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The paper presents algorithms for parameter identification of linear vessel models being in force for the current operating
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1. Introduction

Parameter identification of dynamic models of controlled
plants has been the subject of studies since the very
beginning of automatic control engineering. Although
a large variety of identification methods have been
developed over a period of decades, new, more accurate
and reliable methods are still sought for (Nelles, 2001;
Ljung, 2001; Al Seyab and Cao, 2008; Billings, 2013;
Orjuela et al., 2013; Mzyk, 2013). The problem is
of particular importance for parameter identification of
vessels. The synthesis of a ship’s control systems often
requires dynamic plant models that are both multi-input
multi-output (MIMO), nonlinear and time-varying for
ships operating under various environmental conditions
(Fossen, 2011).

In accomplishing advanced control systems for sea
vessels, which represent usually nonlinear and MIMO
control plants, a fundamental and difficult problem
to resolve is identification of varying ship parameter
values in linear (linearized) models for a multi-degree
of freedom (DOF) motion. Such values are needed for
the synthesis and realization of control algorithms for
varying environment circumstances. Parameter variations
of linear models (or the lack of precise knowledge of
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their “true” values) in nonlinear plant description can
be induced by changes in the direction and velocity of
the sea current, as well as the direction and state of sea
waves. Usually, changes of parameters in linear models
are frequently caused by changing in the ship’s operating
points when the vessel course (yaw angle) and/or position
over the drilling point on the sea bottom (or the ship
velocity along the demanded trajectory) must be changed,
as well as due to the changes in the mass distribution
(moment of inertia), the vessel displacement and dipping
during its operation.

Identification of parameters can be done on the basis
of archived data of vessel motions measured during a
passive or active experiment. Active experiments, when
linear ship models are used, should be performed after
each important change in the operating point of the
controlled plant. Usually, it may be performed on the basis
of recorded measurements of the position and course of an
appropriately equipped vessel (or from simulation of its
known nonlinear model). One of the experimental trials
whose results are used to identify the parameters of the
ship model is the Kempf zigzag test.

The Kempf test usually is carried out for ships
equipped with a helm and a steering gear where the
primary objective of control is course keeping. For
identification purposes, the so-called Nomoto model
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(Fossen, 1994) is then considered for two degrees of
freedom of the ship’s motion (sway and yaw), which after
its linearization and adoption of certain simplifications
is usually given in the form of transfer function models
relating the yaw rate to the rudder angle and sway
velocity to the rudder angle (Aström and Källström,
1976; 1981; Velasco et al., 2013; Padilla and Yuz,
2013). Frequently, identification of ship models boils
down to determining the hydrodynamic coefficients
or hydrodynamic derivatives occurring in differential
equations of the ship’s model (Yoon and Rhee, 2003;
Herrero and González, 2012; Zhang and Zou, 2011;
Tran Khanh et al., 2013; Skjetne et al., 2004). It happens
that identification is confined only to a selected degree
of freedom of the ship’s motion (Yoon et al., 2004;
2007; Zhang et al., 2010; Revestido et al., 2011). Also,
parameter identification of linear ship models described
in state space may be found in 3DOF: sway roll yaw (Dai
et al., 2012), and in 2DOF: sway, yaw (Wang et al., 2011).

In the case under study, the Kempf test was carried
out for a multivariable model of a drilling ship provided
with a main engine and four azimuth thrusters. There
was identified comprehensively (3DOF: surge, sway, yaw)
a discrete linearized MIMO model of such a ship. The
multivariable ship model to be identified is described in
state space, and its parameters after identification may
be employed directly for synthesis and adaptation of an
MIMO controller.

Because of the multivariable character of the plant
model to be identified and in view of the occurrence
of non-stationary stochastic disturbances affecting the
nonlinear plant, it is necessary to use very advanced
identification algorithms with proper simplifications
introduced to allow for the nature of stochastic
disturbances, which are usually non-stationary and are
not white noise in sea conditions. The disturbances
originating from the sea environment generally do
not satisfy such assumptions. This is particularly
true for disturbances induced by waving and wind
gusts. However, it is possible to model them (in
fully developed wind waving) using additional dynamic
models stimulated by Gaussian white noise type signals.
Unfortunately, in real conditions, the parameters of such
additional “whitening“ models should also be identified.
Also the obvious correlation between wave and wind,
as we can see in the works of Barth and Eecen (2006),
Bredmose et al. (2012), Anil Ari Guner et al. (2013), or
Kondo et al. (1972), seems to be region specific, and the
stochastic models of such relations have to be developed
for site-specific implementations. That is mainly why
estimation algorithms known from the literature are
commonly developed under the assumption that stochastic
disturbances affecting the controlled plant are stationary
and independent (white) (Aström and Källström, 1976;
Dai et al., 2012; Yoon et al., 2007; Zhang et al., 2010;

Revestido et al., 2011).
All these problems increase the level of complication

of the ship model and practically exclude the possibility
of adopting identification algorithms performed in an
on-line mode. However, passive experiments performed
with a feedback loop created by control systems do not
assure obtaining unbiased results of parameter estimation.
Hence, acquisition of truly useful measurements, e.g., for
implementation of adaptive control systems, is possible
only by conducting active experiments under conditions
being as close as possible to those real out at sea.

All these problems render watercrafts very complex
controlled plants in terms of their identification. Many
classical identification algorithms give unsatisfactory
results and suffer from numeric sensitivity and long
computational times. That is way many authors try,
e.g., to combine the classical identification methods with
neural networks (Mahfouz and Haddara, 2003) or ant (Dai
et al., 2010) and swarm intelligence algorithms (Chen
et al., 2008). In this paper, a nonlinear model of a drilling
vessel is used as an example to present an algorithm to
identify the parameters of linear models of watercrafts
being in force for their current operating point. Also, the
advantages and disadvantages of the gradient and genetic
versions of the algorithm to identify the model parameters
are discussed.

The organization of this paper is as follows. In
Section 2, a nonlinear ship model is presented. Then, in
Section 3 a description of the popular active maneuvering
tests useful for parameter identification is presented. In
Section 4, a gradient based identification algorithm is
derived. An example of identification parameter of a
linear discrete-time model of a drilling vessel is presented
in Section 5. We end the paper in Section 6 with
conclusions.

2. Ship’s model

To synthesize a ship’s control system, models of vessel
motions in a horizontal plane with three degrees of
freedom are most commonly used (Fossen, 1994; Wise
and English, 1975), and therefore this type of models
(after linearization) will be considered in this paper.

All of these models describing the motions of a
rigid body in 6-, 4-, 3- and 1DOF have the form of
ordinary differential equations. They can be derived from
the Newton–Euler and Lagrange equations, or by using
the principles of the conservation of the momentum in
the linear motion and the conservation of the angular
momentum in the rotational motion (Lewis, 1989; Fossen,
1994; 2011).

