APS

(FELIOS)

Fault

Diagnosis

Model

Alternation

SAP Assets Operation

and Maintenance

MES

faults

FTC  MPC Max,+

x u

u f

A Bf, f

t fd f

Fig. 9. Predictive FTC scheme.

As in the case of Algorithm 1, the MES provides the
current production state x(k) to the FTC system as well as
scheduling constraints tref for the entire prediction horizon
Np. In contrast to the above case, the MES provides also
the actual time at which the robots reaches an individual
assembly station that is denoted by uf(k). Note that the
faulty behaviour should be perceived as a delayed reaction
of the robot compared to the calculated transportation time
u(i, k)∗. Having this information, the FTC system decides
about the faulty or fault-free status of the robots, which is
realised by a simple residual-based decision threshold:

if si > δi, then the i-th mobile robot is faulty, (19)

where the residual is

si = uf(i, k)− u(i, k)∗ (20)

for all i = 1, . . . , r and δi > 0 being a small positive
constant that is robot-dependent and should be set by the
designer. If a mobile robot fault is detected, then the
matrix B should be replaced by Bf , which in the case
of the i-th fault is defined as

bf,j,i = bj,i ⊗ si, j = 1, . . . , n, (21)

while the resulting system is

x(k + 1) = A⊗ x(k)⊕Bf ⊗ u(k), (22)

y(k) = C ⊗ x(k). (23)

This process is clearly illustrated in Fig. 9
Finally, it is evident that the mobile robot fault

may have an influence on the scheduling constraints.
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Indeed, the faulty behaviour may make the optimization
problem (18) infeasible. Thus, it is proposed to relax the
scheduling constraints as follows:

xj(k) ≤ tref,j(k) + αj , j = 1, . . . , n, (24)

where αj ≥ 0, j = 1, . . . , n, should be as small as
possible in order to exhibit a minor divergence from the
desired time schedule. In order to obtain the optimal
values of αj , a new cost function is proposed:

J(α) =

n∑

i=1

αi, (25)

and hence a new optimization framework can be described
by

J(u, α) = (1− β)J(u) + βJ(α), (26)

where 1 ≤ β ≤ 0 is a constant set by the designer, which
can be adjusted to reflect greater importance of either J(u)
or J(α), respectively. Thus, the optimization strategy is
as follows: Given an initial condition x(k), obtain the
optimal input sequence ũ(k)∗ by solving

ũ(k)∗ = arg min
ũ(k),α

J(u, α) (27)

for the faulty system (22)–(23) under the constraints (24),
(14) and (15).

To summarize, the FTC strategy is detailed by
Algorithm 2.

Algorithm 2. Mobile robot FTC.
Step 0. Set k = 0.

Step 1. Measure the state x(k) and the actual input value
uf(k), and then calculate the residual (20).

Step 2. If the fault test (19) indicates that there is no fault,
then obtain ũ(k)∗ by solving the constrained optimization
problem (18), otherwise obtain ũ(k)∗ by solving (27).

Step 3. Use the first vector element of ũ(k)∗ (i.e., u(k)∗)
and feed it into the system (5)–(6).

Step 4. Set k = k + 1 and go to Step 1.

By applying it to Algorithm 2 for the battery
assembly system, the inputs u(k)∗ = [u∗

1(k), u
∗
2(k)]

T

are calculated, which are composed of the time instant
at which first and second robots reach the individual
assembly station, respectively. Finally, it should be noted
that the information about faults is fed into the RAFI
SAP asset operation and maintenance system, which is
a part of RAFI’s preventive maintenance strategy (cf.
Fig. 9). These data are further used in the RAFI condition
monitoring module.

5.2. Handling production faults. It is obvious that
mobile robot faults are not the only ones can appear
in the system. Indeed, the production schedule can
be significantly violated when the production and/or
transportation times are not achieved. In particular,
the fault diagnosis block is responsible for providing
information about the processing and transportation time,
whose actual values are fed to this block. The decision
process is realised in the same way as the one for mobile
robots, and, when the fault is indicated, then system
matrices are suitably calculated. Finally, the new system
has the following form:

x(k + 1) = Af ⊗ x(k)⊕Bf ⊗ u(k), (28)

y(k) = Cf ⊗ x(k). (29)

This implies that the FTC structure for a production fault
is almost the same as that of Algorithm 2, and results in
Algorithm 3.

Algorithm 3. Process FTC.
Step 0. Set k = 0.

Step 1. Measure the state x(k) and the actual production
and transportation times P = t1, . . . , tnt , d1, . . . , dnd

, and
then calculate the residual:

si = pi − pf,i, i = 1, . . . , nt + nd, (30)

where pi ∈ P stands for the nominal production and/or
transportation time.

