
Int. J. Appl. Math. Comput. Sci., 2015, Vol. 25, No. 4, 737–751
DOI: 10.1515/amcs-2015-0053

DECENTRALIZED JOB SCHEDULING IN THE CLOUD BASED ON A
SPATIALLY GENERALIZED PRISONER’S DILEMMA GAME

JAKUB GĄSIOR a,∗, FRANCISZEK SEREDYŃSKI a

aDepartment of Mathematics and Natural Sciences
Cardinal Stefan Wyszyński University, Wóycickiego 1/3, 01-938 Warsaw, Poland

e-mail: j.gasior@uksw.edu.pl

We present in this paper a novel distributed solution to a security-aware job scheduling problem in cloud computing in-
frastructures. We assume that the assignment of the available resources is governed exclusively by the specialized brokers
assigned to individual users submitting their jobs to the system. The goal of this scheme is allocating a limited quan-
tity of resources to a specific number of jobs minimizing their execution failure probability and total completion time.
Our approach is based on the Pareto dominance relationship and implemented at an individual user level. To select the
best scheduling strategies from the resulting Pareto frontiers and construct a global scheduling solution, we developed a
decision-making mechanism based on the game-theoretic model of Spatial Prisoner’s Dilemma, realized by selfish agents
operating in the two-dimensional cellular automata space. Their behavior is conditioned by the objectives of the various
entities involved in the scheduling process and driven towards a Nash equilibrium solution by the employed social welfare
criteria. The performance of the scheduler applied is verified by a number of numerical experiments. The related results
show the effectiveness and scalability of the scheme in the presence of a large number of jobs and resources involved in the
scheduling process.

Keywords: job scheduling, multiobjective optimization, genetic algorithm, Prisoner’s Dilemma, cellular automata.

1. Introduction

The increasing demand for computational power has led
to the introduction of a new type of heterogeneous,
distributed computing platform, where customers do not
own any part of the infrastructure. Cloud computing (CC)
systems reduce the issue of requesting computational
resources to a set of services, which can be rent from
specialized organizations and provided in the form of vir-
tual machines (VMs) to the clients. A scheduler has to
decide how to allocate these VMs in order to guarantee
a reasonable level of security-aware computation while
maintaining efficient resource management of the CC
environment. Obviously, the conflict between achieving
good performance, in terms of the job completion time,
and providing high security-assurance introduces new
challenges in CC scheduling.

The main contribution of this work is a four-tier
scheduling framework which effectively handles such
a multi-criteria job allocation problem, taking into

∗Corresponding author

account not only the job completion time but also the
security constraints inherent in the CC system. Our
solution employs independent brokering agents assigned
to individual cloud users and undertaking scheduling
decisions based only on locally available information.
Each broker tries to allocate a batch of jobs from the
associated user in a pure selfish way, without considering
actions of the other brokers and assuming the total
availability of system resources.

A method employed for the scheduling purposes is
multiobjective genetic algorithm (MOGA) optimization
resulting in a Pareto-based evaluation, necessary to find
the best scheduling strategies accommodating conflicting
optimization objectives. In order to make a dynamic
choice among the Pareto set of the proposed solutions
according to the real-time needs of the user, the resulting
Pareto frontier is divided into sections determining various
User Profiles, i.e., specific job allocation strategies
defining basic goals and requirements of the client.

Afterwards, the proposed User Profiles are used as
an input in a non-cooperative scheduling game based on

j.gasior@uksw.edu.pl

738 J. Gąsior and F. Seredyński

a spatially generalized Prisoner’s Dilemma (SPD) model
(Nowak and May, 1992) in order to convert this local
optimization problem into the one of searching for a
system-wide equilibrium by a set of independent brokers.
The whole process is realized in the two-dimensional cel-
lular automata (CA) space, where individual brokers are
mapped onto a regular square lattice. The main issues that
are addressed here include: (a) incorporating the global
goal of the system into the local interests of all brokers
participating in the scheduling game, and (b) formulation
of the local interaction rules allowing the achievement of
those interests.

The remainder of this paper is organized as
follows. In Section 2, we present the works related to
security-aware scheduling in grid and cloud computing
systems. In Section 3, we describe the proposed cloud
system model. Section 4 defines the basics of MOGA
optimization and the process of determining various User
Profiles, while Section 5 reports the proposed agent-based
game-theoretic scheduling scheme. The experimental
evaluation of the proposed model is given in Section 6.
We end the paper in Section 7 with some conclusions and
indications for future work.

2. State of the art

Recently, great interest of researchers in the cloud and
grid computing domains has been focused on secure
scheduling, which aims to achieve an efficient assignment
of tasks to trustful resources. The conflict between
achieving good performance and high level of security
introduces new challenges in the resource allocation
domain. This problem was studied by Lin et al. (2004),
who proposed a distributed security framework enabling
access control to grid resources. Based on the overall
results of access control techniques, they proposed an
extension of the authentication and authorization features.
On the other hand, in the work of Brandic et al. (2006),
the security aspect was addressed as the quality of service
(QoS) requirement defined by the grid users at runtime.
The authors proposed the location affinity model, in which
the user for security reasons may express the location
affinity regarding computing resources, where certain
workflows of tasks may be executed. More recently, a
number of remote data auditing (RDA) techniques for
outsourced data in the cloud was studied by Sookhak
et al. (2015). The authors presented the taxonomy of the
distributed storage auditing process including parameters
such as security patterns, objective functions, auditing
mode, update mode, and dynamic data structure.

The integration of security mechanisms with
scheduling algorithms can be perceived as one of the
most important issues in cloud scheduling. Due to the
NP-hardness of the job scheduling problem, finding exact
solutions to solve large-scale task scheduling problems

in dynamic environments is rarely feasible. Therefore,
approximation methods providing a near optimal solution
are some of the most promising approaches. Heuristics
and metaheuristics have shown to be particularly useful
for solving a wide variety of such combinatorial and
multiobjective optimization problems. For example,
the issue of a multiobjective optimization was tackled
by Tziritas et al. (2013) to solve the problem of VM
placement to jointly optimize two objective functions:
the total energy spent and the total network overhead.
The authors proposed two methodologies for solving
the aforementioned problem: one optimizing the above
objective functions separately, reaching a single solution;
another considering the two optimization targets and
defining a set of non-dominated solutions.

Similarly, Lee and Zomaya (2012) made efforts
to reduce idle power draw by putting resources into
a form of sleep/power-saving mode. Two proposed
energy-conscious task consolidation heuristics assigned
tasks to resources on which energy consumption
was explicitly or implicitly minimized without the
performance degradation of these tasks. Another solution
was presented by Hwang and Kesselman (2003), who
proposed a failure detection service communicating with
a failure handling routine as a mechanism providing
the fault-tolerance method in a grid environment. It
allowed both detection of potential failures as well as
handling the user’s security requirements without the
need to constantly update the scheduling policy at local
computational nodes. Insecure conditions in on-line job
scheduling caused by software vulnerabilities were also
analyzed by Wu and Sun (2010) by considering the
heterogeneity of the fault-tolerant mechanisms employed
in security-assured job scheduling.