These equations describe most commonly low
frequency (LF) components of motion and velocity caused
by the impact of average marine disturbances (wind, wave
and current) d(t) and the ship’s propulsion u(t).
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In the structure of these equations, we can find
a part describing the kinematics of the ship’s motion
in the adopted reference systems and a dynamic part,
which takes into account the whole possible impact of
hydrodynamic (and hydrostatic) forces on the hull of the
ship (along with the added mass of the accompanying
water) and operation of the main engine, the rudder and
the propellers and tunnel thrusters (if any).

Motion components induced by high frequency (HF)
components of marine disturbances stemming from the
gust of wind and sea waves are usually modeled by using
separate models applicable only for HF motions (usually
linear ones). On the other hand, it is a common practice
to take into account HF effects produced by the gust of
wind and sea waves in the models describing the ship’s LF
motions by regarding them as additional (non-measured)
stochastic disturbances w(t).

The mathematical description of the LF motion of
the ship is most commonly given in the form of nonlinear
state space and output equations,

ẋ(t) = f(x(t),u(t), Vc, ψc, Vw, ψw,w(t)), (1)

y(t) = g(x(t),u(t)) + v(t),

where x(t) ∈ R
n is the state vector describing changes in

the ship’s position and velocity in 3DOF, y(t) is the output
vector, u(t) is the vector of manipulated variables (force
components Fx(t), Fy(t) and torque Mz(t) produced by
the main engine and azimuth thrusters), and Vc, Ψc, Vw,
Ψw are velocities and directions of the sea current and
wind, respectively, while w(t) ∈ R

p represents the HF
part of disturbances generated by the sea wave and the
gusts of the wind. The disturbances are usually regarded
as measurement errors that burden the output y(t).

The last signals w(t) and v(t) have a stochastic
nature. In the paper, we assume that these disturbances are
white Gaussian noise with zero mean values and (known)
covariance matrices W ≥ 0 and V > 0. This assumption
is not necessarily true, especially when it comes to the
input disturbances w(t).

In the structure of the state equations in (1), generally
two parts can be seen. The first part describes the
kinematics and the second one the dynamic properties
of the ship’s model (see Eqn. (37) in the example;
Section 5). But the final form of (1) depends on the
number of degrees of freedom (DOF) and the number of
manipulated variables, as well as on which components
of the state vector x(t) are associated with the controlled
output signals y(t).

The needed nominal values for the state vector xo
and components of forces and torque uo that allow the
ship to be kept over the drilling point at known (constant)
values Vc, Ψc, Vw and Ψw can be determined from a

system of nonlinear algebraic equations,

0 = f(xo,uo, Vc,Ψc, Vw,Ψw) (2)

yo = g(xo,uo),

which is valid for the steady state.
The knowledge of nominal values uo and xo at the

values of Vc, Ψc, Vw, Ψw corresponding to them enables
linearization of equations (1) to be made. Then the state
equations for the linear model, valid for limited deviations
of all signals from their nominal values, assume the form

˙̃x(t) = Āx̃(t) + B̄ũ(t) + Ḡ
V c
ṽc(t) + Ḡψc ψ̃c(t, ) (3)

+ Ḡ
V w
ṽw(t) + Ḡψw ψ̃w(t) + Ḡww(t),

ỹ(t) = C̄x̃(t) + D̄ũ(t),

where x̃(t) = x(t) − xo, ũ(t) = u(t) − uo, ṽc(t) =
vc(t)−Vc, ψ̃c(t) = ψc(t)−Ψc, ṽw(t) = vw(t)−Vw and
ψ̃w(t) = ψw(t)−Ψw.

In the case of ships, the nature of operating points
defined by (2) is unstable or is on the border of stability.
Furthermore, forcing angular motions about the vertical
axis of the vessel, which moves in relation to water as
a result of the occurrence of a sea current, usually also
causes the loss of the ship’s position.

To prevent this, it is necessary to provide additionally
acting manipulated variables ũ(t) (in the form of
deliberately introduced changes in longitudinal and
transverse components of forces developed by the main
engine and thrusters) added to the previously established
nominal values uo, which will permit maintaining the
conditions applicable to linear models. This can be
accomplished in a closed-loop control system or by using
a specially designed manual control system.

3. Circular and Kempf maneuvering tests

In the case of conventional ships (e.g., commercial ships),
their basic dynamic properties can be described by using
simple SISO (or MISO) models with a small number of
degrees of freedom of the ship’s motion (1DOF, 2DOF).
Here, maneuvering trials called circulation tests may
be applied for this purpose. The tests are carried out
on the ship under certain conditions assumed for the
wind and waves. Usually the tests are performed for
different states of loading (ballasting) and different initial
translational velocities of the vessel with appropriately
selected rudder deflection. After making one-step change
in the rudder position, it remains unchanged during
each circulation test. Measurements of the transverse
velocity and the resulting curved trajectory are most
commonly used to evaluate the characteristics of the
maneuvering properties of the vessel, such as stability
and maneuverability rates of the ship (Fossen, 2011),
less frequently for evaluation of parameter values of their
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linear models. This is due to the fact that the circulation
maneuvers are conducted under conditions not satisfying
the assumptions of linearity of the model corresponding
to the desired operating conditions (operating points) of
the vessel. To detect possible asymmetry characteristics
of maneuvering the trials are performed for rudder
deflections on both the right and on the left side.

In the case of parameter identification of linear
models useful for implementation of precise control of
the motion and/or yaw angle and position of highly
specialized naval units (e.g., drilling vessels) with more
degrees of motion freedom (3DOF or more), equipped
with additional propellers (bow thrusters) and the
corresponding systems for measurement of position and
course (yaw angle) components, we should use tests called
Kempf zigzag tests. The tests are performed as follows:
the vessel that moves initially with the assumed constant
translational velocity and the assumed course (yaw angle),
according to the defined operating points of the vessel in a
specified regime of its operation (positioning or moving
along a trajectory) at the specific configuration of the
marine environment, makes periodic rudder deflections to
the left and right sides to enforce snake-like moving of
the vessel with a possible constant translational velocity.
For conventional ships, the periodical deflections of the
rudder to the right and left sides usually equal about
±15◦ or ±20◦. However, for vessels equipped with
additional propellers (or bow thrusters), extortion of the
course is done by changing the moment of turning the
ship around the vertical axis. Under the influence of
changes in the torque, the ship changes its course when
accompanied frequently by progressive decreases in the
velocity components of the vessel with respect to water. If
changes in the yaw angle will reach an adopted (preset)
value, the turning moment (and/or rudder position) is
reversed.

