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This work introduces a novel approach to stability and stabilization of nonlinear systems with delayed multivariable inputs;
it provides exponential estimates as well as a guaranteed cost of the system solutions. The result is based on an exact
convex representation of the nonlinear system which allows a Lyapunov–Krasovskii functional to be applied in order to
obtain sufficient conditions in the form of linear matrix inequalities. These are efficiently solved via convex optimization
techniques. A real-time implementation of the developed approach on the twin rotor MIMO system is included.
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1. Introduction

In the framework of control theory it is well known that
the existence of a delay in the control signal can induce
instability or poor performance. It is clear that most of
real systems present some sort of time delay, whether
perceptible or not, besides being inherently nonlinear. The
presence of delays in the control system is a phenomenon
that can be seen as the dead-time between transmission
and execution of an action. In this context, the delay
is due to the fact that forces affecting the dynamics are
associated with past events.

Time delays can be found in networked and
distributed systems (Murray, 2003), communication
networks (Kelly, 2001), teleoperation (Anderson and
Spong, 1989), telesurgery (Speich and Rose, 2004),
unmanned aerial vehicles (Ramı́rez et al., 2014), and
decentralized control multiple collaborative agents (Beard
et al., 2006), synchronization and haptics (Cheong et al.,
2007), chemical processes (Marquez Rubio et al., 2012),
population dynamics (Gopalsamy, 1992), biological
phenomena (Niculescu et al., 2007), etc. Thus, the interest
in understanding the effects of delays and in designing

∗Corresponding author

stabilizing controllers that take those delays into account
has been increasing. Correspondingly, controllers in the
time-delay context have become more and more complex.

The stability analysis of time-delay systems has two
main approaches: in the frequency domain and in the
time domain. In the former, necessary and sufficient
conditions of stability are given (see, e.g., Bellman and
Cooke, 1963; El’sgol’ts, 1966). The first and main results
on stability of time delay systems were given by Kabakov
(1946), Tzypkin (1946) and Neimark (1973). The Nyquist
and Michailov criteria are the most commonly used results
(Hahn, 1967; La Salle and Lefschetz, 1961). As for the
time-domain approach, we have found two variants: the
Lyapunov–Razumikhin approach (Razumikhin, 1956),
which is an adaptation of the classical Lyapunov theory,
and the Lyapunov–Krasovskii one (Krasovskii, 1956),
which is a natural extension of Lyapunov theory to enable
the use of Lyapunov functionals (Duda, 2012). Further
developments for observer design of time-delay systems
can be also found (Thuan et al., 2012).

On the other hand, design of nonlinear control
systems has benefited from convex structures since the
seminal work of Taniguchi et al. (2001), which showed
a methodology to obtain an exact convex representation
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of a nonlinear model in a compact set of the state space.
It has been proved that this model shares the properties
of the well-known Takagi–Sugeno (TS) model (Takagi
and Sugeno, 1985) and can therefore be analyzed using
the direct Lyapunov method (Tanaka and Sugeno, 1990);
conditions thus obtained are usually expressed as linear
matrix inequalities (LMIs) which can be efficiently solved
via convex optimization techniques already implemented
in commercially available software (Boyd et al., 1994).
A common structure for controller design under this
approach has been the parallel distributed compensation
(PDC), which employs the same convex functions of the
model as to create a convex nonlinear controller that
generalizes the ordinary state-feedback scheme (Wang
et al., 1996; Tanaka and Wang, 2001).