Several works presented game theoretic models to
solve job scheduling problems using the concept of a
Nash equilibrium (NE) (Christodoulou et al., 2007). The
convergence time to such equilibria for several selfish
scheduling problem variants was considered by Even-Dar
et al. (2007). The authors analyzed here a variety of load
balancing models, including identical, restricted, related
and unrelated machines showing crucial dependence
on the notion of weights assigned to individual jobs.
According to a more economic-based approach, An
et al. (2007) presented a market-based proportional
resource allocation mechanism for multi-agent system
investigating interactions among selfish, rational, and
autonomous players in resource allocation games, each
with incomplete information about other entities, and each
seeking to maximize its expected utility by introducing the
so-called deal optimization mechanism.

Similar approaches have also been recently applied
to resource allocation schemes in grid and cloud
architectures. Kolodziej and Xhafa (2011) proposed
and evaluated four genetic-based metaheuristics as a

Decentralized job scheduling in the cloud based on a spatially generalized Prisoner’s Dilemma game 739

non-cooperative game of grid users in order to address
their security requirements. In the same scenario, Khan
and Ahmad (2006) performed a comparison among
game-theoretic resource allocation schemes based on
different design rationales: non-cooperative, semi-
cooperative and cooperative built around a hierarchical
grid infrastructure where machines are abstracted
into larger computing centers labeled federations,
each responsible for managing their own resources
independently.

Li et al. (2009) developed a utility-driven solution
for optimal resource allocation in grid systems driven
by a user-centric scheme capable of outperforming
deadline constraint optimization in terms of the time
of job execution. Game-theoretic concepts have also
been applied to the CC paradigm, for example, by
Londoño et al. (2009), who presented the concept of
collocation games. The authors proposed a number of
simplified, practically motivated variants of collocation
game models for which they established convergence to
the NE point as well as the price of anarchy (PoA)
bounds. Finally, Palmieri et al. (2013) analyzed a selfish
scheduling scheme for federated cloud organizations
based on independent and competing agents. The agents’
behavior was conditioned by marginal costs, to force
a kind of implicit coordination between the conflicting
objectives of the various entities involved in the job
allocation process.

3. Cloud model

In this section we formally define basic elements of
the model and provide the corresponding notation, its
characteristics and the type of jobs to be scheduled.

3.1. System and user model. The system model is
an extension of the architecture introduced by Tchernykh
et al. (2010) and consists of a set of geographically
distributed cloud nodes M1,M2, . . . ,Mm connected to
each other via a wide area network. Each node Mi is
described by a parameter mi, which denotes the number
of identical processors Pi and its computational power si,
characterized by a number of operations per unit of time it
is capable of performing. Figure 1(a) depicts an example
set of parallel machines in the CC system.

Individual users (U1, U2, . . . , Un) submit to the
system batches of parallel jobs for execution. Users are
expected to pay appropriate fees to the cloud provider
dependent on the QoS requested. Job Jj

k is the j-th job
produced (and owned) by user Uk. Jk stands for the set
of all jobs produced by user Uk, while nk = |Jk| is the
number of such jobs. Each job has varied parameters
defined as the quadruple 〈rjk, sizejk, t

j
k, d

j
k〉, specifying its

release date rjk = 0; its size 1 ≤ sizejk ≤ mm, which
is referred to as its processor requirements or degree of

parallelism; its execution requirements tjk defined by a
number of operations and deadline djk.

Rigid jobs require a fixed number of processors for
parallel execution: this number is not changed until the
job is completed. We assume that job Jj

k can only
run on machine Mi if sizejk ≤ mi holds; that is, we
do not allow multi-site execution and co-allocation of
processors from different machines. We assume a space
sharing scheduling approach, therefore a parallel job Jj

k

is executed on exactly sizejk disjoint processors without
preemptions. Let pi,jk = tjk/si define job Jj

k’s execution
time on machine Mi. Further, W i,j

k = pi,jk ×sizejk denotes
the work of job Jj

k , also called its area or resource con-
sumption. Similarly, the total work of a given job set Z
is equal to WZ =

∑
Jj
k∈Z Wk. Figure 1(b) shows an

example of the multi-threaded job model.

...

M1 Jj

M2 Mm

m processorsi sizej

tj

processor Pj

(a) (b)

Fig. 1. Example of a cloud computing system: set of parallel
machines (a), multi-threaded job model (b).

In this problem, some assumptions must be
respected: the scheduler is clairvoyant and working in
off-line mode. Jobs are scheduled independently, and
there is no communication between them. All jobs and
resources are available from time zero.

3.2. Security and pricing model. We consider
a security-driven scheduling scheme to address the
reliability issues in the CC environment. Such systems
may often display potential vulnerabilities caused by
software errors, gaps in data transitions or even malicious
intent by external agents. While assigning jobs to
cloud sites, the scheduler should consider such security
threats and question trustworthiness of remote computer
platforms. Unfortunately, there are no effective methods
to assess the trust level of resources or to specify the
security demand parameters for the user’s jobs. Therefore,
we apply a modified version of the approach presented by
Song et al. (2006) to match a job’s security requirements
with security index defined for each cloud site.

During job submission, users define a Security De-
mand (SD) for each job dependent on data sensitivity,
execution environment, access control or required level of
authentication. On the other hand, the defense capability
of a resource can be attributed to the available intrusion
detection mechanisms or its response capacity. This
capability is modeled by a Security Level (SL) factor,

740 J. Gąsior and F. Seredyński

evaluating the risk existing in the allocation of a submitted
job to a specific machine and defined as a result of a
four-step fuzzy-logic process (Song et al., 2006).

The SD is a real fraction in the range [0, 1] with
0 representing the lowest and 1 the highest security
requirement. The SL is in the same range with 0 for
the most risky resource site and 1 for a risk-free or fully
trusted site. Specifically, we define a job execution model
as a function of the difference between the job security
demand and site trust. The probability of a successful
job completion regarding the allocation of job Jj

k with a
specific SDj value to the machineMi with a security level
value SLi is

P i,j
Success =

{
1, SDj ≤ SLi,

e−(SDj−SLi), SDj > SLi.
(1)

Meeting the security assurance condition (SDj ≤
SLi) for a given job–machine pair guarantees successful
execution of that particular job. Such a scheduling will be
further called Secure Job Allocation. On the other hand,
successful execution of a job assigned to machine without
meeting this condition (SDj > SLi) will be dependent
on the calculated probability and further referred to as
Risky Job Allocation.

Depending on the QoS requested, a specific pricing
function defines the fee the provider charges to the
customers. For simplicity we assume that Risky Job Allo-
cation costs 1 Unit(s)

Second , while Secure Job Allocation costs

5 Unit(s)
Second in cloud renting fees. Units represent stipulated

currency used by the brokers to make conscious financial
decisions regarding their scheduling choice.

3.3. Problem formulation. In the following, we
present the mathematical formalism of our problem and
the objective functions used for evaluating a candidate
solution (scheduling). Let us denote Sk as user Uk’s
schedule. The completion time of jobs on machine Mi

in schedule Sk is denoted by Ci(Sk). Two different
objectives are considered in this work:

• The minimization of the Maximum Completion Time
or Makespan, Ck

max, which means the time of
completion of the last user Uk’s job. We consider
minimization of the time Ci(Sk) on each machine
Mi over the system in such a way that the Makespan
is defined as Ck

max = maxi{Ci(Sk)}.