During Kempf tests made for more specialized
vessels, e.g., drilling ships, the vessel should be
maintained at a predetermined position over the drilling
point at the sea bottom and perform temporary deviations
from the adopted nominal value of the yaw angle only.
This requires the designation of nominal values for
longitudinal and transverse components of the forces and
rotating torque for offsetting the impact of hydrodynamic
forces coming from the sea current and the wind.
Moreover, to prevent the departing of the ship from the
drilling point, application of appropriate methods should
also provide conditions of an active experiment that
comply with those for which linearization of the model
was done. The deviations of manipulated variables ũ(t)
and outputs ỹ(t) from their nominal values measured
with a sampling period Tp during the tests created
measurement sequences

UN−1 = [ũ0, ũ1, . . . , ũN−1]

and
YN = [ỹ1, ỹ2, . . . , ỹN ] ,

used as input data to estimate unknown parameters of the
ship’s discrete model applicable for the ship’s operation
point.

4. Derivation of a gradient-based
identification algorithm

It is assumed that the controlled plant to be identified is
modeled by a linear dynamic system of the n-th order with
m inputs and l outputs given by discrete-time state space
equations

x̃(k + 1) = A(a)x̃(k) +B(b)ũ(k) +Gw(g)w(k),

y(k) = C(c)x̃(k) +D(d)ũ(k) + v(k), (4)

where w(k) ∈ R
p and v(k) ∈ R

l are zero-mean
mutually uncorrelated discrete white noise signals with
(known) covariance matrices W and V, acting on the
controlled plant. The noises may be described by normal
probability densities fw(w) = Nw(0, W) and fv(v) =
Nv(0, V). It is also assumed that the disturbances
w(k) represent the combined effect of all (unmeasured)
stochastic disturbances coming from rapidly varying wind
gusts and waves, while v(k) is regarded as measurement
errors that affect the plant outputs.

Remark 1. In Eqns. (4) the matrices GVc , Gψc , GVw

and Gψw are omitted, since the signals Vc, Ψc, Vw , Ψw
in the process of identification take on constant values
by assumption, and their effect manifests itself only in
the nominal values uo and xo defined by the algebraic
equations (2).

The unknown model parameters are the respective
entries of matrices A(a) ∈ R

n×n, B(b) ∈ R
n×m,

C(c) ∈ R
l×n, D(d) ∈ R

l×m and Gw(g) ∈ R
n×p

forming the vector

θ �
[
aT , bT , cT , dT , gT

]T
(5)

which is to be identified (estimated). The models
of the plant to be identified (4) can assume either
a natural form obtained through linearization of the
nonlinear plant description (1) and discretization of its
linear model (3), where the state variables x̃(k) have
a physical interpretation, or—in the absence of a pri-
ori knowledge about the structure of the model—take a
selected canonical form that contains the least possible
number of uknown parameters.

Because of the occurring stochastic disturbances
w(k), it is assumed that the initial state x̃(0) = x̄0 of
the plant model can be a random variable with a known
mean value x̄0 and a covariance matrix P0 described
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by a normal probability density function fx(x̃0) =
Nx(x̄0,P0).

Subject to the assumptions of normality (and
independence) of disturbances w(k) and v(k) and
the random initial state vector x̃(0), there exists
a total multivariable conditional probability density
fN
(
YN |UN−1, θ, x̄0,P0,W,V

)
that creates, as in,

e.g., the works of Aström and Källström (1976) or Bańka
(2007), a chain of normal conditionally independent
probability densities

fN
(
YN |UN−1, θ, ·)

= fN(ỹN |YN−1;UN−1, θ, ·)
× fN−1(ỹN−1|YN−2;UN−2, θ, ·) (6)

× fk(ỹk|Yk−1;Uk−1, θ, ·)× · · · × f1(ỹ1|ũ0, θ, ·)

=
N∏

k=1

fk(ỹk|Yk−1;Uk−1, θ, ·)

where the dot means the values of x̄0, P0, W and V given
a priori. They are described by two conditional moments:

• the conditional expected value (one-step
expectation),

ŷk|k−1(θ)

� E
{
ỹk|Yk−1;Uk−1, θ, ·} (7)

= E
{
C(c)x̃(k) +D(d)ũ(k)

+ v(k)|Yk−1 ;Uk−1, θ, ·
}

= C(c)E
{
x̃(k)|Yk−1;Uk−1, θ, ·}+D(d)ũ(k)

+ E
{
v(k)|Yk−1 ;Uk−1, θ, ·}

= C(c)x̂k|k−1(θ) +D(d)ũk,

where

x̂k|k−1(θ) � E
{
x̃k|Yk−1;Uk−1, θ, ·} ;

• the conditional covariance matrix,

cov ỹk, ỹk|Yk−1;Uk−1, θ, ·}
= C(c)Pk|k−1(θ)C

T (c) +V, (8)

where

Pk|k−1(θ) � cov
{
x̃k, x̃k|Yk−1;Uk−1, θ, ·} .

Adopting the maximum likelihood (ML) approach
defined by the relationship

LN
(
θ;YN ,UN−1, ·) = fN

(
YN ;UN−1, θ, ·) (9)

as a method of estimation, and applying the logarithm
to both the sides, and neglecting insignificant constant

quantities, we arrive at the problem of minimizing the
equivalent criterion

JN (θ)

=
1

2

N−1∑

k=0

(
log det

[
C(c)Pk+1|k(θ)CT (c) +V

]

+
[
ỹk+1 −C(c)x̂k+1|k(θ)−D(d)ũk+1

]T

× [C(c)Pk|k−1(θ)C
T (c) +V]

−1 (10)

× [ỹk+1 −C(c)x̂k+1|k(θ)−D(d)ũk+1

] )
,

with

x̂k+1|k(θ)
= A(a)x̂k|k−1(θ) +B(b)ũk (11)

+A(a)Kk(θ) [ỹk −C(c)x̂k|k−1(θ)−D(d)ũk
]
,

x̂0|−1 = x̄0 and

Pk+1|k(θ)

= A(a) [In −Kk(θ)C(c)]Pk|k−1(θ)A
T (a)

+Gw(g)WGT
w(g),

P0|−1 = P0, (12)

where

Kk(θ) = Pk|k−1(θ)C
T (c)

× [C(c)Pk|k−1(θ)C
T (c) +V

]−1
(13)

is the weight matrix of the discrete (optimal) Kalman
filter.

Reaching the minimum of the criterion (10) is subject
to the following conditions:

• necessary,
∂JN (θ)

∂θ
= 0,

• and sufficient,

H(θ) =

[
∂2JN (θ)

∂θ2

]
> 0,

for θ = θ̂
∗ ∈ Ξ.

The above criterion consists of two components.
The first, logarithmic, is characteristic of the maximum
likelihood methods. The second is an (optimally
weighted) sum of squared errors of the one-step prediction
of outputs

êk+1|k(θ) � ỹk+1 − ŷk+1|k(θ) (14)

= ỹk+1 −C(c)x̂k+1|k(θ)−D(d)ũk+1
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described by the criterion (performance index)

J
′
N (θ)

=
1

2

N−1∑

k=0

[
ỹk+1 −C(c)x̂k+1|k(θ)−D(d)ũk+1

]T

× [C(c)Pk|k−1(θ)C
T (c)+ V]−1 (15)

× [ỹk+1 −C(c)x̂k+1|k(θ)−D(d)ũk+1

]
).

