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The paper is focused on the problem of multi-class classification of composite (piecewise-regular) objects (e.g., speech
signals, complex images, etc.). We propose a mathematical model of composite object representation as a sequence of in-
dependent segments. Each segment is represented as a random sample of independent identically distributed feature vectors.
Based on this model and a statistical approach, we reduce the task to a problem of composite hypothesis testing of segment
homogeneity. Several nearest-neighbor criteria are implemented, and for some of them the well-known special cases (e.g.,
the Kullback–Leibler minimum information discrimination principle, the probabilistic neural network) are highlighted. It
is experimentally shown that the proposed approach improves the accuracy when compared with contemporary classifiers.
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1. Introduction

In a classification task it is required to assign the
query object X (facial photo, speech signal, image
of natural scenes, text) to one of C > 1 classes
(Theodoridis and Koutroumbas, 2008). It is usually
assumed that all classes are specified with a given
database {Xr}, r ∈ {1, . . . , R} of R ≥ C cases
(instances or models). For each model object Xr, a
class label c(r) ∈ {1, . . . , C} is given. If the analyzed
objects are represented as feature vectors with a fixed
dimension, traditional classification methods can be used,
e.g., linear/quadratic discriminant analysis (LDA/QDA),
feed-forward multi-layer perceptrons (MLPs) and support
vector machines (SVMs) (Haykin, 2008). Recently the
research has shifted the focus to the objects containing
several independent homogeneous (regular, “stationary”)
parts (Świercz, 2010). Each part can be considered
a sample of independent identically distributed (i.i.d.)
feature vectors. We will call such objects composite or
piecewise-regular.
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Recognition of piecewise-regular objects includes
image and speech processing tasks. For instance, the
image of the whole object or the keypoint neighborhood
(Dalal and Triggs, 2005; Lowe, 2004) is divided into a
grid of blocks; each block is processed independently (as
in JPEG/MPEG compression algorithms). Speech can be
considered a sequence of independent phonemes (Benesty
et al., 2008): features of different segments inside one
word may have nothing in common as they correspond
to distinct phonemes. Thus, modern recognition methods
determine the structure of the classifier based on a
piecewise-regular model of analyzed objects. The query
object X and all models Xr are considered sequences
of, respectively, K and Kr relatively independent
homogeneous (regular) segments. Segmentation of
practically important objects (images, speech) has been
well studied (Theodoridis and Koutroumbas, 2008) and is
not discussed in this article.

The main contribution of our paper is as follows.
We introduce a novel approach to design classifiers
of audiovisual objects (images, speech utterances) by
testing segment homogeneity based on the probabilistic
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model of composite object representation as a sequence
of i.i.d. segments. Based on this approach, we
present asymptotically minimax classifiers for parametric
and non-parametric estimates of unknown probability
densities. In the former case, an exponential family
of distributions of each segment is assumed. In the
latter case, nonparametric Parzen kernels are used. Our
approach allows strictly proving the known insufficient
quality of Bayesian classifiers, e.g., the probabilistic
neural network (PNN), the Kullback–Leibler (KL)
minimum information discrimination principle, usually
explained by the naive assumption of the statistical
independence of features. We presented another
(probabilistic) explanation when the classification task is
referred to as a composite hypothesis testing of segment
homogeneity.

The rest of the paper is organized as follows.
Section 2 presents the literature review of recognition
methods of composite objects. In Section 3, we introduce
our probabilistic mathematical model of composite
objects and present classification criteria for parametric
and non-parametric estimates of probability densities. In
Section 4, experimental results in classification of images
and Russian speech are presented. Finally, concluding
comments are given in Section 5.

2. Literature review

Methods of piecewise-regular object recognition are
primarily determined by the characteristics of the
available database of models. The most well-studied are
tasks with a large number of available models for each
class (R � C), e.g., optical character recognition or
classification of traffic signs and phonemes. Another
practically important case is the small sample size (C ≈
R). Let us describe both instances in detail.

Following the traditional approach to pattern
recognition (Theodoridis and Koutroumbas, 2008),
feature extraction is the crucial step to achieve high
accuracy. Experimental studies clearly show that
popular classifiers (LDA/QDA, MLP, SVM, etc.) are
characterized by the best quality for uncorrelated features
(Haykin, 2008). Hence, classical recognition procedures
include normalization and decorrelation with, e.g.,
principal/independent component analysis (PCA/ICA)
for primitive descriptions of analyzed objects (color
matrix for images, signal of acoustic pressure amplitude
of its fast Fourier transform (FFT) for speech). For
instance, weighed histograms of gradient orientation are
calculated in the neighborhood of image keypoints (Dalal
and Triggs, 2005). For speech fragments the spectrum is
estimated in several acoustic frequency bands and further
decorrelated by the modified cosine transform. As a
result, mel-frequency cepstral coefficients (MFCCs) are
obtained (Benesty et al., 2008). Thus, the most evident

way to recognize a composite object is to divide it into
a fixed number of homogeneous segments, estimate
features for all segments, unite them into a single feature
vector and classify them with the traditional MLP or
SVM.