• The maximization of the Security Assur-
ance Level, P k

Success, defined as an average
successful job completion probability of each
user Uk’s job allocation in schedule Sk, that is,
P k

Success = avg(i,j)∈Sk
{P i,j

Success}.

The purpose of scheduling is to distribute user Uk’s
jobs among the available machines and schedule them to
minimize the Makespan, Ck

max, and maximize the Secu-

rity Assurance Level, P k
Success. Therefore, the multiobjec-

tive optimization problem (MOP) considered in this work
can be formulated as follows:

Minimize

(

Ck
max, 1− P k

Success

)

. (2)

We assume that there is no centralized control and the
assignment of the resources available within the cloud is
governed exclusively by the brokers assigned to individual
users submitting their jobs to the cloud. To develop
a truly distributed multiobjective scheduling algorithm,
we propose a four-stage procedure (Fig. 2). At the
first stage, a batch of jobs Jk submitted by user Uk is
assigned to broker Bk, responsible for allocation of user
Uk’s jobs in the system. Afterwards, a Pareto frontier
is calculated for each broker Bk and a batch of jobs
Jk submitted by user Uk under the assumption that all
cloud resources belong exclusively to broker Bk using the
NSGA-II algorithm (Deb et al., 2000).

Fig. 2. Flowchart representing the distributed scheduling algo-
rithm’s steps from broker Bk’s perspective.

At the third stage, some specific job allocation
solutions (Scheduling Strategies) from the Pareto frontier
are selected according to the Pareto Selection Policies

Decentralized job scheduling in the cloud based on a spatially generalized Prisoner’s Dilemma game 741

characterizing the user’s preferences, and these solutions
will be subsequently used by broker Bk representing user
Uk’s interests. At the final stage, all brokers employ
previously selected Scheduling Strategies in an iterated,
non-cooperative SPD game (Nowak and May, 1992)
realized in a two-dimensional CA space, where they
try to find scheduling strategies providing a competitive
scheduling solution (NE point) in their selfish attempts
to obtain cloud resources. These stages will be further
explained in the subsequent sections.

4. Multiobjective scheduling framework

This section provides a brief overview of the multiobjec-
tive genetic algorithm (MOGA) and the Pareto Selection
Policies applied in our study.

4.1. Multiobjective genetic algorithm. Genetic algo-
rithms (GAs) are meta-heuristics mimicking the process
of natural selection by applying a set of genetic operators
on the population of candidate solutions. In our job
scheduling model, each solution (chromosome) represents
a schedule allocating a batch of user Uk’s jobs on a group
of machines M1,M2, . . . ,Mm with the assumption of
their total availability. We employ an encoding scheme
where each gene consists of a pair of values (Jj

k ,Mm),
indicating that job Jj

k is assigned to machine Mm, where
j is the index of a job in user Uk’s batch of jobs Jk and
m is the index of the machine. Jobs assigned to a given
machine are ordered by the local list scheduling algorithm
(Switalski and Seredynski, 2011). The main idea of this
algorithm is to schedule jobs locally in a way to minimize
the idle period of a processor’s cycle.

At the beginning, jobs are sorted according to their
work W . If some jobs have equal work, then they are
ordered by a sequence given by the MOGA scheduler.
Figure 3 shows an example of the local scheduling
scheme. Let us assume that a subset of seven jobs was
assigned to a machine Mi with mi = 8 processors by the
MOGA. We calculate for each job its work. Let us assume
that work for this subset is as follows: W1 = 12,W2 =
12,W3 = 6,W4 = 1,W5 = 15,W6 = 24,W7 = 2.

These jobs are next sorted according to their work
as depicted in Fig. 3(a). This sorted substring is used
directly to assign them to processors of the target machine
Mi. The job with the largest work is assigned first
with subsequent jobs allocated in descending order as
presented in Fig. 3(b).

4.2. Pareto front generation. As stated before, we
apply in this work a Pareto optimality approach to solve
the MOP defined in Eqn. (2). In particular, we employ the
second version of the nondominated sorting genetic algo-
rithm (NSGA-II) (Deb et al., 2000), resulting in a Pareto
frontier of non-dominated scheduling solutions.

(a)

Ci(Sk) mi = 8

(b)

Fig. 3. List scheduling algorithm on a local machine Mi: repre-
sentation of the local scheduling solution and its con-
struction. Values in brackets represent each job’s re-
source consumption value (a), final allocation of jobs in
the target machine Mi (b).

We wish to further restrict the resulting solution
search space to Pareto-efficient scheduling strategies,
from among which the user can make an educated
choice and select whatever solutions are best suited
to one’s preferences at the time. However, the user
usually lacks a priori knowledge about possible trade-offs
between job completion time and scheduling costs, or
if the selection of a particular allocation strategy will
accomplish execution of all submitted jobs in the required
time frame.

Therefore, it is necessary to introduce additional
mechanisms limiting a set of possible scheduling
strategies from the Pareto frontier in order to provide the
user with the most feasible solutions. We propose multiple
Selection Policies aiming to achieve this goal. Each one
of these Policies is superior in optimizing one specific
objective or their combination and defined according to
the following template:

Optimize

{

α× Ck
max + β × P k

Success + γ × Costk
}

. (3)

By specifying the basic goals and requirements of the
cloud user, we distinguish four such Selection Policies:

• Maximum Reliability, selecting a strategy from the
Pareto frontier yielding the maximum Security As-
surance Level (Max{α ∼ 0, β ∼ 1, γ ∼ 0}).
• Minimum Cost, selecting a strategy from the Pareto

frontier yielding the minimum fees for the cloud
provider (Min{α ∼ 0, β ∼ 0, γ ∼ 1}).
• Minimum Cost with Deadline, selecting a strategy

742 J. Gąsior and F. Seredyński

from the Pareto frontier yielding the minimum fees
for the cloud provider while meeting the deadline
required by the user (Min{α ∼ 0, β ∼ 0, γ ∼
1}|Ck

max < djk).

• Optimum, selecting a strategy from the Pareto
frontier minimizing the weighed sum of the three
objectives (Min{α ∼ 0.33, β ∼ 0.33, γ ∼ 0.33}).
We depict in Fig. 4 an example Pareto frontier

generated by broker Bk consisting of the viable,
non-dominated scheduling solutions (Sk ∈ S∗

k) with
highlighted Scheduling Strategies corresponding to the
aforementioned Pareto Selection Policies. After the broker
decides which strategy in the frontier to use, the system
passes the input parameters of the chosen allocation
strategy to the scheduler, which then submits them to the
resource queue.

However, those policies are purely selfish and do
not consider the impact of interactions with other users
of the CC system. In this work, we consider multiple
users competing for a limited number of resources with
the help of specialized brokers. These brokers (or agents)
are interested in maximizing their own welfare, according
to a pure strategic behavior, and hence their unique goal
is determining a scheduling strategy aiming at optimizing
their own welfare. A natural framework in which to study
such a problem is the classic game theory.

5. Game-theoretic scheduling scheme

This section provides a complete overview of our
proposed agent-based game-theoretic distributed
scheduling scheme.