It should be noted that in the full version of the
ML criterion given by Eqn. (10), at low values of the
covariance matrices W and V, the first (logarithmic)
component of the criterion can also take negative values,
which may make the reaching of the minimum impossible.
Therefore, in practice, the minimization is performed
only with respect to the second component described by
Eqn. (15).

If the model structure is fully consistent with
the structure of the plant on which the measurements
of UN−1 and YN−1 are taken, and all the adopted
assumptions about disturbances are satisfied, then
minimizing the criterion (10)—provided that the global
minimum is reachable—leads, as N → ∞, to
asymptotically consistent and unbiased estimates θ̂ of the
unknown parameters of the (discrete-time) plant (Bańka,
2007). In practice, this is usually not the case, since
(non-random) components of the discrepancy between the
(continuous) plant and its discrete-time model come into
play, resulting from linearization and discretization errors
and the impact of unmeasured external disturbances acting
on the plant.

If the deviations in the manipulated variables and
plant outputs from their nominal values during the
measurements are too large and/or measurements are
taken with an improper (too large) sampling period Tp,
then the result of identification may be a vector θ∗ that
defines under the circumstances the best, in terms of
the criterion (15), predictive linear model of the plant,
comprising a discrete Kalman filter in its structure.

Minimization of the criteria (10) (or, more
frequently, (15)) with respect to the unknown (constant)
values θ represents a difficult problem of static
optimization that can be solved by and large only
numerically, i.e., by using gradient-based methods for
an iterative search for the minimum of a scalar function
with respect to the vector argument, or by employing
genetic methods, if the ranges of the values of unknown
parameters θ are known.

This issue can be effectively solved by replacing
the static optimization problem with a formally defined
dynamic optimization one through varying all unknown
parameters of the model θ by means of additional
difference equations a(k + 1) = a(k), b(k + 1) = b(k),
c(k + 1) = c(k), d(k + 1) = d(k), g(k + 1) = g(k)
with unknown initial conditions a0, b0, c0, d0 and g0

(Bańka, 2007). It will allow us to derive a relation between
increments in the criterion (15) ΔJ

′
N and variations in the

initial conditions Δa0, Δb0, Δc0, Δd0 and Δg0.
Then, rewriting the criterion (15) in the form (16)

and regarding Eqns. (11) and (12) as constraint equations
(equality constraints)

x̂k+1|k
= A(ak)x̂k|k−1 +B(bk)ũk +A(ak)Pk|k−1C

T (ck)

× [C(ck)Pk|k−1C
T (ck) +V

]−1

× [ỹk −C(ck)x̂k|k−1 −D(dk)ũk] , (17)

x̂0|−1 = x̄0 known, and

Pk+1|k
= A(ak)Pk|k−1A

T (ak)−A(ak)Pk|k−1C
T (ck)

× [C(ck)Pk|k−1C
T (ck)+V

]−1
C(ck)

×Pk|k−1A
T (ak) +Gw(gk)WGT

w(gk), (18)

P0|−1 = P0 known,

and

ak+1 = ak, a0 freely assumed,
bk+1 = bk, b0 freely assumed,
ck+1 = ck, c0 freely assumed,
dk+1 = dk, d0 freely assumed,
gk+1 = gk, g0 freely assumed,

(19)

we obtain a discrete version of the Lagrange problem with
(partially) unknown initial conditions, fixed terminal time
N and free endpoints.

To solve the problem, the vector-matrix Lagrange
multipliers are introduced:

ψk+1 adjoint to x̂k+1|k,
Ψk+1 adjoint to Pk+1|k,
αk+1 adjoint to ak+1,

βk+1 adjoint to bk+1,

γk+1 adjoint to ck+1,

δk+1 adjoint to dk+1,

ηk+1 adjoint to gk+1,

(20)

and the Hamiltonian is defined as in (21), into which the
right-hand sides of the constraint equations (17)–(19) are
to be inserted.

After substituting and expressing the criterion (16)
through the Hamiltonian (21), we obtain (22), where
the following conditions apply for terminal values of the
conjugate variables ψN = 0, ΨN = 0, αN = 0,
βN = 0, γN = 0, δN = 0, ηN = 0 due to the
non-occurrence of constraints imposed on terminal values
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J
′
N (θ) =

1

2

N−1∑

k=0

[ỹk+1 −C(ck+1)x̂k+1|k −D(dk+1)ũk+1

]T [
C(ck+1)Pk+1|kCT (ck+1) +V

]−1
(16)

× [ỹk+1 −C(ck+1)x̂k+1|k −D(dk+1)ũk+1

]
,

Hk = Hk(x̂k|k−1, ak,bk, ck,dk,gk,ψk+1,αk+1,βk+1,γk+1, δk+1,ηk+1) (21)

� 1

2

[
yk+1 −C(ck+1)x̂k+1|k −D(dk+1)ũk+1]

T [
C(ck)Pk|k−1C

T (ck) +V
]−1

× [yk+1 −C(ck+1)x̂k+1|k −D(dk+1)ũk+1

]
+ψTk+1x̂k+1|k + tr

[
Ψk+1Pk+1|k

]

+αTk+1ak+1 + β
T
k+1bk+1 + γ

T
k+1ck+1 + δ

T
k+1dk+1 + η

T
k+1gk+1,

J
′
N =

N−1∑

k=0

(Hk −ψTk+1x̂k+1|k − tr
[
Ψk+1Pk+1|k

]−αTk+1ak+1 − βTk+1bk+1

− γTk+1ck+1 − δTk+1 − dk+1η
T
k+1gk+1) (22)

≡
N−1∑

k=0

(
Hk −ψTk x̂k|k−1 − tr

[
ΨkPk|k−1

]−αTk ak − βTk bk −γTk ck − δTk dk − ηTk gk
)
+ψT0 x̂0|−1

+ tr
[
Ψ0P0|−1

]
+αT0 a0 + β

T
0 b0 + γ

T
0 c0 + δ

T
0 d0 + η

T
0 g0 −ψTN x̂N |N−1 − tr

[
ΨNPN |N−1

]

−αTNaN − βTNbN − γTNcN − δTNdN − ηTNgN ,

ΔJ
′
N =

N−1∑

k=0

([
∂Hk

∂x̂k|k−1
−ψk

]T
Δx̂k|k−1 + tr

[
∂Hk

∂Pk|k−1
−Ψk

]T
ΔPk|k−1+

[
∂Hk

∂ak
−αk

]T
Δak (23)

+

[
∂Hk

∂bk
− βk

]T
Δbk +

[
∂Hk

∂ck
− γk

]T
Δck +

[
∂Hk

∂dk
− δk

]T
Δdk +

[
∂Hk

∂gk
− ηk

]T
Δgk

)

+ψT0 Δx̂0|−1 +ΨT
0 ΔP0|−1 +α

T
0 Δa0 + β

T
0 Δb0 + γ

T
0 Δc0 + δ

T
0 Δd0 + η

T
0 Δg0

of the variables x̂N |N−1, PN |N−1 and aN , bN , cN , dN ,
gN .