As expected, time-delay systems have been studied
via convex structures, too; this has been done in order
to take advantage of the systematic design procedures
which guarantee computational tractability via LMIs
(Lin et al., 1991). In the TS context, the last
decade has witnessed an abundance of results on a
variety of issues related to time-delay systems: stability
using the Lyapunov–Razumikhin functional approach
(Cao and Frank, 2001), stability criteria for a class
of nonlinear stochastic systems with time delay (Wang
et al., 2004; Li et al., 2011; Balasubramaniam et al.,
2012), design of feedback controllers design for nonlinear
interval time-delay systems via a T–S model (Chang
et al., 2004), design of guaranteed cost control for T–S
systems with delays (Chen and Liu, 2005; Chen et al.,
2007b; 2007a; Kang and Wang, 2010) observer-based
H-infinity control for time-delay T–S (Lin et al., 2007),
α-dissipative control for T–S fuzzy descriptor systems
with time delay (Gassaraa et al., 2014). Most of these
results take advantage of the possibility of rewriting
Lyapunov–Krasovskii functionals as convex expressions
by inheritance of the model convex structure: this
investigation follows that path. In contrast to ordinary
“fuzzy” approaches like that of Liu et al. (2014), this
work does not consider approximations but convex exact
representations of nonlinear models.

Based on a novel form of the Lyapunov–Krasovskii
functional, this paper provides conditions for exponential
estimates (a decay rate) of a class of time-delay nonlinear
systems as well as guaranteed control cost of the control
input. This is a topic that has been addressed very recently
in several works (Zhang et al., 2009; Gassara et al., 2010;
Chiu and Chiang, 2011); in contrast to those, this report
has the following features: (a) a matrix relaxation based
on Finsler’s lemma which allows a natural inclusion of
slack variables; (b) an exact convex representation of the
plant which makes the proposed results directly valid for
the original nonlinear setup; (c) guaranteed control cost
as well as exponential bounds in a single framework,
specifically designed for delayed inputs. The results are

organized as follows: Section 2 introduces the definitions
and notation this work is based on; Section 3 presents
the main contributions in two theorems: the first one
considers stability under a given delayed PDC control
law, while the second provides controller synthesis for
stabilization with guaranteed control cost and exponential
estimates; Section 4 illustrates the effectiveness of the
proposed scheme via a simulation example as well as a
real-time implementation on the well-known twin rotor
MIMO system, whose fast dynamics are particularly
sensitive to time delays on the control input; and Section 5
gathers some concluding remarks and suggestions for
future work.

2. Preliminaries

Consider an affine-in-control nonlinear system whose
input is delayed in time:

ẋ(t) = f(x(t))x(t) + g(x(t))u(t − τ),

φ(θ) = x(θ), θ ∈ [−τ, 0], (1)

where f(·) : R
n → R

n×n is a matrix function such
that f(x(t))x(t) is a Lipschitz vector field, g(·) : Rn →
R

n×m is a matrix function, u(t) ∈ R
m is the input vector,

τ ∈ R
+ is a time delay, φ ∈ C([−τ, 0],Rn) is the

initial function, and C([−τ, 0],Rn) is the Banach space
of real continuous functions on the interval [−τ, 0] with
the following norm:

‖φ‖τ := max
θ∈[−τ,0]

‖φ(θ)‖,

with ‖ · ‖ being the Euclidean norm in R
n. It is assumed

that for each initial condition φ ∈ C([−τ, 0],Rn) and
t ≥ 0 there exists a unique solution x(t;φ) of the system.
Here, xt(φ) := {x(t + θ;φ) : θ ∈ [−τ, 0]} ∈ R

n denote
a segment of solution x(t;φ), and it is the state vector
which is assumed to lie in a compact set C. When it does
not cause an ambiguity, we write x(t) and xt instead of
x(t;φ) and xt(φ).

Results in this report are based on a convex rewriting
of the nonlinear model (1). To this end, we will
employ the sector nonlinearity methodology described
by Taniguchi et al. (2001). If f(·) and g(·) have p
nonlinearities, they can be grouped in a vector

z(·) = [
z1(·) z2(·) . . . zp(·)

]T
,

where each entry corresponds to a nonlinearity

zj(·) ∈
[
zj , zj

]
,

zj = min
x(t)∈C

zj(·), zj = max
x(t)∈C

zj(·),

j ∈ {1, 2, . . . , p}. The following weights are thus
constructed:

wj
0(·) =

zj − zj(·)
zj − zj

, wj
1(·) = 1− wj

0(·), (2)
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with j ∈ {1, 2, . . . , p}. We can thus define the following
functions:

hi = h1+i1+i2×2+...+ip×2p−1 =

p∏

j=1

wj
ij

(
zj
)
, (3)

with i ∈ {1, 2, . . . , r}, r = 2p, ij ∈ {0, 1}, which hold
the convex-sum property

∑r
i=1 hi(·) = 1, hi(·) ≥ 0, in C.