5.1. Non-cooperative scheduling game model. In
a game-theoretic context, our optimization problem,
because of the implicit need of a coordination mechanism,
can be modeled as a non-cooperative strategic game of
independent, autonomous agents. These entities do not
operate according to a common strategy, but act in a
purely selfish manner, aiming at choosing an optimal
strategy of mapping jobs to machines in order to maximize
their own objective function. Our non-cooperative game
can be formally defined as a triple (B,S,Ξ) that consists
of

• a finite set B = {B1, . . . , Bn} of brokers;

• for each broker Bk ∈ B, a set of available Pareto Se-
lection Policies Sk ∈ S∗

k , S = (S1, . . . , Sk, . . . , Sn);

• for each broker Bk ∈ B, an outcome (Utility)
function Ξk(Sk ∈ S)→ R.

The individual component strategies Sk ∈ S∗
k , where

S∗
k denotes the set of all the possible scheduling strategies

Fig. 4. Pareto frontier generated by broker Bk assigned to user
Uk consisting of the viable, non-dominated scheduling
solutions (Sk ∈ S∗

k). Strategies selected by the Pareto
Selection Policies (Maximum Reliability, Minimum Cost,
Minimum Cost with Deadline and Optimum policy) are
marked as filled triangles.

available for broker Bk, characterize the actions to be
chosen by the associated agent for any possible scenario
that it can experience. All these strategies can be found on
the Pareto frontier generated by the scheduler as depicted
in Fig. 4. For each broker Bk, the result of the game
is determined by the Utility function. It is a function
of a broker’s own strategy Sk, as well as strategies of
other brokers, i.e., S = (S1, . . . , Sk, . . . , Sn). Without
loss of generality, we assume that the Utility function
Ξk(Sk ∈ S) in this model is to be minimized.

5.2. Broker’s utility function. Usually the costs of job
scheduling are limited to the actual costs of job execution;
however, in utility-based and security-assured scheduling
some additional costs, e.g., resource utilization costs or
fees for the secure allocation of jobs to the machines, must
also be considered (Kolodziej and Xhafa, 2011). In our
model, the Utility functionΞ(Sk) of an agent Bk selecting
a Scheduling Strategy Sk is defined as follows:

Ξk

(
Sk

)
=

∑

(i,j)∈Sk

[
W i,j

k × Costi,jk
P i,j

Success

]

× Ck
max

Φk
RUR

, (4)

where

• Scheduling Strategy (Sk) defines a complete set of
associations among the jobs belonging to a specific
user Uk and the available machines. Each job Jj

k to
be completed on a machine Mi requires a processing
time defined as pi,jk = tjk/si, while Ck

max denotes the
time of completion of the latest job;

Decentralized job scheduling in the cloud based on a spatially generalized Prisoner’s Dilemma game 743

• Scheduling Cost (Costi,jk) denotes a Fee for a cloud
provider, dependent on the QoS requested (see
Section 3.2) and proportional to both job processing
time and the number of threads of job Jj

k , i.e., its
work W i,j

k = pi,jk × sizejk;

• Job Completion Probability (P i,j
Success) associated

with each job allocation in schedule Sk denotes
the confidence level that the job will be completed
without interruptions and is a direct result of the Se-
curity Demand and Security Level factors describing
the job and machine, respectively;

• Resource Utilization Ratio (Φk
RUR) defines the ratio

of an actual time of job execution to a duration
of the Allocated Time Slot reserved on the target
machine. The aim of this factor is mitigating
performance degradation due to load imbalance
resulting from selfish and non-cooperative behavior
of the independent brokers.

Each broker selects its Scheduling Strategy Sk in
a pure selfish way according to one of the previously
defined Pareto Selection Policies. Brokers aim at
designing the best schedule minimizing their own Utility,
that is, the one using the most powerful and reliable
machines and minimizing the associated scheduling costs
and load imbalance. In order to visualize the trade-offs
between these objectives let us consider the following
simplified scenario, where

• the system consists of m = 2 CC nodes; node M1

is perfectly reliable (SL = 1), while node M2 offers
only partial fault-tolerance (SL = 0.5);

• users (n = 2) submit to the system a batch of nk = 5
distinct jobs with SD = 0.7.

Brokers assigned to individual users generate
the Pareto frontiers and select Scheduling Strategies
according to previously defined Pareto Selection Poli-
cies. Gantt charts representing possible job allocations
resulting from local Scheduling Strategies of brokers B1

and B2 are visualized in Figs. 5 and 6, respectively.
As expected, the Maximum Reliability policy

allocates most of the jobs to a more reliable machine, M1.
Analogously, the Minimum Cost policy allocates only one
job to machine M1, minimizing the associated scheduling
costs. The remaining policies, i.e., the Minimum Cost
with Deadline and Optimum, allocate submitted jobs in a
way to achieve a compromise between various conflicting
objectives inherent in the presented scheduling problem.

5.3. Construction of the competitive scheduling so-
lution. Obviously, brokers are not isolated and their
actions influence and are influenced by those of other
brokers. Accordingly, they must be forced to interact in

order to generate a competitive schedule in which all the
users will have their jobs processed in the cloud (Palmieri
et al., 2013). This can be achieved by incorporating the
global goal of the system into the local interests of all
agents and such a formulation of the local interaction rules
that will allow to achieve those interests.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5. Gantt charts of Local Scheduling Strategies S1 of broker
B1 according to various Pareto Selection Policies: Max-
imum Reliability (a)–(b), Minimum Cost (c)–(d), Mini-
mum Cost with Deadline (e)–(f), Optimum (g)–(h).

By gathering information about the component
Scheduling Strategies proposed by other participating
players, each broker Bk is able to construct a tentative
scheduling profile S = (S1, . . . , Sk, . . . , Sn) containing
all the solutions proposed by players operating in the
cloud. Such a schedule S, further referred to as a Compet-
itive Scheduling Profile, represents a combination of job

744 J. Gąsior and F. Seredyński

allocation strategies for all the brokers and hence defines
a specific state of the scheduling game.

For example, Fig. 7 depicts one such a Competitive
Profile constructed by combining local Scheduling Strate-
gies found by the Minimum Cost and Maximum Relia-
bility Pareto Selection Policies employed by brokers B1

and B2, respectively. Due to the lack of any central
coordination mechanism, such a Competitive Schedule
resulting from the above interaction may not necessarily
share the available cloud resources in the most efficient
way.