Assuming that the Hamiltonian (21) is differentiable,
after performing variations in the loss function J

′
N with

respect to all the variables occurring there, we get a
total differential (23), from which it is inferred that
the following equalities will be satisfied for all k =
0, 1, . . . , N − 1:

∂Hk

∂x̂k|k−1
= ψk,

∂Hk

∂Pk|k−1
= Ψk,

∂Hk

∂ak
= αk,

∂Hk

∂bk
= βk,

∂Hk

∂ck
= γk,

∂Hk

∂dk
= δk,

∂Hk

∂gk
= ηk. (24)

At the known values x̂0|−1 = x̄0 and P0|−1 = P0,

the criterion increments ΔJ
′
N caused by variations in

Δa0, Δb0, Δc0, Δd0 andΔg0 will be determined simply
as

ΔJ
′
N = αT0 Δa0 + β

T
0 Δb0 + γ

T
0 Δc0 (25)

+ δT0 Δd0 + η
T
0 Δg0.

This means that the components of the
loss function gradient vector (16) regarded
with respect to the sought-for parameter values
θT �

[
aT , bT , cT , dT , gT

]
will equal the
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initial values of conjugate variables

∂J
′
N(θ)

∂a
= α0,

∂J
′
N(θ)

∂b
= β0,

∂J
′
N(θ)

∂c
= γ0,

∂J
′
N(θ)

∂d
= δ0,

∂J
′
N(θ)

∂g
= η0. (26)

Determination of the derivatives (24) leads to the
conjugate equations (27)–(31), where ∂Pk+1|k/∂ci, j ,
(δk)ij and (ηk)ij are described by (32)–(34), respectively
(Bańka, 2007).

In the above relationships, the derivatives

∂AT (a)

∂ai, j
,

∂BT (b)

∂bi,j
,

∂CT (c)

∂ci,j
,

∂DT (d)

∂di,j
,

∂GT
w(g)

∂gj,i
(35)

are matrices filled with zeros excepted for one entry equal
to 1 that lies at the intersection of the i-th row and the j-th
column.

On the basis of the above discussion and the obtained
relationships, one may formulate the identification
algorithm as Algorithm 1 (Bańka, 2007) for plants being
subject to unmeasured stochastic disturbances of the white
Gaussian noise type.

The calculations are to be continued until the
successive values of the criterion (16) differ by less than a
given preset value εJ > 0, that is,

J
(i)
N − J

(i+1)
N < εJ , (36)

where εJ is a small positive number, or are to be stopped
after performing a preset number of iterations i = imax.
Since there is no guarantee that the global minimum is
achievable or the computations will stop on the border
of the permissible domain Ξ, the computations should
be repeated for different values of starting parameters
θ(0) ∈ Ξ.

5. Example: Parameter identification of the
“Wimpey Sealab” drilling vessel

According to the procedure described at the beginning
of the paper, an active experiment was conducted on
the controlled plant, i.e., the Kempf zigzag test on the
nonlinear model of the ship “Wimpey Sealab” given by
equations (Wise and English, 1975; Bańka et al., 2010;

Algorithm 1. Identification procedure.
Step 1. Read in a priori data x̄0, P0, W and V and
results of measured inputs UN−1 = [ũ0, ũ1, ..., ũN−1]
and outputs YN = [ỹ1, ỹ2, ..., ỹN ] of the plant taken
from within the range of observations [0, N ] .

Step 2. In iteration i := 0 choose the starting values for
the parameters θ(i) ∈ Ξ (5).

Step 3. For k = 0, 1, 2, . . . , N − 1 solve the constraint
equations (18) and (17) in the normal course of time,
memorizing the sequences of evaluated values as arrays

[
P

(i)
1|0,P

(i)
2|1,P

(i)
3|2, . . . ,P

(i)
N |N−1

]

and [
x̂
(i)
1|0, x̂

(i)
2|1, x̂

(i)
3|2, . . . , x̂

(i)
N |N−1

]
.

Compute the entries of the Kalman filter weight matrix
(gain matrix) (13) and the values of the squared errors of
the one-step predictions of outputs (14) and store them as
arrays [

K
(i)
1 ,K

(i)
2 ,K

(i)
3 , . . . ,K

(i)
N

]

and [
ê
(i)
1|0, ê

(i)
2|1, ê

(i)
3|2, . . . , ê

(i)
N |N−1

]
.

Determine and store the value of the loss function J
′(i)
N

computed in accordance with (16).

Step 4. In utilizing the values computed and memorized
in Step 3 solve the adjoint equations (27)–(34) backwards
in time for k = N − 1, N − 2, . . . , 0 and determine the
gradient vector by substitution

g
(i)
θ =

⎡

⎢⎢
⎢
⎢
⎢
⎣

α
(i)
0

β
(i)
0

γ
(i)
0

δ
(i)
0

η
(i)
0

⎤

⎥⎥
⎥
⎥
⎥
⎦

Step 5. Determine the direction the search for a minimum
ζ(i) according to one of the selected gradient methods and

minimize the loss function J
′(i)
N along the direction ζ(i) so

that
J

′(i)
N

(
θ(i) + d(i)ζ(i)

)
→ min .

Store the last length of the step d(i)opt = d(i) and compute

θ(i+1) = θ(i) + d
(i)
optζ

(i).

Store the obtained (best) values of the model parameters
θ(i+1) and the achieved criterion value

J
′(i+1)
N < J

′(i)
N .

Step 6. At i := i+ 1 go to Step 1.
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ψk =
∂Hk

∂x̂k|k−1

=
[
In −CT (c)KT

k

]
AT (a)

[
ψk+1 −CT (c)

[
C(c)Pk+1|kCT (c) +V

]−1
êk+1|k

]
, ψN = 0, (27)

Ψk =
∂Hk

∂Pk|k−1

= ψkê
T
k|k−1

[
C(c)Pk|k−1C

T (c) +V
]−1

C(c) (28)

+
[
In −CT (c)KT

k

]
AT (a)

[
ψk+1 −

1

2
CT (c)

[
C(c)Pk+1|kCT (c) +V

]−1
[
êk+1|kêTk+1|k

]

×[C(c)Pk+1|kCT (c) +V
]−1

C(c)
]
A(a) [In −KkC(c)] , ΨN = 0,

(αk)ij =
∂Hk

∂ai,j

=
[
x̂k+1|k +Kkêk|k−1

]T ∂A(a)

∂ai, j

[
ψk+1 −CT (c)

[
C(c)Pk+1|kCT (c)+ V ]

−1
êk+1|k

]

− 1

2
êTk+1|k

[
C(c)Pk+1|kCT (c) +V

]−1
C(c)