Then, the nonlinear model (1) is rewritten in the
following convex form:

ẋ(t) =

r∑

i=1

hi (z(t)) (Aix(t) +Biu(t− τ)) ,

φ(θ) = x(θ), θ ∈ [−τ, 0],
(4)

with φ(θ) defined as before, Ai = f (z(t))
∣
∣
hi=1

, Bi =

g (z(t))
∣
∣
hi=1

, i ∈ {1, 2, . . . , r}. Sector nonlinearity
guarantees that (4) is an exact representation of the
nonlinear system described in (1) in C; it is not an
approximation.

Some of the expressions in the sequel that involve
convex sums will be written shortly as

Υz =

r∑

i=1

hi (z(t))Υi,

Υzz =

r∑

i=1

r∑

j=1

hi (z(t))hj (z(t))Υij ,

Υz,τ =
r∑

i=1

hi (z(t− τ)) Υi,

Υz,τ
zz =

r∑

i=1

r∑

j=1

r∑

k=1

hi (z(t))hj (z(t))hk (z(t− τ)) Υk
ij .

Following this notation, the convex model (4) can be
written as ẋ(t) = Azx(t) +Bzu(t− τ).

In order to obtain LMI conditions, MFs should be
removed from nested convex sums. The following result
will be employed to perform this task in triple convex
sums, one of which will be delayed: it is an immediate
extension of the relaxation lemma of Tuan et al. (2001):

Lemma 1. (Relaxation lemma) (Tuan et al., 2001) Let
Υk

ij be matrices of proper dimensions. Then Υz,τ
zz < 0 is

implied by

Υk
ii < 0, ∀(i, k) ∈ {1, 2, . . . , r}2,

2

r − 1
Υk

ii +Υk
ij +Υk

ji < 0,

∀(i, j, k) ∈ {1, 2, . . . , r}3, i �= j.

(5)

The following control law corresponds to the
well-known parallel distributed compensation (PDC)
(Wang et al., 1996) and will be employed in the sequel:

u(t) =

r∑

j=1

hi(z(t))Kjx(t) = Kzx(t), (6)

with Ki ∈ R
m×n, i ∈ {1, 2, . . . , r}, being controller

gains to be determined later. It is important to stress the
fact that this control law is nonlinear because functions
hi(·) may depend nonlinearly on the states.

Substituting (6) in (4), the following closed-loop
system equation is obtained:

ẋ(t) = Azx(t) +BzKz,τx(t− τ),

φ(θ) = x(θ), θ ∈ [−τ, 0], (7)

where Kz,τ =
∑r

j=1 hj (z(t− τ))Kj .
For brevity, symmetric terms in matrix expressions

as well as in-line expressions will be denoted with a
star (∗). Should a matrix expression be involved with
symbols “>” and “<”, they will stand for positive and
negative-definiteness, respectively. Arguments will be
omitted when convenient.

The following matrix property will play a central role
in obtaining the LMI conditions in this work.

Lemma 2. (Finsler’s lemma) (Oliveira and Skelton,
2001) Let x ∈ R

n, Q = QT ∈ R
n×n, and R ∈ R

m×n

such that rank
(
R
)
< n. The following expressions are

equivalent:

1. xTQx < 0, ∀x ∈ {x ∈ R
n : x �= 0,Γx = 0} ,

2. ∃Ω ∈ R
n×m : Q+ΩΓ + ΓTΩT < 0.