Thus, we are interested in conditioning the Schedul-
ing Strategies Sk unilaterally chosen by each broker to
obtain a Competitive Scheduling Profile S that optimizes
the Social Utility, i.e., provides a form of compromise,
sharing the minimal achievable Utility for all the brokers.
This means finding a Competitive Profile S so that

S ← argmin
[
Ξ(S)

]
, (5)

which is a solution presenting the minimum Social Utility,
where the Social Utility associated to a single Scheduling
Profile S can be expressed by the following formula:

Ξ(S) =
1

n

n∑

k=1

Ξk(S). (6)

The process of construction of such a Competi-
tive Scheduling Profile (described in greater detail in the
following section) is realized through a sequence of steps,
where each broker, starting from the initial job allocation
strategy Sk, proposes a new local scheduling solution S′

k

minimizing his Utility score, that is,

S′
k ←

(
Sk ∈ S∗

k

) ∣
∣ argmax

[
Γ(S, S′)

]
, (7)

where Γ(S, S′) denotes the Utility Gain metric, defining
the relative difference between the previous (Ξk(S)) and
current (Ξk(S′)) Utility score, i.e.,

Γ(S, S′) =
Ξk(S)− Ξk(S′)

Ξk(S)
. (8)

Obviously, each change in the local job allocation
strategy by an individual broker may create new conflicts
and influence the Utilities of several other brokers, thus
implying reconstruction of the Competitive Scheduling
Profile S′ and recalculation of the associated Utility
scores. The Profile S will not present a valid solution
of the game until conflicts in resource assignment among
the different broker’s schedules are resolved. Thus, the
goal of the scheduler is transforming this Competitive
Scheduling Profile S into a pure NE (Nowak and May,
1992), defining a fundamental point of stability within
the system, such that no broker can unilaterally perform
any action (modification of his Pareto Selection Policy) to

further improve his Utility score.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6. Gantt charts of Local Scheduling Strategies S2 of broker
B2 according to various Pareto Selection Policies: Max-
imum Reliability (a)–(b), Minimum Cost (c)–(d), Mini-
mum Cost with Deadline (e)–(f), Optimum (g)–(h).

5.4. Rules of the distributed scheduling game.
We now proceed with a more detailed description of
our distributed scheduling game and the aforementioned
process of acquiring a Competitive Scheduling Profile
optimizing the Social Utility metric. The whole scheme is
realized using a modified version of the SPD game model
(Nowak and May, 1992). The key tenet of this game
is that the only concern of each broker is to maximize
his payoff during the interaction, which sets the players
as naturally selfish individuals. The pseudo-code of the
whole process is presented in Algorithm 1. We employ a

Decentralized job scheduling in the cloud based on a spatially generalized Prisoner’s Dilemma game 745

(a)

(b)

Fig. 7. Gantt chart of the Competitive Scheduling Profile S =
(S1, S2) constructed by combining local Scheduling
Strategies of both participating brokers: S = (Minimum
Cost, Maximum Reliability).

Fig. 8. Cellular automata space lattice. Brokers mapped onto
cells interact with other players in their local Moore
neighborhood.

variation of the PD game working in the two-dimensional
CA space, where brokers are mapped onto a rectangular
lattice with periodic boundary conditions and interact with
a set of local neighbors. In our case, we consider the
Moore neighborhood (formed by z = 8 cells surrounding
a given cell) depicted in Fig. 8.

At the first step of the game, we assign randomly
to each broker Bk an initial SPD game Action, Ak =
{C,D}, SPD game Spatial Strategy, σk, and one of the
available Pareto Selection Policies, Pk (Lines 10–12). A
broker’s Spatial Strategy determines the Action selected in
the following round of interactions (Line 18). To specify
a Spatial Strategy, the actions of the eight neighbors and
the player itself must be considered. For simplicity’s
sake, we restrict ourselves to a Totalistic Spatial Strat-
egy that depends on the number of D (defect) actions
of the neighbors, not on their positions (Katsumata and
Ishida, 2008). To represent a strategy, a bit sequence is

Table 1. Distributed scheduling game payoff matrix for the row
player.

Action Cooperate (C) Defect (D)

Cooperate (C) Γ/2 Γ/4

Defect (D) Γ 0

used whose l-th element is 1(0) if action C(D) is taken
when the number of D actions in the neighborhood is
equal to l (l = 0, 1, . . . , 8). As a typical strategy, we
define σk such that it takes action D if l > k and C
otherwise. This σk strategy can be regarded as a spatial
version of Tit-for-Tat (TFT), where k indicates how many
D actions in the neighborhood are tolerated.

Action (C) is considered an equivalent of the Co-
operation in a classic PD game (Line 20) and denotes
a situation where brokers try to cope with potential
allocation conflicts by selecting a new Pareto Selection
Policy P ′

k and a corresponding Scheduling Strategy S′
k

from the Pareto frontier. On the other hand, action (D)
means that a broker keeps his current Selection Policy
and declines to participate in the search for a scheduling
compromise, which is considered an equivalent of the De-
fection in a classic PD game (Line 22).

Depending on their actions, brokers are rewarded
according to the payoff matrix parameterized in terms of
the Utility Gain metric, Eqn. (8), and presented in Table 1.
The best outcome from a selfish broker’s perspective is
of course Defection (D) (free-riding) in situations where
other participating players update their Selection Policies
in order to achieve a compromise scheduling solution (i.e.,
choose Cooperation (C)). In such a case, Defector (D)
can acquire a Temptation payoff equal to the Utility Gain
score, while Cooperating (C) players are being penalized
with the Sucker’s Payoff.

The Cumulative Payoff, Gk , of each individual is
determined by summing the acquired payoffs from games
with z = 8 agents belonging to his local neighborhood
N(x, y) as follows (Line 27):

Gk = G1
k +G2

k + · · ·+Gz
k =

z∑

i=1

Gi
k. (9)

Afterwards, all individuals update their SPD game
Spatial Strategies, σk (Line 28). Brokers in a local
neighborhood are ranked in ascending order of their
cumulative payoffs G1 ≤ G2 ≤ · · · ≤ Gz . Player
Bk then adopts player Bz’s Spatial Strategy σz with a
probability given by the Fermi–Dirac distribution function
as proposed by Szabó et al. (2005):

W (σk ← σz) =
1

1 + exp
[
(Gk −Gz)/K

] , (10)

746 J. Gąsior and F. Seredyński

Algorithm 1. SPD-NSGA-II: Distributed scheduling
algorithm

1. Input: B(B1, B2, . . . , Bn): Set of brokers
2. Input: J(J1, J2, . . . , Jn): Batches of jobs
3. Input: M(M1,M2, . . . ,Mm): Cloud nodes
4. Input: P (P1, P2, . . . , Pn): Pareto Selection Policies
5. Input: A(A1, A2, . . . , An): SPD game Actions
6. Input: σ(σ1, σ2, . . . , σn): SPD game Spatial Strate-

gies
7. Output: S: Competitive Scheduling Profile

8. Initialize Iteration Counter, T ← 0
9. for all Bk ∈ B do

10. Randomly Assign: Action, Ak

11. Randomly Assign: Spatial Strategy, σk

12. Randomly Assign: Pareto Selection Policy, Pk

13. Generate the Pareto set of Scheduling Strategies,
S∗
k ←MOGA(Jk,M)

14. Select initial Scheduling Strategy, Sk ← Pk(S
∗
k)

15. Construct Competitive Scheduling Profile, S ←
{S1, . . . , Sk, . . . , Sn}

16. Calculate initial Utility, Ξk(S′)

17. while T < TMax do
18. Select Action based on Spatial Strategy, Ak ←

σk(A1, . . . , Az)

19. if Ak = C then
20. Update Scheduling Strategy, S′

k ←
P ′
k(S

∗
k)

∣
∣ argmax

[
Γ(S, S′)

]

21. else
22. Keep Scheduling Strategy, Sk ← Pk(S

∗
k)

23. end if

24. Reconstruct Competitive Scheduling Profile,
S′ ← {S′

1, . . . , S
′
k, . . . , S

′
n}

25. Calculate Utility, Ξk(S′)
26. Calculate Utility Gain, Γ(S, S′) ←

Ξk(S)−Ξk(S′)
Ξk(S)

27. Calculate Cumulative Payoff, Gk ←
∑z

i=1 G
i
k

28. Update Spatial Strategy, W (σk ← σz)
29. Update Iteration Counter, T ← T + 1
30. end while

31. end for
32. return Competitive Scheduling Profile, S ← S′

whereK is a factor controlling the intensity of the strategy
imitation process. It helps to avoid trapped conditions
and enables smooth transition towards stationary game
states (Perc and Szolnoki, 2008). Without much loss of
generality, we use in our work K = 5.