[∂A(a)

∂ai, j

[
In −KkC(c)

]
Pk|k−1A

T (a) (29)

+A(a)
[
In −KkC(c)

]
Pk|k−1

∂AT (a)

∂aj, i

]
CT (c)

[
C(c)Pk+1|kCT (c) +V

]−1
êk+1|k

+ tr

[[
A(a)Pk|k−1

[
In −CT (c)KT

k

] ∂AT (a)

∂aj, i
+
∂A(a)

∂ai, j

[
In −CT (c)KT

k

]
Pk|k−1A

T (a)

]
Ψk+1

]

+ (αk+1)ij , (αN )ij = 0,

(βk)ij =
∂Hk

∂bi, j

= ũTk
∂BT (b)

∂bi,j

[
ψk+1 −CT (c)

[
C(c)Pk+1|kCT (c) +V

]−1
êk+1|k

]
+ (βk+1)ij , (βN )ij = 0, (30)

(γk)ij =
∂Hk

∂ci, j

=

[
x̂Tk+1|k

∂CT (c)

∂cj, i
+

1

2
êTk+1|k

[
C(c)Pk+1|kCT (c) +V

]−1
C̃(c)

]
(31)

×
[
∂Pk+1|k
∂ci,j

]
CT (c)

[
C(c)Pk+1|kCT (c) +V

]−1
êk+1|k

−
[
x̂Tk|k−1

∂CT (c)

∂cj, i
KT
k + êTk|k−1

[
C(c)Pk|k−1C

T (c) +V
]−1

×
[[
∂C(c)

∂ci, j
Pk|k−1C

T (c) +C(c)Pk|k−1
∂CT (c)

∂cj, i

]
KT
k−

∂C(c)

∂ci, j
Pk|k−1

]
AT (a)

]
ψk+1

+ tr

[[
∂Pk+1|k
∂ci, j

]T
Ψk+1

]

+ (γk+1)ij , (γN )ij = 0.
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∂Pk+1|k
∂ci, j

= A(a)
[
−Pk|k−1

∂CT (c)

∂ci,j
+Kk

[∂C(c)

∂ci,j
Pk|k−1C

T (c) +C(c)Pk|k−1
∂CT (c)

∂cj,i

]
KT
k (32)

− ∂C(c)

∂ci,j
Pk|k−1

]
AT (a),

(δk)ij =
∂Hk

∂di, j
= − ũTk+1

∂DT (d)

∂dj, i

[
C(c)Pk+1|kCT (c) +V

]−1
êk+1|k

− ũTk
∂DT (d)

∂dj, i
KT
kA

T (a)ψk+1 + (δk+1)ij , (δN)ij = 0. (33)

2013; Dworak and Brasel, 2013)

ẋ1 = x4 cosx3 − x5 sinx3 + Vc cosΨc,

ẋ2 = x4 sinx3 + x5 cosx3 + Vc sinΨc,

ẋ3 = x6,

ẋ4 = 0.088x25 − 0.132x4Vs + 0.958x5x6

+ 0.958u1, (37)

ẋ5 = −1.4x5Vs − 0.978x35/Vs − 0.543x4x6

+ 0.037x6 |x6|+ 0.544u2,

ẋ6 =
1

a
(0.258x5Vs − 0.764x4x5

− 0.162x6 |x6|+ u3),

y1 = x1, y2 = x2, y3 = x3,

where the state variables x1, . . . , x3 represent the ship
position and course angle over the drilling point and
x4, . . . , x6 her longitudinal, transversal and angular
velocities (see Fig. 1), Vs =

√
x24(t) + x25(t) is the

translational velocity of the ship measured with respect
to water. The coefficient a = k2zz + 0.0431 describes the
ship’s inertia moment together with water associated with
the angle motion of the ship around its vertical axis. Here
k2zz is the square of the relative inertia radius referenced
to the ship’s length Lpp, and Vc and Ψc are, respectively,
the velocity and direction of the sea current as indicated in
Fig. 1. All the signals appearing in (38) are dimensionless,
i.e., related to the ship’s dimensions and displacement
together with the dimensionless time t = tr/

√
Lpp/g ≈

0.32 tr (Wise and English, 1975).
The Kempf test was carried out using the

MATLAB/Simulink environment on the developed
nonlinear simulation ship model with animated ship’s
motions for a selected operating point over the drilling
point. It is defined by the nominal values of the course
angle x30 = 45◦ at Vc = 2 knots and Ψc = 180◦

and Vw = 0, under the assumption that the radius of
gyration of the vessel is constant during the test and
equals kzz = 1/4.

x
1

v
c

�
c

x
3

x
6

x
5

x
4

x
2

0

Fig. 1. Ship’s co-ordinate systems.

At small course deviations x̃3(t) = x3(t) − x30
caused by torque variations, for example, in the form of
a “square wave” with an appropriately selected amplitude
±ΔMz (e.g., equaling 20% of the maximum possible
torque to be generated by the propellers), it can be
assumed that the longitudinal and transverse components
of the forces developed by the main engine and the
thrusters will depend directly on the value of this
deviation in accordance with the following trigonometric
relationships:

ũ1(t) = F̃x(t) = (1− cos(x̃3(t)) ΔFx, (38)

ũ2(t) = F̃y(t) = − sin(x̃3(t)) ΔFy ,

where ΔFx and ΔFy are experimentally chosen values
of the amplitudes of these forces (representing, e.g., 1%
of their maximum value possible to be generated by the
main engine or thrusters, respectively).

The nominal values for the remaining state
coordinates xo and components of manipulated variables
uo required to keep the ship’s position over the drilling
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(ηk)ij =
∂Hk

∂gi,j

=
1

2
êTk+1|k

[
C(c)Pk+1|kCT (c) +V

]−1
[
C(c)

[
∂Gw(g)

∂gi,j
WGT

w(g) +Gw(g)W
∂GT

w(g)

∂gi,j

]
CT (c)

]

×
[
C(c)Pk+1|kCT (c) +V

]−1

êTk+1|k + tr

[[
∂Gw(g)

∂gi,j
WGT

w(g) +Gw(g)W
∂GT

w(g)

∂gi,j

]
Ψk+1

]
(34)

+ (ηk+1)ij , (ηN )ij = 0.

point, according to (2), are equal to

u10 = 5.8816 · 10−5 (Fx0 = 3.2715 kN), (39)

u20 = −2.8041 · 10−3 (Fy0 = −15.5970 kN),

u30 = −2.2791 · 10−4 (Mz0 = −1.1979MNm).

In order for the vessel to make only angular motions
about the vertical axis during the zigzag test and to
keep the position over the drilling point, the control
policy defined by (38) was employed with the following
experimentally chosen amplitudes:

Δu3 = 3.9000 · 10−4 (ΔMz = 2049.80 kNm)

and

Δu1 = Δu2 = 4.1183 · 10−4

(ΔFx = ΔFy = 22.907 kN)

for the respective manipulated variables in the form of a
“square wave” produced manually for the torque ũ3(t) �
Mz(t) and automatically generated forces ũ1(t) � Fx(t)
and ũ2(t) � Fy(t), counteracting the ship’s departure
from the drilling point.