We now turn our attention to the definition of
guaranteed control cost and exponential estimates. For the
first one, let W ∈ R

n×n, W =WT > 0 and S ∈ R
m×m,

S = ST > 0; then, the following cost function will be
used in the sequel (Chen et al., 2007a):

J =

∫ ∞

0

(xT (t)Wx(t) + uT (t− τ)Su(t− τ)) dt. (8)

Guaranteed control cost control law. (Yu and Chu,
1999) For a nonlinear system of the form (1) (or,
equivalently, (4)), if there exists a control input u(t),
a constant J0 such that the closed-loop system is
asymptotically stable, and J ≤ J0, where J is given by
(8), then J0 is said to be a guaranteed cost and the control
input u(t) is called a guaranteed control cost control law
for the system (1) (or, equivalently, (4)).

As for exponential estimates, the following result
relating them with a Lyapunov–Krasovskii functional will
be used.

Theorem 1. (Kharitonov and Hinrichsen, 2004) Consider
the nonlinear system (1) or, equivalently, its convex TS
representation (4). If there exist a functional V (·) and
positive constants α1, α2, and σ such that

1. α1||x(t)||2 ≤ V (xt) ≤ α2||xt||2τ ,
2. V̇ (xt) + 2σV (xt) < 0,
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then the solutions x(t;φ) of the system (1) (or, equiva-
lently, (4)) satisfy the exponential estimates

||x(t;φ)|| ≤
√
α2

α1
e−σt||φ||τ .

3. Main results

3.1. Stability. We begin by considering the stability
analysis of the closed-loop time-delay system (7), which
means that gains Kj , j ∈ {1, 2, . . . , r} are already
known. When stability analysis is performed, it is
customary to provide these gains such that terms Ai +
BiKi, j ∈ {1, 2, . . . , r} are Hurwitz; of course, this
does not guarantee the stability of the whole scheme,
which is why the stability analysis comes at hand. The
next theorem should be therefore considered a first step
towards the controller synthesis methodology shown in
the next subsection.

Theorem 2. The closed-loop nonlinear system (7) with a
time-delay R � τ > 0 is exponentially stable with guar-
anteed cost

J0 = xT (0)Px(0) +

∫ 0

−τ

xT (s)Qe2σsx(s) ds

+ τ

∫ 0

−τ

∫ 0

θ

ẋT (s)Re2σsẋ(s) ds dθ

(9)

for the cost function (8) with Q, P , R ∈ R
n×n such that

Q = QT > 0, P = PT > 0, R = RT > 0, and holds
exponential estimates

||x(t;φ)|| ≤
√
α2

α1
e−σt||φ||τ , (10)

for a decay rate R � σ > 0 with α1 = λmin(P ), α2 =
λmax(P )+λmax(Q)τ+λmax(R)τ , if there exist matrices
W ∈ R

n×n : W =WT > 0, S ∈ R
m×m : S = ST > 0,

Kj ∈ R
m×n, Hp

i , Np
ij ∈ R

n×n, i, j ∈ {1, 2, . . . , r},
p ∈ {1, 2, 3} satisfying LMIs (5) for

Υk
ij =

⎡

⎢
⎢
⎢
⎢
⎣

ψ11 ψ12 ψ13 ψ14 0
(∗) ψ22 ψ23 ψ24 KT

k

(∗) (∗) ψ33 ψ34 0
(∗) (∗) (∗) ψ44 0
0 (∗) 0 0 −S−1

⎤

⎥
⎥
⎥
⎥
⎦
, (11)

where i, j, k ∈ {1, 2, . . . , r} , and

ψ11 = H1
jAi +N1

ij + (∗) + 2Pσ +Q+W,

ψ12 = H1
jBiKk +AT

i

(
H2

j

)T −N1
ij +

(
N2

ij

)T
,

ψ13 = −H1
j +AT

i

(
H3

j

)T
+
(
N3

ij

)T
+ P,

ψ14 = N1
ij ,

ψ22 = H2
jBiKk −N2

ij + (∗)−Qe2στ ,

ψ23 = −H2
j +KT

k B
T
i

(
H3

j

)T − (
N3

ij

)T
,

ψ24 = N2
ij ,

ψ33 = τ2R−H3
j − (

H3
j

)T
,

ψ34 = N3
ij ,

ψ44 = −Re−2στ .