Unfortunately, homogeneous segments are extracted
inaccurately—several important segments can be
duplicated (e.g., vowels in speech signals) or missed
(consonant phonemes). Hence, the described approach
is ineffective for many tasks, such as automatic speech
recognition (ASR) (Sas and Żołnierek, 2013). To
overcome this drawback, preliminary segmentation of
the query object and all models is performed. Next,
the segments are dynamically aligned with dynamic
programming techniques (dynamic time warping, DTW)
(Benesty et al., 2008): each segment of the input object
is compared with several segments of each model in
some neighborhood of the segment. It is obvious that
such alignment causes a further increase in the average
recognition time. Unfortunately, such an approach is
known to be characterized with low accuracy if the
number of classes becomes high. In consequence, since
1980 the most popular methods have been based on
hidden Markov models (HMMs), specially developed for
classification of piecewise-stationary objects (Benesty
et al., 2008). The HMM is a standard de-facto in modern
ASR libraries (CMU Sphinx, HTK, Kaldi, etc.).

The major restriction of this approach is the
requirement of features to be uncorrelated or independent.
It is not surprising that the recent research has shifted the
focus to the usage of primitive correlated features and
more complex classifiers, e.g., the deep neural network
(DNN) (LeCun et al., 2015), which showed higher
accuracy when compared with the state-of-the-art SVM
for several model tasks. At first, restricted Boltzmann
machines were used as unsupervised stacked auto
encoders to extract features with final layers trained by
the back propagation on the modern GPUs (Hinton et al.,
2006). However, the best results are achieved with other
neural network methods with a deep architecture, such
as the convolution neural network (CNN) (LeCun et al.,
1998), which do not use unsupervised learning. The CNN
consists of sequentially mapped layers of convolution
and sub-sampling. Recently, the subsampling layer has
been replaced with the max pooling layer and several
CNNs are united in a committee in the multi-column
GPU max-pooling CNN (MC-GPU-MPCNN) (Ciresan
et al., 2012), which allowed reaching a better-than-human
recognition rate in a traffic sign image recognition task
(C = 43 classes, R = 39209 models). For handwritten
digits recognition from the MNIST dataset (C = 10
classes, R = 60000), this DNN showed 99.65% accuracy.

It is important to note that the CNN can be applied
not only in image recognition tasks. For instance, its
special case, the time-delay neural network, showed good
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accuracy of phoneme recognition (Bottou et al., 1990).
However, most widely-used in the ASR task are other
methods with prior phoneme segmentation. They allow
using the phonetic approach widely developed in HMM
studies. The DNN is used instead of the GMM (Gaussian
mixture model) to decrease the word error rate to 10–15%
(Hinton et al., 2012). It was shown by the Microsoft
research team (Huang et al., 2013) that the usage of simple
FFT features instead of the MFCC allows the DNN to
increase the accuracy.

Thus, classifiers with a deep architecture and a
large number of parameters for several model tasks allow
achieving an equal-to-human accuracy. However, the
situation becomes quite more complicated if the training
set contains a small number of models per each class
(in the worst case, one model per class, C = R) (Tan
et al., 2006). In this case a proper distance metric between
analyzed objects should be chosen. To classify the
query object, nearest neighbor (NN) based rules, e.g., the
k-NN or radial-basis networks (Haykin, 2008), are widely
applied. A remarkable method is the binary classification
of the distances between segments (Liao et al., 2007). It
is assumed that from 2 to 5 models are available for each
class.

Despite the impossibility to train complex classifiers,
e.g., the CNN, for such a training set, it is possible
to assign the vector of distances between corresponding
segments to one of two classes when these distances are
calculated between objects of the same or distinct classes.
The query object is segmented, and the histograms of local
binary patterns (LBPs) are estimated for each segment.
The distance vector between the corresponding segments
of the query image and each model from the database is
calculated and recognized by the AdaBoost classifier. The
decision is made in favor of the class of the model with the
highest confidence. In fact, it is the same NN rule, but the
distance function is the AdaBoost confidence. A similar
approach to the face verification task allowed achieving
the best-known accuracy for the Labeled Faces in the
Wild (LFW) dataset (Zhou et al., 2015). In this paper,
the CNN was trained based on an external independent
dataset. This CNN was used as a feature extractor. The
outputs of the last layer of the CNN for the query image
and every model from the database were matched with
the Euclidean distance. Thus, practically all recognition
methods for the case C ≈ R are implemented as a special
case of the k-NN classifier.

3. Materials and methods

Let the query object X be represented as a sequence
of K regular (homogeneous) parts by any segmentation
procedure (Theodoridis and Koutroumbas, 2008): X =
{X(k)|k ∈ {1, . . . ,K}}. Every k-th segment X(k) =
{xj(k)|j ∈ {1, . . . , n(k)}} is put in correspondence

with a sequence of (primitive) feature vectors xj(k) =
{xj;1(k), . . . , xj;M (k)} with fixed dimension M , where
n(k) is the number of features in the k-th segment.
Similarly, every model Xr is represented as a sequence
Xr = {Xr(k)|k ∈ {1, . . . ,Kr}} of Kr segments and
the k-th segment is defined as Xr(k) = {x(r)

j (k)|j ∈
{1, . . . , nr(k)}} of feature vectors x(r)

j (k) with the same
dimension M . Here nr(k) is the number of features in
the k-th segment of the r-th model. As the procedure of
automatic segmentation may be inaccurate, the segment
X(k) should be compared with a set Nr(k) of segments
of the r-th model. This neighborhood is determined for a
specific task individually.