Step 2. If the fault test

if si > δi, then

the i-th system production component is faulty, (31)

indicates that there is no fault, then obtain ũ(k)∗

by solving the constrained optimization problem (18),
otherwise obtain ũ(k)∗ by solving (27) with (28)–(29),

Step 3. Use the first vector element of ũ(k)∗ (i.e., u(k)∗)
and feed it into the system.

Step 4. Set k = k + 1 and go to Step 1.

6. Towards robustness

The proposed FTC has to prevent the fault from causing
a failure at the system level (Blanke et al., 2006). It is
evident that, in the case of a failure, constraints described
in Section 3.2 will be violated, which will lead to the
infeasibility of the proposed approach. Then the system
will stop or run out of parts depending on where the failure
occurs. The algorithm, as it is now, will not be able
to organize detours or the restructuring of the assembly
setting (using, for example, only one robot). This could
also be an interesting issue for further research.
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Another factor which may impair the quality of the
proposed FTC is related to the robustness issue, which is
usually perceived as the sensitivity of a given approach
to parametric inaccuracies, a model and system structure
mismatch, or external disturbances and noise. It is evident
that in the proposed framework the structure of the model
and system is exactly the same (in the discrete event
sense). Thus, the model-system discrepancy can be only
related to the uncertainty of the model matrices A, B and
C. Indeed, the application of precise matrices may be
inappropriate for the modeled situation, as the variability
of the processing and transportation times, as well as
measurement uncertainty, implies that the computations
performed with the exact system description given by
(11) do not correspond to the real behaviour of the
system. Thus, an alternative description is proposed
that outerbounds the above-mentioned uncertainties with
suitable intervals (cf. Table 1), hence making the FTC
algorithm robust to them. This leads directly to the
system structure described by (12). However, this new
system description requires a novel formulation of the
max-plus paradigm, which is provided in Section 2.2
and called the imax-plus framework. If the model
structure and computational tools are given, then the
robust fault-tolerant control (RFTC) algorithm can be
easily formulated. The structure of the algorithm is
exactly the same as that of Algorithms 2 or 3 but instead
of the max-plus algebra paradigm, an imax-plus one is
employed.

Finally, it should be pointed out that the framework
does not consider external disturbances and noise as it is
usually the case in the continuous-time framework. These
factors are mostly introduced in an additive manner both
in the state and output equations. However, this can be a
subject of further research.

7. Results

The main objective of this section is to validate the
reliability of the proposed approaches applied to the
battery assembly system. Thus, the following case studies
were performed:

• application of Algorithm 1 for the nominal system,

• application of Algorithm 2 for the nominal system
with an over-demanded schedule,

• application of Algorithm 2 for the mobile robot fault,

• application of Algorithm 3 for the production fault.

It should be pointed out that in all but the first two
experiments a robust system description was used, which
is described with (12). This implies that imax-plus algebra
is used instead of the usual max-plus algebra framework.
Thus, the objective of the subsequent part of this section

is to provide a comprehensive description regarding the
above-defined case studies.

7.1. MPC for the nominal system. Before applying
Algorithm 1 to the battery assembly system, it is necessary
to provide all associated constraints. Let us start with the
scheduling constraints, which are defined with

tref(0) = [4, 12, 4, 19, 31]T ,

tref(1) = [14, 22, 14, 29, 41]T , (32)

tref(2) = [24, 32, 24, 39, 51]T ,

...

As already mentioned, Algorithm 1 will be illustrated
with the system description (11). The robot performance
constraint is neglected while the rate of the change
constraint (15) is defined with z1 = 5 and z1 = 6.
Moreover, the prediction horizon was set to Np = 4 along
with q1 = q2 = 1 shaping the cost function (16). As a
result, the following control sequence, i.e., optimal values
of u(k), was obtained:
[
10
10

]
,

[
20
20

]
,

[
30
30

]
,

[
40
40

]
,

[
40
40

]
,

[
50
50

]
,

[
60
60

]
, (33)

which guarantees that all constraints are satisfied with
the total cost J(u) = −1100. Note that such a control
strategy can be intuitively derived from Fig. 6, which
clearly exhibits the correctness of Algorithm 1.

7.2. FTC for the nominal system with an over-
demanded schedule. The objective of this section is to
show the performance of Algorithm 2 for the fault-free
case but over-demanded schedule. This means that
Algorithm 1 cannot be used for solving such a problem
because of the infeasibility of the scheduling constraints,
which are defined with

tref(0) = [4, 12, 4, 19, 31]T ,

tref(1) = [11, 19, 11, 26, 38]T , (34)

tref(2) = [18, 26, 18, 33, 45]T ,

...

The settings of the algorithm are the same as those in
the preceding section, and additionally β = 0.8 in (26).
Figure 10 portrays the difference between the actual state
of the system and the schedule (34), while the associated
control strategy is given in Fig. 11.