Proof. Consider the Lyapunov–Krasovskii functional of
the form (Mondie and Kharitonov, 2005)

V (xt) = xT (t)Px(t)

+

∫ t

t−τ

xT (s)Qe2σ(s−t)x(s) ds

+ τ

∫ 0

−τ

∫ t

t+θ

ẋT (s)Re2σ(s−t)ẋ(s) ds dθ.

(12)

Clearly, the above functional satisfies the following
quadratics bounds:

α1||x(t)||2 ≤ V (xt) ≤ α2||xt||2τ , (13)

where α1 = λmin(P ) and α2 = λmax(P ) + λmax(Q)τ +
λmax(R)τ . We now turn our attention to the time
derivative of (12):

V̇ (xt)

= 2xT (t)P ẋ(t) + xT (t)Qx(t)

− xT (t− τ)Qe−2στx(t− τ)

− 2σ

∫ t

t−τ

xT (s)Qe2σ(s−t)x(s) ds

+ τ2ẋT (t)Rẋ(t)

− τ

∫ t

t−τ

ẋT (s)Re2σ(s−t)ẋ(s) ds

− 2στ

∫ 0

−τ

∫ t

t+θ

ẋT (s)Re2σ(s−t)ẋ(s) ds dθ.

Condition 2 in Theorem 1 translates into

V̇ + 2σV

= 2xT (t)P ẋ(t) + 2σxT (t)Px(t)

+ xT (t)Qx(t) − xT (t− τ)Qe−2στx(t− τ)

+ τ2ẋT (t)Rẋ(t)
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− τ

∫ t

t−τ

ẋT (s)Re2σ(s−t)ẋ(s)ds

= x̄T

⎡

⎣
2σP +Q 0 P

0 −Qe−2στ 0
P 0 τ2R

⎤

⎦ x̄

− τ

∫ t

t−τ

ẋT (s)Re2σ(s−t)ẋ(s) ds < 0, (14)

where x̄ =
[
xT (t) xT (t− τ) ẋT (t)

]T
. In this

context, the convex model (7) can be rewritten as

[
Az BzKz,τ −I]

⎡

⎣
x(t)

x(t− τ)
ẋ(t)

⎤

⎦ = 0, (15)

whereas the fundamental theorem of calculus can be put
in a similar fashion as follows:

[
I −I 0

]
⎡

⎣
x(t)

x(t− τ)
ẋ(t)

⎤

⎦−
∫ t

t−τ

ẋ(s) ds = 0. (16)

Finsler’s lemma will be applied twice to combine the
inequality (14) and the restrictions (15) and (16); it is
important to notice that the integral terms in (14) and (16)
will be included in Finsler’s equivalence without loss of
generality. Thus, after applying Finsler’s lemma with the
inequality (14) and the restriction (15), we have

x̄T

⎛

⎝

⎡

⎣
H1

z

H2
z

H3
z

⎤

⎦ [
Az BzKz,τ −I]+ (∗)

+

⎡

⎣
2σP +Q 0 P

0 −Qe−2στ 0
P 0 τ2R

⎤

⎦

⎞

⎠ x̄

− τ

∫ t

t−τ

ẋT (s)Re2σ(s−t)ẋ(s) ds

= x̄TΦ0x̄

− τ

∫ t

t−τ

ẋT (s)Re2σ(s−t)ẋ(s) ds < 0, (17)

with Φ0 given in (18), Hp
z , p ∈ {1, 2, 3} being single

convex sums of matrices Hp
j ∈ R

n×n, p ∈ {1, 2, 3},
j ∈ {1, . . . , r}. Notice that

[(
H1

z

)T (
H2

z

)T (
H3

z

)T
]T

operates as Ω in Finsler’s lemma (statement 1).