To apply statistical approach, we assume the
following:

1. Vectors xj(k), x
(r)
j (k) are multivariate random vari-

ables.

2. Segments X(k) and Xr(k) are random samples of i.i.d.
feature vectors xj(k) and x

(r)
j (k), respectively.

There are two possible approaches to estimate
unknown class densities, namely, parametric and
nonparametric (Theodoridis and Koutroumbas, 2008;
Rutkowski, 2008). First, the parametric approach is
discovered in detail. It is assumed that distributions
of vectors xj(k) and x

(r)
j (k) are of the multivariate

exponential type fθ;n( ˜X) generated by a fixed (for all
classes) function f0( ˜X) with a p-dimensional parameter
vector θ (Kullback, 1997):

fθ;n( ˜X) = exp(τ (θ) · ̂θ( ˜X))
f0( ˜X)

M(τ )
, (1)

where ̂θ( ˜X) is an estimate of parameter θ using available
data (random sample) ˜X of size n,

M(τ ) =

∫

exp(τ (θ) · ̂θ( ˜X))f0( ˜X) d ˜X, (2)

and τ (θ) is a normalizing function (p-dimensional
parameter vector) defined by the following equation if the
parameter estimation ̂θ( ˜X) is unbiased (for details, see
Kullback, 1997):

∫

̂θ( ˜X)fθ;n( ˜X) d ˜X ≡ d

dτ(θ)
lnM(τ ) = θ. (3)

Each r-th class of each k-th segment is determined
by a parameter vector θr(k). This assumption about
the exponential family f

̂θ(Xr(k));n(k)
(X(k)) in which

parameter θr(k) is estimated by using the observed
(given) sample Xr(k) covers many known distributions,
e.g., polynomial, normal, etc.

In this paper we focus on the case of full prior
uncertainty and assume that the prior probabilities of each
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class are equal. In this case, if the recognition task
is reduced to a problem of statistically testing a simple
hypothesis, the Bayesian approach will be equivalent to
the maximum likelihood criterion (Borovkov, 1998):

max
r∈{1,...,R}

max
kr∈Nr(k)

f
̂θ(Xr(kr));n(k)

(X(k)). (4)

It can be shown that (4) is equivalent to the minimum
information discrimination rule (Kullback, 1997),

min
r∈{1,...,R}

K
∑

k=1

n(k) min
kr∈Nr(k)

̂I(f
̂θ(X(k)) : f̂θ(Xr(kr))

),

(5)
where

̂I(f
̂θ(X(k)) : f̂θ(Xr(kr))

)

=

∫

f
̂θ(X(k))(x) ln

f
̂θ(X(k))(x)

f
̂θ(Xr(kr))

(x)
dx (6)

is the KL divergence between the densities f
̂θ(X(k)) ≡

f
̂θ(X(k));1 and f

̂θ(Xr(kr))
≡ f

̂θ(Xr(kr));1
.

However, the criterion (5) is not correct as the true
densities of segments of each class are not known and
unbiased estimates of parameters θr(k) should be used.
In fact, the pattern recognition problem should be reduced
to the statistical testing of complex hypothesis of samples
homogeneity (Borovkov, 1998):

Wr(k; kr) : X(k) andXr(kr) are homogeneous. (7)

The maximum likelihood decision of this problem,

max
r∈{1,...,R}

max
kr∈Nr(k)

sup
θ(k),

θj(kr),j∈{1,...,R}

f({X(k), X1(kr), . . . , XR(kr)}|Wr(k; kr)), (8)

is known to be asymptotically (if the size of the
segment, i.e., the image resolution or the phoneme
duration, is large) equivalent to the minimax criterion
(Borovkov, 1998). Here θ(k) are the possible parameters
of X(k), θj(kr) are the possible parameters of model
Xj(kr), f({X(k), X1(kr), . . . , XR(kr)}|Wr(k; kr))
is the joint probability distribution of united sample
{X(k), X1(kr), . . . , XR(kr)} if the hypothesis
Wr(k; kr) is true. Then we have the following result.

Theorem 1. If ̂θ( ˜X) is an unbiased maximum likelihood
estimate of the parameter vector θ in the distribution of
the exponential type (1)–(3), then

min
r∈{1,...,R}

K
∑

k=1

min
kr∈Nr(k)

(

n(k)̂I(f
̂θ(X(k)) : f̂θ(Xr(k;kr))

)

+ nr(kr)̂I(f̂θ(Xr(kr))
: f

̂θ(Xr(k;kr))
)
)

(9)

is the asymptotically minimax criterion of testing hypoth-
esis of samples homogeneity (7), where Xr(k; kr) =
{X(k), Xr(kr)} is the united sample of the query seg-
ment X(k) and the model segment Xr(kr) while the
KL divergences ̂I(f

̂θ(X(k)) : f̂θ(Xr(k;kr))
), ̂I(f

̂θ(Xr(kr))
:

f
̂θ(Xr(k;kr))

) are defined in much the same way as in (6).