Remark 2. Providing similar conditions on a real ship
under sea operating conditions is, of course, more difficult
and requires full compensation of all forces and moments
acting on the ship’s hull at a specific configuration of
impacts (being constant as far as possible) produced by
the marine environment. Provision of such conditions
is generally possible only on a board of fully equipped
vessels with an automatic control system switched on.
Then, for the sake of the active nature of the experiment,
it should be remembered that the angular motions in
the Kempf zigzag test should be forced by means
of an additional torque rotating the vessel, generated
independently of the control system.

It is assumed that during the simulation the ship’s
model is acted upon by some additional white noise
w(t), replacing the total impact of (rapidly varying) forces
coming from the wind and waves with zero mean values

and variances defined by the covariance matrix

W

=

⎡

⎣
8.6484 · 10−10 0 0

0 1.9658 · 10−6 0
0 0 1.2986 · 10−8

⎤

⎦ .

The variances correspond to standard deviations
of randomly generated forces, the longitudinal and the
transverse one, and those of the torque rotating the vessel,
approximately equal to 50% of their nominal values uo
given in (39).

Also, it was assumed that measurements of the
position and the course angle are affected by random
errors v(t) with zero mean values and variances defined
by the covariance matrix

V

=

⎡

⎣
1.0000 · 10−4 0 0

0 1.0000 · 10−4 0
0 0 3.0000 · 10−4

⎤

⎦ ,

which correspond to standard deviations of errors in
measurements of the position and course angle equal
about ±1 m and ±1 deg. The noise signals w(t)
and v(t) were generated during the tests by generators
of pseudorandom numbers and added directly to the
manipulated variables u(t) acting on the plant and v(t)
to the plant outputs y(t).

After subtracting the nominal values uo and yo from
the obtained signals u(t) and y(t) and sampling them
with a period of Tp = 0.1 (≈ 0.32 s), measurement
sequences UN−1 and YN were created, used as input
data for the algorithm of parameter identification of the
discrete-time linear ship model together with the adopted
a priori mean value and covariance matrix for the initial
state of the linear model, namely, x̄(0) = 0 and P0 =
diag{2.5 · 10−6, 2.5 · 10−6, 3.05 · 10−4, 1.06 · 10−8, 2.0 ·
10−7, 7.0 · 10−7}.

The structure of the linear model was established
during linearization of the nonlinear state equations (37),
which describe LF motions made by the “Wimpey Sealab”
drilling vessel. As a result, we obtained linear ship models
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defined by the difference state and output equations (4), in
a natural form with the matrices

A = ĀTp + In =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎣

1 0 0 a14 a15 0
0 1 a23 a24 a25 0
0 0 1 0 0 0.1
0 0 0 a44 a45 a46
0 0 0 a54 a55 a56
0 0 0 a64 a65 1

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎦

,

(40)

B = B̄Tp =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎣

0 0 0
0 0 0
0 0 0
b31 0 0
0 b52 0
0 0 b63

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎦

,

and the output matrix

C =

⎡

⎣
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎤

⎦ .

In the natural form (40), there occur lp = 17
parameters in total to be identified. Among them, there
are 14 varying parameters aij and b63, with the latter
(and also a64 and a65) being dependent on the value
of the adopted assumed ship radius of gyration kzz .
During the tests, kzz ∈ [0.25, 0.5] was adopted. Except
for the overall structure of the model (40), no other
assumptions have been made, e.g., correlation between
particular parameters. The only limitation applies to the
ranges of parameters values. They were determined by the
linearization of the nonlinear ship model (37) carried out
over the entire range of the course angle x30 ∈ [−π, π]
rd, at different values of the sea current velocity Vc ∈
[0.01, 3.5] knots and at the angle Ψc = π. The values are
summarized in Table 1. On the other hand, the canonical
observable Luenberger form for the same linear model
includes altogether lp = 23 parameters to be identified.

The intervals given in Table 1 form subspaces of
admissible values Ξ in lp-dimensional parameter spaces.
Due to limitations of parameter values, they may not be
convex. This is indicated by the fact that taking terminal
(upper or lower) values for the parameters θ creates
models that have more unstable poles than all natural
models obtained for the studied ranges of the ship’s course
angle x30 and the sea current velocity Vc.

Also, it is worth noting that some of the parameters
take their values from within very “tight” intervals. It
is therefore to be expected that, if we have to do with
strongly varying dynamic properties of the vessel over
the studied range of the course angle x30 and the ship’s
velocity Vs − Vc, the “hypersurfaces” generated by the
criterion J

′
N (θ) may have narrow “valleys” with very

Table 1. Constraints on the parameters of the natural model.
Item Parameter

1 −0.1 ≤ a14 ≤ 0.1

2 −0.1 ≤ a15 ≤ 0.1

3 0 ≤ a23 ≤ 0.0068

4 −0.1 ≤ a24 ≤ 0.1

5 −0.1 ≤ a25 ≤ 0.1

6 0.99 ≤ a44 ≤ 1

7 −0.0014 ≤ a45 ≤ 0.0014

8 −0.007 ≤ a46 ≤ 0.007

9 −0.0034 ≤ a54 ≤ 0.0034

10 0.9679 ≤ a55 ≤ 0.9998

11 −0.0037 ≤ a56 ≤ 0.0037

12 −0.0495 ≤ a64 ≤ 0.0495

13 −0.0324 ≤ a65 ≤ 0.0324

14 0.05 ≤ b41 ≤ 0.1

15 0.02 ≤ b52 ≤ 0.06

16 0.35 ≤ b63 ≤ 1

steep “slopes”, which may impede the search for the
minimum.

The identification of the model parameters was
carried out by means of two methods: using the
gradient-based algorithm presented in the paper and
with a genetic algorithm. Both methods allow correct
results to be obtained, but they inherently differ in
their implementation and in the way the calculations are
conducted.

Results produced by the gradient-based algorithm.
On the basis of the performed calculations and the
obtained results, it can be concluded that the parameter
identification of linear models of the drilling ship
“Wimpey Sealab” proved to be a difficult optimization
problem that requires lengthy and numerically sensitive
numerical calculations to be carried out. The main
reason is that the nonlinear ship model is intrinsically
dimensionless, where all the signals assume very small
values within the range of real numbers � 1.