As can be observed, there is an increasing delay
with respect to the schedule but the algorithm minimizes
it with respect to (26). Indeed, since the schedule
is over-demanded, it is vain to expect that the control
algorithm will compensate its effect. The only solution
is to minimize its effect as far as possible, which can be
realized with Algorithm 2.
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Fig. 10. Difference between the actual state and the reference
trajectory for an over-demanded schedule.
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Fig. 11. Control strategy for an over-demanded schedule.

7.3. FTC for the mobile robot fault. The mobile
robot fault is perceived as a four-minute delay of the
first robot that begins from the fourth iteration. This fact
is determined by the fault diagnosis system depicted in
Fig. 9. Subsequently, the system matrices are updated
in order to cope with this new situation. It should be
also pointed out that the constraints are identical as those
in Section 7.1. As a result of applying Algorithm 3,
Fig. 12 presents the difference between the actual state
and the upper bound of the scheduling constraints (32)
while Fig. 13 presents the associated control strategies. It
can be observed that after fault occurrence MPC without
fault tolerance yields a permanent delay while the FTC
strategy brings the system to a zero difference between the
actual state and the reference trajectory. Finally, Fig. 14
portrays the final product outlet, which clearly exhibits the
performance of the proposed approach.
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Fig. 12. Mobile robot fault: difference between the actual state
and the reference trajectory with FTC (dashed line) and
without it.
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Fig. 13. Mobile robot fault: control strategy with FTC (dashed
line) and without it.

7.4. FTC for production faults. This scenario
concerns production faults. In particular, the fault is
defined as a four-minute delay related to “Mount Battery
Controllers”. This means that the time d2 is increased
by 4 minutes. This fact is determined by the fault
diagnosis system depicted in Fig. 9. Subsequently, the
system matrices are updated in order to cope with this new
situation. It should be also pointed out that the constraints
are identical as those in Section 7.1.

As a result, Fig. 15 presents the difference between
the actual state and the upper bound of the scheduling
constraints (32) while Fig. 16 portrays the associated
control strategies. It can be observed that after the
fault occurrence MPC without fault tolerance yields a
permanent delay while the FTC strategy brings the system
to the zero difference between the actual state and the
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Fig. 14. Mobile robot fault: final bounds of the product outlet
with FTC (dashed line) and without it.

reference trajectory. Finally, Fig. 17 portrays the final
product outlet, which clearly exhibits the performance of
the proposed approach.
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Fig. 15. Production fault: difference between actual state and
the reference trajectory with FTC (dashed line) and
without it.

8. Conclusions

The main objective of this paper was to propose a
unified FTC MPC design procedure for a battery assembly
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Fig. 16. Production fault: control strategy with FTC (dashed
line) and without it.
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Fig. 17. Production fault: final bounds of the product outlet with
FTC (dashed line) and without it.

system located at the RAFI company, allowing high
production flexibility under real production conditions.
In particular, one of the objectives was to describe the
system within the max-plus algebra framework along with
suitable constraints inevitably present in all real systems.
It should be pointed out that max-plus algebra can be
used to model and analyse the production system within
the linear framework; e.g., the well-known Petri nets can
be employed to simulate merely the system behaviour.
The major advantage of the proposed approach is the
avoidance of the non-linear optimization problem, which
is the main drawback of the classical algebra framework
applied to such tasks.

Apart from a suitable modeling framework, the
FTC-MPC-based control procedure was provided.
Indeed, a suitable control criterion and constraints
were given. The optimization criteria take into account
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robot energy consumption only, while all productivity
demands are incorporated within the constraints. The
main advantage, compared with the classical framework,
is that the cost function is linear but not quadratic. This
significantly reduces the computational burden, which
makes it possible to apply the proposed approach for a
large scale system. Due to the lack of space, the presented
experimental results concern a selected part of the entire
system but they clearly confirm its high performance.
This approach allows the RAFI company to compete as an
European manufacturer in the global market of renewable
energy storages and to keep production labour at local
production sites. Finally, it should be pointed out that
the proposed strategy assumes that the whole state vector
measurement is available. This condition can be relaxed
by applying appropriate state observers. However, this
will be a subject of future research.
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Seybold has worked as a design engineer

and a consultant for several international companies like ABB AG
(Switzerland) and Integrated Systems AG (Germany). Since 2005 he
has been in charge of innovation and R&D activities for RAFI GmbH
& Co. KG (Germany). His current research interests include industrial
controls and automation, artificial intelligence, fault detection and
isolation (FDI) and fault-tolerant control (FTC). Lothar Seybold has
published more than 20 papers in international journals and conference
proceedings.

Marcin Witczak was born in Poland in 1973, re-
ceived the M.Sc. degree in electrical engineering
from the University of Zielona Góra (Poland), the
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