Proof. First, note that all vectors in the set
{X(k), X1(kr), . . . , XR(kr)} are independent. Hence,
the likelihood function in (8) can be written as

sup
θ(k),

θj(kr),j∈{1,...,R}

f({X(k), . . . , XR(kr)}|Wr(k; kr))

= sup
θ(k)

f(X(k)|Wr(k; kr))

×
R
∏

j=1

sup
θj(kr)

f(Xj(kr)|Wr(k; kr)). (10)

If the hypothesis Wr(k; kr) is true, i.e., segments
X(k) and Xr(kr) are homogeneous, then the conditional
density of Xj(kr) does not depend on the r-th class when
j �= r. In such a case, Eqn. (10) can be represented as

sup
θ(k),

θj(kr),j∈{1,...,R}

f({X(k), . . . , XR(kr)}|Wr(k; kr))

= sup
θ(k)

f(X(k)|Wr(k; kr)) sup
θr(kr)

f(Xr(kr)|Wr(k; kr))

×
R
∏

j=1
j �=r

sup
θj(kr)

fθj(kr);nj(kr)
(Xj(kr))

=

sup
θ(k)

f(X(k)|Wr(k; kr)) sup
θr(kr)

f(Xr(kr)|Wr(k; kr))

sup
θr(kr)

fθr(kr);nr(kr)
(Xr(kr))

×
R
∏

j=1

sup
θj(kr)

fθj(kr);nj(kr)
(Xj(kr)).

(11)

We divide (11) by

sup
θ(k)

fθ(k);n(k)(X(k))
R
∏

j=1

sup
θj(kr)

fθj(kr);nj(kr)
(Xj(kr)),

which does not depend on r. The united
sample Xr(k; kr) should be used to estimate
f(X(k)|Wr(k; kr)), f(Xr(kr)|Wr(k; kr)). The
supremum in (11) is reached for a maximal likelihood
estimate of θ. If ̂θ( ˜X) is a unbiased maximum likelihood
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estimate, the criterion (8) can be simplified:

max
r∈{1,...,R}

max
kr∈Nr(k)

f
̂θ(Xr(k;kr));n(k)

(X(k))

f
̂θ(X(k));n(k)(X(k))

×
f
̂θ(Xr(k;kr));nr(kr)

(Xr(kr))

f
̂θ(Xr(kr));nr(kr)

(Xr(kr))
. (12)

This expression is converted to the final form (9) by
using the transformation of the criterion (4) to (5). �

Thus, the criteria (5) and (9) are an implementation
of the parametric approach for our probabilistic model
of a piecewise-regular object. They can be implemented
very efficiently since computation of the KL divergence
usually requires O(pm) operations. For instance, m =
1 for the polynomial distribution and m = 3 for
the p-variate normal distribution. Hence, the runtime
complexity of the criteria (5) and (9) is equal to O(pm ·
∑R

r=1

∑K
k=1 |Nr(k)|), where |Nr(k)| is the size of the

set Nr(k).

The major assumption here was about the
exponential family of distributions (1)–(3). Unfortunately,
this assumption is not valid for arbitrary objects. Thus,
a nonparametric approach is more popular nowadays
(Rutkowski, 2008). We use the well-known Parzen
estimates of probabilistic densities with Gaussian kernel
K(·) (Specht, 1990). In such a case the maximum
likelihood rule for the statistical testing of a simple
hypothesis about the distributions of segments can be
written as

max
r∈{1,...,R}

K
∑

k=1

max
kr∈Nr(k)

1

(nr(kr))n(k)

×
n(k)
∏

j=1

nr(kr)
∑

jr=1

K(xj(k),x
(r)
jr

(kr)). (13)

The expression (13) is a generalization of the conventional
PNN (Specht, 1990) for piecewise-regular objects.
However, a proper way to perform classification of
segments is to test their homogeneity.

Theorem 2. If prior probabilities of all classes are
equal, vectors xj(k) and x

(r)
j (k) are i.i.d. random vec-

tors with unknown densities which can be estimated with
the Gaussian–Parzen kernel with fixed (for all classes)

smoothing parameter σ, then the criterion

max
r∈{1,...,R}

K
∑

k=1

max
kr∈Nr(k)

n(k)n(k) · (nr(kr))
nr(kr)

(n(k) + nr(kr))n(k)+nr(kr)

×
n(k)
∏

j=1

(

1 +

∑nr(kr)
jr=1 K(xj(k),x

(r)
jr

(k))
∑n(k)

j1=1 K(xj(k),xj1 (k))

)

×
nr(kr)
∏

jr=1

⎛

⎝1 +

∑n(k)
j1=1 K(x

(r)
jr

(kr),xj1 (k))
∑nr(kr)

jr;1=1 K(x
(r)
jr

(kr),x
(r)
jr;1

(kr))

⎞

⎠ (14)

is the asymptotically minimax criterion of testing the com-
plex hypothesis of samples homogeneity.

The proof is very similar to that of Theorem 1.
Unfortunately, the expressions (13) and (14) require

a comparison of all features of all segments of all
models. Their runtime complexity can be written as
O(M

∑R
r=1

∑K
k=1

∑

kr∈Nr(k)
n(k)nr(kr)), i.e., they are

much less computationally efficient than the parametric
case (5), (9). Thus, the practical implementation of these
rules may be unfeasible.