An equilibrium is reached when further
modifications of job allocation strategies are no longer
profitable to participating brokers. This is experienced
when no further improvement can be achieved in the
acquired Utility score and a valid Competitive Scheduling
Profile S is obtained. Optionally, the process terminates
when a fixed maximum number of iterations TMax is
reached (Line 17).

To better illustrate this process, let us consider a
simple scenario in a previously described small system
model. Let us assume the following starting conditions:

• broker B1 starts with the Minimum Cost Pareto Se-
lection Policy and action (C);

• broker B2 starts with the Optimum Pareto Selection
Policy and action (C).

After constructing the initial Competitive Scheduling
Profile depicted in Fig. 9(a), both brokers calculate their
starting Utility scores. We present their values in Table 2,
depicting Utility scores of both brokers (Ξ1(S) and
Ξ2(S), respectively), as well as the Social Utility Ξ(S)
for the whole system. Depending on their assigned SPD
game actions, brokers will proceed to adapt their Pareto
Selection Policies or keep their current job allocation. In
our case (action C), both brokers will adjust their Pareto
Selection Policies in an attempt to maximize their Util-
ity Gain scores (Eqn. (8)). This process is akin to the
sampling of the available Pareto solution space. Knowing
current job allocations of other competing players and a
local set of Scheduling Strategies resulting from available
Pareto Selection Policies (visualized earlier in Figs. 5 and
6), each broker is changing his job allocation scheme to
the one offering a minimal Utility under current workload
conditions and assuming that other players will keep
their job allocations. Of course, it is only a supposition
because the whole scheduling process is highly dynamic
and potential changes in Selection Policies occur at the
same time. Nonetheless, we will show that the scheme
is robust enough to converge to an optimal, competitive
system-wide scheduling solution.

Accordingly, in our example, broker B1 will
virtually match each of his available Scheduling Strategies
(visualized in Fig. 5) to the current job allocation of his
opponent and select the one that optimizes his individual
Utility score under present workload conditions. Broker
B2 will perform a similar analysis and select an
appropriate Scheduling Strategy optimizing his Utility
score. In our example, broker B1 changes his Pareto Se-
lection Policy to Maximum Reliability, while broker B2

changes his Selection Policy to Minimum Cost, which
results in a reconstruction of the Competitive Scheduling
Profile and recalculation of the Utility scores for every
participating broker.

As presented in Table 2, modification of the Schedul-
ing Strategy was profitable only to broker B2, resulting

Decentralized job scheduling in the cloud based on a spatially generalized Prisoner’s Dilemma game 747

Table 2. Utility scores measuring the local scheduling performance of brokers B1 (Ξ1(S)) and B2 (Ξ2(S)) and competitive system-
wide scheduling performance (Ξ(S)).

Ξ1(S) Ξ2(S) Ξ(S)

S = (Minimum Cost, Optimum) 467.8447 929.7054 698.7751

S = (Maximum Reliability, Minimum Cost) 500.2737 697.2790 589.7764

S = (Maximum Reliability, Optimum) 392.7120 561.4136 477.0628

in lower job completion times and reallocation of most
of the jobs to machine M2. This, in effect, lowered the
scheduling fees for the cloud provider and improved the
broker’s welfare. A new job allocation of broker B1

(see Fig. 9(b)) resulted in slightly better job completion
times, but the radical shift of the Pareto Selection Pol-
icy from Minimum Cost to Maximum Reliability led to
rescheduling of jobs to the more reliable machine M1 and
a significant increase of the scheduling fees. In effect,
it worsened broker B1’s welfare measured by his Utility
score (Ξ1(S)).

In the following game iteration, broker B1 keeps
his current Pareto Selection Policy, while broker B2

adapts his policy in an attempt to further maximize
his welfare (i.e., changes his Pareto Selection Policy
to Optimum). As shown in Table 2, it causes further
improvement of broker B2’s Utility score as well as an
inadvertent improvement of broker B1’s Utility due to
the rescheduling of jobs and more efficient distribution of
workload. The resulting Competitive Scheduling Profile
S = (Maximum Reliability,Optimum) represents an NE
point in this scenario, because no broker can perform any
further adaptation of his Pareto Selection Policy to further
improve his Utility score.

It is important to note that though individual
brokers were realizing their selfish goals of maximizing
individual welfare the overall system-wide scheduling
performance measured by the Social Utility Ξ(S) metric
was also inadvertently improved during the course of this
interaction, as depicted in Table 2. This confirms our
hypothesis that the global MOP of the system can be
solved only through local interactions of a number of
distributed and independent actors.

Of course, the above scenario represents only one
example in an extremely simplified system model. The
complexity of the problem increases significantly with
the number of brokers participating in the game as well
as the sizes of the system and workload submitted for
scheduling. To prove the efficiency and scalability of the
proposed approach, it is therefore necessary to perform
a number of experiments in testbeds imitating large-scale
CC systems. Details of these experiments, their results
and discussion are provided in the following section.

6. Experimental analysis and performance
evaluation

In this section we present and analyze the results obtained
from our experimental study.

6.1. Simulation testbed. Our experiments employed
multiple independent users competing for a limited
number of cloud resources. The scheduling game was
conducted on a rectangular CA lattice. The initial SPD
game Actions and Spatial Strategies as well as Pareto
Selection Policies were equally distributed between the
participating players. Each experiment was repeated 50
times under the same system and workload configuration
to guarantee statistical significance of the results and to
construct an approximate Pareto frontier by gathering
non-dominated solutions in all executions. The maximum
number of game iterations was fixed at a value of TMax =
200 steps. Table 3 summarizes key simulation parameters
used in the experiment. To comprehensively evaluate the
scheduling performance, we used the following metrics:

• Makespan: the time of completion of the latest
job submitted to the cloud, defined as Cmax =
maxk{Ck

max};
• Scheduling Success Rate: the percentage of jobs

successfully completed in the cloud;

• Social Utility: calculated according to Eqn. (6) for
the Competitive Scheduling Profile, S.

6.2. Simulation results. The initial experiments were
conducted in order to analyze the feasibility of the
proposed solution for large-scale scheduling problems.
We compare the results obtained by our MOGA-based
scheduler (denoted as SPD-NSGA-II) with several static
Pareto Selection Policies. Simulations employed 16
independent users competing for a limited number of
cloud resources. Each user submitted to the system a
randomly generated Bag of Tasks containing nk = 1000
job instances. Jobs were then scheduled within m =
8, 16, 32, 64 CC nodes by independent brokering agents
assigned to individual users.