As a result, during the calculations, warnings were
very often generated related to the inability to reverse
the ill-conditioned weighting matrix of the criterion[
C(c)Pk|k−1(θ)C

T(c)+ V ], which occurs repeatedly
in relationships needed to calculate the objective function
(criterion) J

′
N (θ) and the gradient. This is confirmed by

the fact that, after setting W = 0 and P0 = 0 (that
is, after ignoring the available a priori information about
the disturbances w(k)) in the developed identification
algorithm, the calculations run quickly, delivering
Markovian estimates with the criterion weighting matrix
that takes into account only statistical data about plant
output measurement errors contained in the covariance
matrix V of the measurement noise v(k). Unfortunately,
parameter estimates θ obtained in such a way are much
worse than those obtained by the maximum likelihood
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method, i.e., by using all available a priori information.
Even worse results from the same measurement data

UN−1 and YN are obtained by replacing the weighting
matrix

[
C(c)Pk|k−1(θ)C

T(c)+ V ] in the criterion
(15) by the identity matrix Il, which is possible after
setting W = 0, P0 = 0 and V = Il in the algorithm.
In doing so, the discussed estimation method (ML) is
reduced to the ordinary least-squares method.

The numerical sensitivity intensifies the need for
using advanced optimization methods, such as second
order gradient-based techniques with a variable metric
(e.g., the Davidon–Fletcher–Powell (DFP) method or
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method
with calculating a Hessian of large dimensions lp × lp).
The use of genetic methods, especially when, in the case
under study, the ranges of the sought-for parameters are
known, greatly facilitates the solution to this problem.

Results produced by the genetic algorithm. The
criterion (15) was optimized using the genetic
method implemented in the Matlab environment
with the Optimization Toolbox for the same (identical)
measurement data obtained from the Kempf zigzag test
and with adopted constraints conditioned by physical
meaning that are imposed on the parameter values of the
natural model to be identified (Table 1).

In order to have a possibility to compare other
optimization methods, the same fitness function in all
cases was employed.

In the processes of optimization, a roulette selection
function with two elite individuals was used. Moreover,
the scaling of the fitness function was conducted by using
a range function. After preliminary comparative research,
the initial population was established to ten individuals.
Two different approaches were applied to prepare the
initial population. Apart from constraints, in one case
six from ten individuals were set in advance. In the
second case, all individuals were randomly chosen. As
the difference in the value of the fitness function of these
individuals is rather small, we suggest that using an initial
population without in-advance prepared individuals is a
good approach, as good as with in advance prepared ones.
The convergence of so prepared calculations allowed us to
stop them before one hundred generations.

Illustrative examples of parameter identification
results obtained for the model given in the natural form
(40) are presented in Table 2 for the following vectors:
θstart_grad, initial values for the gradient-based algorithm;
θ̂best_grad, the “best” final result of computations delivered
by the gradient-based algorithm; θtheoretic, the set of
parameters describing the model yielded directly after
linearization and discretization for a given nominal
operating point; θ̂best_gen the best result yielded by the
genetic algorithm.

In making the calculations with due account of all a

Table 2. Identification results.

Parameters θ̂best_grad θtheoretic θ̂best_gen

a14 0.045513 0.070711 0.079061
a15 -0.080083 -0.070711 -0.074403
a23 0.003517 0.003379 0.003162
a24 0.051545 0.070711 0.019711
a25 0.096987 0.070711 0.088827
a44 0.993691 0.999331 0.995490
a45 -0.001047 -0.000197 -0.000566
a46 -0.003056 -0.002289 -0.002290
a54 -0.001202 0.001539 -0.001887
a55 0.994031 0.988772 0.999461
a56 -0.000909 -0.001297 -0.001644
a64 0.049026 0.013160 0.045848
a65 0.023308 -0.004904 -0.004075
b41 0.050158 0.095800 0.063409
b52 0.060000 0.054300 0.027839
b63 0.816091 0.946970 0.886175

J
′
N 1914.1 1922.7 1920.7

0 20 40 60 80 100 120
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

t [s]

X
1

 

 
y

1
(k)

X
1
best−grad

X
1
best−gen

X
1
theoretic

Fig. 2. Time-dependent behavior of the first component of the
state vector x̂k+1|k against the background of ỹ1(k).

priori data that minimize the objective function (15), the
best values of the parameters θ̂best_grad and θ̂best_gen were
obtained, for which the time curves for components of
the state vector x̂k+1|k are presented in Figs. 2–7. The
corresponding curves of the one-step output prediction
errors êk+1|k(θ̂best_grad), neglected for their low legibility,
are sufficiently white and have means close to zero.

When comparing the identification results of the
ship’s model parameters delivered by the gradient-based
method and the genetic one, it may be stated that the
obtained results are similar. The time behaviors of
state variables estimated by the Kalman filter obtained
by means of both the methods largely coincide with
each other—the curves for best-gen, best-grad and the
theoretical solution in Figs. 2–7 largely overlap.

It should be noted that the best individual from
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Fig. 3. Time-dependent behavior of the second component of
the state vector x̂k+1|k against the background of ỹ2(k).
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Fig. 4. Time-dependent behavior of the third component of the
state vector x̂k+1|k against the background of ỹ3(k).
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Fig. 5. Time-dependent behavior of the fourth component of the
state vector.

the genetic algorithm is “more” fitted to the value of
the nominal operating point (only one element differs in
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Fig. 6. Time-dependent behavior of the fifth component of the
state vector.
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Fig. 7. Time-dependent behavior of the sixth component of the
state vector.

sign), but the value of the criterion for this individual
is greater than that of the best solution produced by the
gradient-based algorithm. In both the cases, the criterion
values are similar and are less than the value calculated
for parameters in the nominal operating point of the ship.

The presented results also confirm the possibility
of a practical implementation of the algorithm. The
computations were conducted on a PC-class computer
with an i3 processor, 4 GB RAM. The average time of
computation was around 5 minutes inclusive of plotting
each point of the chart flow on the screen.

In addition, the analysis of changes experienced
by the value of the criterion J

′
N in the process

of minimization (Fig. 8) justifies the conclusion
that it is possible to further reduce the number of
iterations/generations without a significant deterioration
in the value of the criterion by which the average
computation times will be reduced.
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Fig. 8. Value of the criterion J
′
N after each iteration/generation

delivered by the respective algorithm:gradient-based (a),
genetic (b).

6. Concluding remarks

On the basis of the conducted calculations and the
results obtained it may be concluded that identification
of parameters of linear models of the ship “Wimpey
Sealab” proved to be a difficult optimization problem that
requires lengthy and sensitive numerical calculations to
be carried out. Both the methods tested produced correct,
comparable results.

However, if we take into account the complexity
of calculations, the encountered numerical problems and
the obtained, in consequence, computation times, it
seems that the genetic algorithm is a better choice here.
Regardless of how the initial individuals are selected,
the criterion achieves its acceptable value after about 50
generations, and the obtained accuracy and computation
times allow the use of the algorithm in practice.

Finally, taking into account all pros and cons of both
the methods, it seems to us that the best solution would
be a combination—the genetic algorithm for starting the
optimization procedure and the gradient one for finding
the best solution in the designated area. Such an algorithm
may have a chance to be successfully used in practice.
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