It is known (Savchenko, 2013b) that these criteria can
be simplified if the feature vectors are discrete and certain,
i.e., their domain of definition is a set {x1, . . . ,xN},
where N is the number of different vectors. In such a case,
the segment of the query object X(k) can be described
with the histogram H(k) = {h1(k), . . . , hN (k)}.
Similarly, the model segment Xr(k) can be described

with the histogramHr(k) = {h(r)
1 (k), . . . , h

(r)
N (k)}. This

definition allows using the polynomial distribution, which
is known to be of the exponential type (Kullback, 1997).
Hence, it can be shown that the criterion (5) is equivalent
to the minimum information discrimination principle,

min
r∈{1,...,R}

K
∑

k=1

min
kr∈Nr(k)

N
∑

i=1

hi(k) ln
hi(k)

h
(r)
i (kr)

. (15)

Similarly, the parametric criterion (9) based on
homogeneity testing is equivalent to

min
r∈{1,...,R}

K
∑

k=1

min
kr∈Nr(k)

N
∑

i=1

(n(k)hi(k) ln
hi(k)

˜h
(r)
Σ;i(k; kr)

+ nr(kr)h
(r)
i (k) ln

h
(r)
i (k)

˜h
(r)
Σ;i(k; kr)

), (16)

where

˜h
(r)
Σ;i(k; kr) =

(n(k)hi(k) + nr(kr)h
(r)
i (kr))

(n(k) + nr(kr))
.

If n(k) = nr(kr), this criterion is equivalent to the
NN rule with the Jensen–Shannon (JS) divergence widely
used in various pattern recognition tasks (Martins et al.,
2008).
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At the same time, if the nonparametric approach is
used, an obvious generalization of the PNN (13) can be
represented in the following form:

min
r∈{1,...,R}

K
∑

k=1

min
kr∈Nr(k)

N
∑

i=1

hi(k) ln
hK;i(k)

h
(r)
K;i(kr)

, (17)

where

hK;i(k) =

N
∑

j=1

Kijhi(k)

and

h
(r)
K;i(k) =

N
∑

j=1

Kijh
(r)
i (k)

are the convolutions of the histograms with kernel Kij =
K(xi,xj). Similarly, the proposed homogeneity testing
for discrete patterns is implemented in the following way:

min
r∈{1,...,R}

K
∑

k=1

min
kr∈Nr(k)

N
∑

i=1

(n(k)hi(k) ln
hK;i(k)

˜h
(r)
Σ;K;i(k; kr)

+ nr(kr)h
(r)
i (k) ln

h
(r)
K;i(k)

˜h
(r)
Σ;K;i(k; kr)

), (18)

where

˜h
(r)
Σ;K;i(k; kr) =

(n(k)hK;i(k) + nr(kr)h
(r)
K;i(kr))

(n(k) + nr(kr))
.

In fact, the expressions (15), (16) are a special case
of (17), (18) if a discrete delta function is used as a
kernel, i.e., σ → ∞. The runtime complexity of (17),
(18) is O(N

∑R
r=1

∑K
k=1 |Nr(k)|), i.e., the computing

efficiency is on average n2M/N -times higher than the
efficiency of (13) and (14), where n =

∑K
k=1 n(k)/K .

It is obvious that our homogeneity-testing approach
(9), (14), (16) is twice slower in comparison with
the conventional statistical criteria (5), (13) and (15),
respectively.

4. Experimental results

4.1. Image recognition. Let a set of R > 1 grayscale
images {Xr}, r ∈ {1, . . . , R} with width Ur and height
Vr be given. In image recognition it is required to
assign a query image X with width U and height V to
one of R classes specified by these reference images.
First, every image is put in correspondence with a set
of feature descriptors (Theodoridis and Koutroumbas,
2008). The common part of most of modern algorithms
is to divide the whole neighborhood into a regular grid
of S1 × S2 blocks, S1 rows and S2 columns (in our
previous notation, K = K1 = K2 = · · · = KR =
S1S2), and separately evaluate the N bins-histogram

H(r)(s1, s2) = {h(r)
1 (s1, s2), . . . , h

(r)
N (s1, s2)} of widely

used gradient orientation features for each block
(s1, s2), s1 ∈ {1, . . . , S1}, s2 ∈ {1, . . . , S2} of the
reference image Xr (Dalal and Triggs, 2005; Lowe,
2004). The same procedure is repeated to evaluate the
histograms of oriented gradients (HOG) H(s1, s2) =
{h1(s1, s2), . . . , hN (s1, s2)} based on the query image
X .