We conducted five different experiments, including
four static experiments, where each agent was employing

748 J. Gąsior and F. Seredyński

(a) (b)

(c) (d)

(e) (f)

Fig. 9. Gantt charts of Competitive Scheduling Profile S = (S1, S2) constructed by combining local Scheduling Strategies of both
participating brokers: S = (Minimum Cost, Optimum) (a), S = (Maximum Reliability, Minimum Cost) (b), S = (Maximum
Reliability, Optimum) (c).

Table 3. Simulation parameter settings.

System parameters Value setting

Number of cloud nodes (m) 8, 16, 32, 64

Average number of cores (mi) 6

Average processor speed (si) 2

Node Security Level (SL) 0.3− 1.0

Job parameters Value setting

Average number of threads (sizekj) 4

Average execution time of a job (tkj) 5

Job Security Demand (SD) 0.6− 0.9

the same Pareto Selection Policy from the available set
throughout the whole scheduling cycle. No changes
in the scheduling strategy were allowed. In the fifth
experiment, our proposed solution employing dynamic
adaptation of the Pareto Selection Policies in the course
of the SPD game was evaluated. The simulation results
are given in Figure 10 for each proposed performance
metric. Let us start with a discussion of the results
achieved by the static Pareto Selection Policies. Not
surprisingly, the Maximum Reliability policy achieves
the best Makespan performance of all compared static

Policies, due to allocation of jobs to the most reliable
resources, regardless of the scheduling cost to the user.
As can be seen in Fig. 10(b), it also results in one of
the highest Scheduling Success Rates. On the other hand,
job allocations selected by the Minimum Cost and Mini-
mum Cost with Deadline policies result in a rather poor
performance. The obvious reason is the assignment of
jobs to resources offering the lowest Cost, regardless of
their overall reliability which results in higher probability
of failures and more frequent rescheduling events.

These outcomes are highly correlated with the
Scheduling Success Rate and Social Utility results; i.e.,
Secure Job Allocation guarantees higher probability of
success but at the same time requires higher fees for the
cloud provider, which affects the broker’s Utility. Thus,
the results produced by the Pareto Selection Policies are
directly related to their optimization objectives defined by
their selection vectors (Eqn. 3). It is clear, however, that
the proposed scheduling scheme (SPD-NSGA-II) clearly
outperforms the static Pareto Selection Policies. Policies
focusing on similar objectives are simply not capable of
achieving a compromise solution with competing cloud
users. Their similar goals and optimization criteria result
in allocating jobs to the same pool of machines, which
leads to an overall congestion and load imbalance, and, in
the effect, inferior scheduling performance.

Decentralized job scheduling in the cloud based on a spatially generalized Prisoner’s Dilemma game 749

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

M
ak

es
pa

n
[S

ec
on

ds
]

8 nodes
16 nodes
32 nodes
64 nodes

 Optimum Maximum Minimum Minimum SPD-NSGA-II
Reliability Cost Cost w/D

(a)

0

10

20

30

40

50

60

70

80

90

100

S
ch

ed
ul

in
g

S
uc

ce
ss

 R
at

e
[%

]

8 nodes
16 nodes
32 nodes
64 nodes

 Optimum Maximum Minimum Minimum SPD-NSGA-II
Reliability Cost Cost w/D

(b)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 104

S
oc

ia
l U

til
ity

8 nodes
16 nodes
32 nodes
64 nodes

Optimum Maximum Minimum Minimum SPD-NSGA-II
Reliability Cost Cost w/D

(c)

Fig. 10. Performance results of conducted experiments with
multiple Pareto Selection Policies for a total of n =
16000 jobs scheduled within m = 8, 16, 32 and 64
CC nodes by 16 independent agents; Makespan (a),
Scheduling Success Rate (b), Social Utility (c).

Further experiments aimed to analyze the number of
iterations necessary to solve potential conflicts between
the selfish strategies of the individual brokers and to
converge to a global equilibrium using our proposed
distributed scheduling scheme. Figure 11 shows how
selected performance metrics change over time due
to actions taken by the brokers during our resource
allocation game. Starting from an initial job allocation
resulting from random assignment of the Pareto Se-
lection Policies, a steady progress towards an optimal
global scheduling solution is clearly visible. Due
to a high Utility score resulting from load imbalance
and conflicting job allocations, players are compelled
to modify their Pareto Selection Policies in a way to
minimize the negative impact on their individual Util-
ity function scores. We conclude that such a behavior
is a result of the dynamic interactions between agents
who are compelled to cooperate with one another to
achieve a game equilibrium. Thus, the scheduling scheme
seems to be efficient enough to achieve the desired result,
that is, determining a Competitive Scheduling Profile that
minimizes job completion times and failure probabilities
by exploiting brokers’ selfish needs to maximize their own
Utility Gain scores.

7. Conclusions

Security-driven job scheduling is crucial for achieving
high performance in the cloud computing environment.
However, existing scheduling algorithms largely ignore
the security induced risks involved in dispatching jobs
to untrustworthy resources. The paper proposes a new
agent-based game-theoretic scheme for scheduling jobs
within a cloud infrastructure. It combines the paradigm of
MOGA-based optimization with a game-theoretic model
of Spatial Prisoner’s Dilemma game.

The scheme incorporates security-awareness into
scheduling process and aims to minimize both job
completion time and possible security risks. Due to its
very nature, it is capable of exploring and exploiting the
whole range of solution search space. By employing
non-cooperative agents, we are able to use the competition
among the entities involved to converge towards a Nash
equilibrium solution. It allows accounting for often
contradicting interests of the clients within the cloud,
without the need of any centralized control. Brokers are
given a level of autonomy, which grants them properties
like adaptation, self-organization and resilience that make
such a solution particularly attractive from the cloud
scheduling perspective.

We investigated the effectiveness of the proposed
approach by implementing a simple simulation
environment emulating the behavior of brokering
agents. The achieved results validate the feasibility of the
proposed competitive approach applied in the distributed

750 J. Gąsior and F. Seredyński

0 20 40 60 80 100 120 140 160 180
1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Iteration

M
ak

es
pa

n
[S

ec
on

ds
]

8 nodes
16 nodes
32 nodes
64 nodes

(a)

0 20 40 60 80 100 120 140 160 180
60

65

70

75

80

85

90

95

Iteration

S
ch

ed
ul

in
g

S
uc

ce
ss

 R
at

e
[%

]

8 nodes
16 nodes
32 nodes
64 nodes

(b)

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

6
x 104

Iteration

S
oc

ia
l U

til
ity

8 nodes
16 nodes
32 nodes
64 nodes

(c)

Fig. 11. Scheduling performance over time using the SPD-
NSGA-II scheduler for a total of n = 16000 jobs sched-
uled within m = 8, 16, 32 and 64 CC nodes by 16 in-
dependent agents: Makespan (a), Scheduling Success
Rate (b), Social Utility (c).

scheduling scheme. It can lead to a satisfactory solutions
both in terms of quality and scalability and provide a
substantial performance gain in terms of job completion
time, security assurance and scheduling costs.