The second part is classifier design. If C ≈ R
and the number of classes and the feature vector size
are large, state-of-the-art classifiers (MLP, SVM, etc.)
do not outperform the NN (Tan et al., 2006). In view
of the small spatial deviations due to misalignment after
object detection, the following similarity measure with
a mutual alignment and the matching of HOGs in the
Δ-neighborhood of each block is used:

min
r∈{1,...,R}

S1
∑

s1=1

S2
∑

s2=1

min
|Δ1|≤Δ,|Δ2|≤Δ

ρH(H(s1 +Δ1, s2 +Δ2), H
(r)(s1, s2)). (19)

Here ρH(H(s1 + Δ1, s2 + Δ2), H
(r)(s1, s2)) is an

arbitrary distance between HOGs H(s1 + Δ1, s2 + Δ2)
and H(r)(s1, s2), and neighborhood Nr(k) in all criteria
from the previous section for the cell (s1, s2) is described
with the set {(s̃1, s̃2) | |s̃1 − s1| ≤ Δ, |̃s2 − s2| ≤ Δ}. In
this paper, we explore the square of the Euclidean distance
and describe distances based on the statistical approach,
namely, KL (15), JS (16), the PNN (17) and the proposed
criterion (18) on the basis of segment homogeneity
testing. Additionally, we use the state-of-the-art SVM
classifiers of HOGs and face recognition methods from
the OpenCV library, namely, eigenfaces, fisherfaces and
LBP histograms (Theodoridis and Koutroumbas, 2008).

In the first experiment we deal with face recognition
with the FERET and AT&T datasets. From FERET 2720
frontal facial images of C = 994 persons were selected.
The training set contains R = 1370 images (from 1 to
6 photos per person). The test set consists of other 1350
photos, i.e., from 1 to 4 faces per individual. The AT&T
database contains 400 faces of C = 40 persons; R = 80
of them (2 photos per each person) formed the training
set. The test set contains other 320 photos (8 images per
individual).

These datasets contain a small number of models
per person. Hence, we decided to avoid the standard
methodology of tuning the parameters by splitting the
whole dataset into training, validation and testing sets.
Instead of this procedure, we used the large Essex
face database (7900 images, 395 persons). In fact,
a similar idea is popular in training DNN based face
recognizers (Zhou et al., 2015). The conventional 10-fold
cross-validation was applied to obtain the following
values of parameters. The median filter with a window
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Fig. 1. Error rate [%]: FERET dataset (a), AT&T dataset (b).

size (3×3) was applied to remove noise in detected faces.
The following neighborhood sizes were tested: Δ = 0
and Δ = 1. All facial images are divided into regular
segments (blocks) by a 12 × 12 grid (S1 = S2 = 12) if
Δ = 1 and by 6 × 6 grid (S1 = S2 = 6) if Δ = 0. The
number of bins in the gradient orientation histogram N =
8. The Gaussian kernel smoothing parameter σ = 0.71.

To measure the influence of the noise presence,
we artificially added a random noise from the range
[−xmax;xmax] to each pixel of the image from the test
set, where xmax ∈ {0, 3, 5}. The error rate was estimated
by repeating random sub-sampling cross-validation 100
times. The dependence of the estimated error rates on
xmax for the FERET and AT&T datasets is shown in Fig.
1. The macro-averaging of recall and precision estimated
for each class by one-vs-all procedure for xmax = 0 and
Δ = 1 is presented in Tables 1 and 2. As the number of
images per person in the test sample for the AT&T dataset
is equal to 8 for all classes, macro-averaging recall here
is equal to micro-averaging accuracy. However, accuracy
and macro-averaging recall are slightly different for the
FERET dataset, in which for most classes only one sample
per person is available in the test set.

Here the quality of the conventional eigenfaces and
SVM is appropriate only for the simpler AT&T dataset.
For instance, the accuracy of eigenfaces is 15% higher
when compared with the criterion (19) for the FERET

Table 1. Face recognition quality: FERET dataset.
Algorithm Recall [%] Precision [%] F1 score [%]

Eigenfaces 77.8±2.8 71.7±2.8 74.6±2.8
Fisherfaces 77.3±2.8 71.9±2.9 74.5±2.9

LBP 88.0±1.7 84.2±1.9 86.0±1.8
SVM 83.6±1.9 80.8±2.0 82.2±1.9

Euclidean 93.4±1.2 91.3±1.2 92.4±1.2
KL 93.6±1.3 91.4±1.2 92.5±1.3

PNN 94.1±1.3 92.5±1.2 93.3±1.3
JH 94.3±1.1 92.8±1.2 93.5±1.1

Homogeneity
testing (18)

95.3±0.9 93.6±1.0 94.4±0.9

dataset. However, if we repeat our experiment with the
AT&T dataset but put into the training set R = 160
models, the situation will be changed. SVM achieves a
5.5% error rate, which is 2.1% lower than the NN rule with
the Euclidean distance and even 1.2% lower than the error
rate of the proposed approach without alignment (Δ = 0).
At the same time, even in this case the accuracy of the
proposed approach with alignment of HOGs (Δ = 1) is
equal to 97.7%, which is 2.2% better than for the SVM.
Secondly, the error rate of the traditional NN rule (Δ = 0)
with the Euclidean distance is too high.

Moreover, we confirmed that that of the PNN
is less than the accuracy of the criterion based on
homogeneity testing (18). According to McNemar’s test
with the confidence level of 0.05, this improvement of the
proposed approach (18) is statistically significant. In fact,
JS divergence is a special case of our similarity measure
(18) if σ → 0. Hence, our approach with segment
homogeneity testing is much more robust to deviation
of the smoothing parameter than the conventional PNN.
Thirdly, the alignment of HOGs (Δ = 1) is characterized
by statistically significant higher accuracy than the
conventional approach (Δ = 0) in the case of small
noise (xmax ≤ 3). Unfortunately, this alignment leads to
worse performance: the traditional distance computation
(Δ = 0) is 9 ((2 · 1 + 1)2) times faster than HOGs
alignment (Δ = 1). For the more complex FERET

Table 2. Face recognition quality: AT&T dataset.
Algorithm Recall [%] Precision [%] F1 score [%]

Eigenfaces 83.9±1.6 86.7±1.5 85.3±1.6
Fisherfaces 79.9±2.1 85.9±1.6 82.8±1.9

LBP 75.2±2.3 80.9±2.1 78.0±2.2
SVM 84.7±1.5 87.7±1.3 86.1±1.4

Euclidean 89.7±1.3 91.5±1.1 90.6±1.2
KL 89.8±1.2 91.2±1.2 90.5±1.2

PNN 90.2±1.2 91.6±1.2 90.9±1.2
JH 91.1±1.1 92.7±1.0 91.9±1.1

Homogeneity
testing (18)

91.5±1.0 93.1±1.0 92.3±1.0
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dataset and high noise level xmax = 5, the application of
the alignment significantly decreases the recognition rate.
Addition of large noise makes the estimated distribution
of the gradient orientation (i.e., HOG) similar to HOGs of
many other blocks. It is necessary to use simple classifiers
(e.g., the criterion (19) with Δ = 0) if the available
training set is not representative.

In the last experiment we discover the viseme
classification problem to show the potential of our
approach in another application of the image recognition
criterion (18), (19). This task usually appears in
audio-visual ASR systems (Asadpour et al., 2011).
A viseme is a visual representation of a phoneme
pronounced by a speaker. We collected 500 photos of
7 most important Russian visemes (pause and stressed
vowels /AA/, /EE/, /II/, /OO/, /UU/, /Y/) taken by two
Kinect cameras, namely, a normal camera and a depth
sensor. The mouth region was detected with the OpenCV
library.

Along with the conventional, in audio-visual
recognition PCA features classified with the SVM and
the NN rule, we used SIFT descriptors (Lowe, 2004) and
HOGs. Further details of this experiment can be found in
our previous paper (Savchenko and Khokhlova, 2014).

The dependence of the error rate obtained by random
subsampling cross-validation on the number of models per
one viseme class is shown in Fig. 2. Classification of PCA

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Number of models per one class

E
rr

o
r 

ra
te

, 
%

PCA, Euclidean metric PCA+SVM

SIFT Homogeneity testing (18), (19)

SIFT, depth-map Homogeneity testing (18), (19), depth-map

Fig. 2. Viseme recognition error rate [%].

Table 3. Quality of viseme recognition.

Viseme PCA+SVM
Homogeneity test-
ing (18), (19)

Recall
[%]

Precision
[%]

Recall
[%]

Precision
[%]

Pause 99±1.5 99±1.5 98±1.5 99±1.5
/AA/ 61±4.8 99±1.5 99±1.5 99±1.5
/EE/ 59±5.1 65±5.0 90±2.2 85±2.3
/II/ 98±1.5 99±1.5 85±2.4 83±2.4

/OO/ 85±2.9 79±3.2 98±1.5 97±1.5
/UU/ 80±3.5 85±2.9 99±1.5 99±1.5
/Y/ 98±1.5 55±5.2 67±4.5 75±4.4

Average 82.9±2.9 82.9±2.9 90.9±2.2 90.9±2.2

features calculated for depth-maps is characterized with
poor accuracy so we do not show it in this figure. A detail
comparison of two best classifiers, namely, PCA+SVM
(normal camera) and our approach (depth sensor) in the
case of 50 images per class in the training set (R = 350),
is presented in Table 3.

As expected, in this experiment the traditional, for
audio-visual recognition PCA features are characterized
with the higher accuracy if a normal camera is used and
the number of models per class is large. However, our
approach (19) based on hypothesis testing of segment
homogeneity (18) shows the lowest error rate if the
training set contains R ≤ 70 models (Fig. 2). Moreover,
the usage of a depth sensor allowed increasing the
accuracy by 10–20%. In this case, the average viseme
recognition quality is 8% higher than the best results
achieved with conventional PCA+SVM (Table 3). At
the same time, several visemes (e.g., /Y/ and /II/) are
classified even worse when compared with recognition of
normal images. Hence, a fusion of classifier outputs for
normal images and depth-maps is a promising technique.

4.2. Voice command recognition. In this section we
investigate the statistical (Bayesian) approach to ASR in
a voice control application (Savchenko, 2013a). In this
task, it is required to assign an utterance X to one of
R commands {Xr}. Every r-th model is divided into
a sequence of Kr syllables. Each syllable is put in
correspondence with a code c of the vowel. Vowels should
be specified by the model signals {xc}, c ∈ {1, . . . , C}
pronounced by the speaker in isolated mode. Hence,
the model phrase Xr is represented as a sequence of
codes {cr,1, . . . , cr,Kr}. Here, cr,j ∈ {1, . . . , C} are
the numbers of vowels from a given alphabet. To solve
the ASR task, query utterance X is automatically divided
into K syllables (Janakiraman et al., 2010) and the vowel
segment X(k) is extracted from the k-th syllable (Pfau
and Ruske, 1998). We assume that syllables are extracted
without mistakes, e.g., the voice commands are produced
in isolated syllable mode (Merialdo, 1988).