References
An, B., Miao, C. and Shen, Z. (2007). Market based

resource allocation with incomplete information, in M.
Veloso (Ed.), Proceedings of the 20th International
Joint Conference on Artificial Intelligence, IJCAI’07,
Morgan Kaufmann Publishers Inc., San Francisco, CA,
pp. 1193–1198.

Brandic, I., Pllana, S. and Benkner, S. (2006). An approach for
the high-level specification of QoS-aware grid workflows
considering location affinity, Workshop on Workflows
in Support of Large-Scale Science, WORKS’06, Paris,
France, Vol. 14, pp. 231–250.

Christodoulou, G., Koutsoupias, E. and Vidali, A. (2007). A
lower bound for scheduling mechanisms, in H. Gabow
(Ed.), Proceedings of the Eighteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA’07, Society
for Industrial and Applied Mathematics, Philadelphia, PA,
pp. 1163–1170.

Deb, K., Agrawal, S., Pratap, A. and Meyarivan, T. (2000).
A fast elitist non-dominated sorting genetic algorithm for
multi-objective optimisation: NSGA-II, in M. Schoenauer
et al. (Eds.), Proceedings of the 6th International Confer-
ence on Parallel Problem Solving from Nature, PPSN VI,
Springer-Verlag, London, pp. 849–858.

Even-Dar, E., Kesselman, A. and Mansour, Y. (2007).
Convergence time to Nash equilibrium in load balancing,
ACM Transactions on Algorithms 3(3): 111–132.

Hwang, S. and Kesselman, C. (2003). A flexible framework
for fault tolerance in the grid, Journal of Grid Computing
1(3): 251–272.

Katsumata, Y. and Ishida, Y. (2008). On a membrane formation
in a spatio-temporally generalized prisoner’s dilemma, in
H. Umeo et al. (Eds.), Proceedings of the 8th Interna-
tional Conference on Cellular Automata for Research and
Industry, ACRI’08, Springer-Verlag, Berlin/Heidelberg,
pp. 60–66.

Khan, S.U. and Ahmad, I. (2006). Non-cooperative,
semi-cooperative, and cooperative games-based grid
resource allocation, 20th International Parallel and Dis-
tributed Processing Symposium, IPDPS 2006, Rhodes,
Greece.

Kolodziej, J. and Xhafa, F. (2011). Meeting security and user
behavior requirements in grid scheduling, Simulation Mod-
elling Practice and Theory 19(1): 213–226.

Lee, Y. and Zomaya, A. (2012). Energy efficient utilization of
resources in cloud computing systems, The Journal of Su-
percomputing 60(2): 268–280.

Li, Z.-J., Cheng, C.-T. and Huang, F.-X. (2009). Utility-driven
solution for optimal resource allocation in computational
grid, Computer Languages, Systems & Structures
35(4): 406–421.

Decentralized job scheduling in the cloud based on a spatially generalized Prisoner’s Dilemma game 751

Lin, C., Varadharajan, V., Wang, Y. and Pruthi, V. (2004).
Enhancing grid security with trust management, in L.-J.
Zhang, J. Zhang and H. Cai (Eds.), Proceedings of the
2004 IEEE International Conference on Services Comput-
ing, SCC’04, IEEE Computer Society, Washington, DC,
pp. 303–310.

Londoño, J., Bestavros, A. and Teng, S.-H. (2009). Collocation
games and their application to distributed resource
management, Proceedings of the 2009 Conference on Hot
Topics in Cloud Computing, HotCloud’09, San Diego, CA,
USA.

Nowak, M.A. and May, R.M. (1992). Evolutionary games and
spatial chaos, Nature 359: 826.

Palmieri, F., Buonanno, L., Venticinque, S., Aversa, R.
and Di Martino, B. (2013). A distributed scheduling
framework based on selfish autonomous agents for
federated cloud environments, Future Generation Com-
puter Systems 29(6): 1461–1472.

Perc, M. and Szolnoki, A. (2008). Social diversity and
promotion of cooperation in the spatial prisoner’s dilemma
game, Physical Review E 77: 011904.

Song, S., Hwang, K. and Kwok, Y.-K. (2006). Risk-resilient
heuristics and genetic algorithms for security-assured
grid job scheduling, IEEE Transactions on Computers
55(6): 703–719.

Sookhak, M., Akhunzada, A., Talebian, H., Gani, A., Khan, S.,
Buyya, R. and Zomaya, A.Y. (2015). Remote data auditing
in cloud computing environments: A survey, taxonomy,
and open issues, ACM Computing Surveys 47(4), Article
no. 65.

Switalski, P. and Seredynski, F. (2011). An efficient
evolutionary scheduling algorithm for parallel job model
in grid environment, in V. Malyshkin (Ed.), Proceed-
ings of the 11th International Conference on Paral-
lel Computing Technologies, PaCT’11, Springer-Verlag,
Berlin/Heidelberg, pp. 347–357.

Szabó, G., Vukov, J. and Szolnoki, A. (2005). Phase diagrams
for Prisoner’s Dilemma game on two-dimensional lattices,
Physical Review E 72(4).

Tchernykh, A., Schwiegelshohn, U., Yahyapour, R. and
Kuzjurin, N. (2010). On-line hierarchical job scheduling
on grids with admissible allocation, Journal of Scheduling
13(5): 545–552.

Tziritas, N., Xu, C.-Z., Loukopoulos, T., Khan, S. and Yu,
Z. (2013). Application-aware workload consolidation to
minimize both energy consumption and network load in
cloud environments, 42nd International Conference on
Parallel Processing (ICPP), Lyon, France, pp. 449–457.

Wu, C.-C. and Sun, R.-Y. (2010). An integrated security-aware
job scheduling strategy for large-scale computational grids,
Future Generation Computer Systems 26(2): 198–206.

Jakub Gąsior is a Ph.D. candidate at the Systems Research Institute,
Polish Academy of Sciences in Warsaw, Poland. He received his B.E.
and M.Sc. degrees from the Silesian University of Technology, Faculty
of Automatic Control, Electronics and Computer Science, in 2009 and
2010, respectively. His research interests concern application of game
theory, evolutionary metaheuristics and cellular automata models in the
design and management of job scheduling, and load balancing schemes
for distributed computing systems.

Franciszek Seredyński is a professor of computer science at the
Department of Mathematics and Natural Sciences, Cardinal Stefan
Wyszyński University in Warsaw, Poland. He received his M.Sc. and
Ph.D. degrees in computer science from the State Electrotechnical Uni-
versity, St. Petersburg, in 1973 and 1978, respectively, and a habilitation
from the Institute of Computer Science, Polish Academy of Sciences,
in 1998. His research interests concern naturally inspired computational
paradigms such as evolutionary algorithms and artificial immune sys-
tems, as well as their application for computer security, mobile and ad
hoc networks, multiprocessor scheduling and distributed computing.

Received: 11 April 2014
Revised: 9 March 2015

	Introduction
	State of the art
	Cloud model
	System and user model
	Security and pricing model
	Problem formulation

	Multiobjective scheduling framework
	Multiobjective genetic algorithm
	Pareto front generation

	Game-theoretic scheduling scheme
	Non-cooperative scheduling game model
	Broker's utility function
	Construction of the competitive scheduling solution
	Rules of the distributed scheduling game

	Experimental analysis and performance evaluation
	Simulation testbed
	Simulation results

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