In such a case it is required to assign vowel X(k) to
one of C model phonemes. The parametric approach is
much more popular in this particular task. It is assumed
that phoneme distribution is either a Gaussian or a mixture
of Gaussians (Benesty et al., 2008). It is known that KL
divergence is equivalent to the Itakura–Saito (IS) distance
(Gray et al., 1980) and the maximal likelihood estimate
of the covariance matrix for a signal with a zero mean is
unbiased. Thus, the parametric criterion (5) is written as
follows:

min
r∈{1,...,R}

K
∑

k=1

ρIS(X(k),xcr,k). (20)
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If we assume that

̂I(f
̂θ(X(k)) : f̂θ(Xr(k;kr))

)

≈ ̂I(f
̂θ(X(k)) : f̂θ(Xr(kr))

), ̂I(f
̂θ(Xr(kr))

: f
̂θ(Xr(k;kr))

)

≈ ̂I(f
̂θ(Xr(kr))

: f
̂θ(X(k))),

the consequence of Theorem 1 can be written as follows.
If signals X(k) and all model phonemes {xc}, c ∈
{1, . . . , C} are generated with an autoregressive process
of the p-th order and are normally distributed with
zero mean and an unknown covariance matrix, then the
asymptotically minimax criterion of testing for speech
homogeneity can be written as

min
r∈{1,...,R}

K
∑

k=1

(ρIS(X(k),xcr,k) + ρIS(xcr,k , X(k))).

(21)
In the experiment, utterances were recorded in

the following format: PCM wav, mono, sampling rate
8000 Hz, 16 bits per sample. The vocabulary contains
1913 Russian names of drugs sold in one pharmacy
of Nizhny Novgorod. A total of 10 speakers (5 men
and 5 women of different age) pronounced each word
from this vocabulary twice in isolated syllable mode to
simplify comparison of the distances (20) and (21). To
train the system, each speaker pronounced 10 vowels in
isolated mode. The conventional values of parameters
(Benesty et al., 2008) were chosen: frame length 30
ms, frame overlap 10 ms, autoregression model order
p equal to 12. To estimate the closeness of speech
signals, the conventional IS (20) and the proposed
criterion (21) on the basis of segment homogeneity
testing were used. To compare our method with the
conventional approach to ASR, CMU Pocketsphinx was
tested in speaker-dependent mode with MLLR (maximum
likelihood linear regression) adaptation with the available
phonetic database {xc}.

Finally, we applied a speaker-dependent mode of
Pocketsphinx to recognize vowels in a syllable instead
of the IS distance in (20) to demonstrate the superiority
of our approach in the phoneme classification task. We
added an artificially generated white noise to each test
signal (with the signal-to-noise ratio (SNR) 25 dB, 15 dB,
10 dB). The error rates are shown in Fig. 3. Here the
isolated syllable mode allowed increasing the accuracy by
3–6% for the conventional Pocketsphinx ASR. However,
the usage of the user-specific phonetic database in (20)
and (21) even decreases the error rate by 7–9%. Finally,
the most valuable conclusion here is the achievement of
a higher accuracy with the testing for the homogeneity
of speech segments (21) when compared with the testing
(20) for a simple hypothesis. McNemar’s test verified that
this improvement is significant in all cases.
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5. Conclusion

In this paper we analyzed the methods of classification
of piecewise-regular objects. The dependence of the
classifier choice on the number of classes and models
in the database was highlighted. Our brief survey
showed that the current trends in the development of
composite object recognition methods are connected
with the refusal of complex algorithms of uncorrelated
feature extraction and complication of the classifiers.
We emphasized one of the most exciting challenges in
this field, namely, a small number of models per each
class. Most researchers are familiar with the insufficient
accuracy of maximum likelihood criteria (e.g., (4), (15))
in this case. For instance, in Tables 2 and 3, the NN
rule with the KL divergence (15) is not better than the
conventional Euclidean distance in most cases. This issue
is usually explained by the incorrect (“naive”) assumption
of statistical independence of features inside one segment
(segment). However, in this paper we found another
explanation. Namely, the recognition task should not be
reduced to testing for a simple hypothesis with estimation
of unknown densities based on the training set. We
believe that this problem should be described in terms
of testing for the homogeneity of a query object (or its
segments for piecewise-regular objects) with available
models (Borovkov, 1998). Our brief proposal of a rather
simple statistical model of the composite object as a
sequence of segments of i.i.d. feature vectors allowed
us to present several statistical recognition criteria (4),
(9), (13)–(18) for both parametric and nonparametric
estimates of unknown class densities. The approach
based on homogeneity testing (9), (16), (18) and (21)
showed its superiority in our experimental results for
various recognition tasks (Figs. 1–3) over the conventional
testing for a simple hypothesis (4), (15), (17) and (20),
respectively.

The main direction for further research of the
proposed approach with testing of segment homogeneity
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can be related to its application with modern features in
various classification tasks. It is necessary to apply it
with CNN based features (Zhou et al., 2015) in a face
verification task with the LFW dataset. Another possible
direction is the usage of modern approximate nearest
neighbor methods (e.g., Savchenko, 2012), if the number
of classes is high (C � 1) to increase the recognition
speed of exhaustive search (9), (14).
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