We now reapply Finsler’s lemma with (17) as the new

inequality and (16) as the new restriction. This yields

x̄T

⎛

⎝

⎡

⎣
N1

zz

N2
zz

N3
zz

⎤

⎦ [
I −I 0

]
+ (∗) + Φ0

⎞

⎠ x̄

− x̄T

⎡

⎣
N1

zz

N2
zz

N3
zz

⎤

⎦
∫ t

t−τ

ẋ(s) ds−
∫ t

t−τ

ẋ(s) ds

⎡

⎣
N1

zz

N2
zz

N3
zz

⎤

⎦

T

x̄

− τ

∫ t

t−τ

ẋT (s)Re2σ(s−t)ẋ(s) ds

= x̄T

⎛

⎝

⎡

⎣
N1

zz +
(
N1

zz

)T (
N2

zz

)T −N1
zz

(
N3

zz

)T

N2
zz −

(
N1

zz

)T −N2
zz −

(
N2

zz

)T − (
N3

zz

)T

N3
zz −N3

zz 0

⎤

⎦

+Φ0

)

x̄− 2x̄T

⎡

⎣
N1

zz

N2
zz

N3
zz

⎤

⎦
∫ t

t−τ

ẋ(s) ds

− τ

∫ t

t−τ

ẋT (s)Re2σ(s−t)ẋ(s) ds < 0, (19)

with Np
zz , p ∈ {1, 2, 3} being double convex sums of

matrices Np
ij ∈ R

n×n, p ∈ {1, 2, 3}, i, j ∈ {1, . . . , r}.
Once again, notice that

N =
[(
N1

zz

)T (
N2

zz

)T (
N3

zz

)T
]T

takes the place of Ω in Finsler’s lemma (statement 1);
notice also that the restriction in this case is extended from
Γx̄ = 0 to the form Γ1x̄+Γ2 = 0, where Γ1 is the matrix
term multiplied by x̄ in (16) and Γ2 is the integral term in
the same expression. By the Park and Jensen inequalities
(Gu et al., 2003), we have

− 2x̄T (t)N

∫ t

t−τ

ẋ(s) ds

≤ x̄T (t)NR−1e2στNT x̄(t)

+

∫ t

t−τ

ẋT (s) dsRe−2στ

∫ t

t−τ

ẋ(s) ds

≤ x̄T (t)NR−1e2στNT x̄(t)

+ τ

∫ t

t−τ

ẋT (s)Re−2στ ẋ(s) ds, (20)

which can be taken into account to cancel out the last
integral term in (19) yielding

x̄T
(
Φ0 +Φ1 +NR−1e2στNT

)
x̄ < 0, (21)

with

Φ1 =

⎡

⎣
N1

zz +
(
N1

zz

)T (
N2

zz

)T −N1
zz

(
N3

zz

)T

N2
zz −

(
N1

zz

)T −N2
zz −

(
N2

zz

)T − (
N3

zz

)T

N3
zz −N3

zz 0

⎤

⎦ .

The following development intends to include the
guaranteed control cost in the previous analysis. To this
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end, consider matrices Rn×n � W > 0 and S ∈ R
m×m :

S > 0 from the integral argument in the cost function (8)
by substituting (6):

xT (t)Wx(t) + uT (t− τ)Su(t− τ)

= xT (t)Wx(t) + xT (t− τ)KT
z,τSKz,τx(t− τ)

= x̄T (t)Φ2x̄(t), (22)

with

Φ2 =

⎡

⎣
W 0 0
0 KT

z,τSKz,τ 0
0 0 0

⎤

⎦ .

The inequality (21) guarantees that V̇ +2σV < 0; keeping
this in mind, as well as the equivalence in (22), it follows
that

xT (t)Wx(t) + uT (t− τ)Su(t− τ)

= xT (t)Wx(t) + uT (t− τ)Su(t− τ) + V̇ − V̇

< xT (t)Wx(t) + uT (t− τ)Su(t− τ)

+ 2σV + V̇ − V̇

< x̄T (t)(Φ0 +Φ1 +Φ2 +NR−1e2στNT )x̄(t)

− V̇ . (23)

By the Schur complement we have that Φ0 + Φ1 +
Φ2 +NR−1e2στNT < 0 is equivalent to

[
Φ0 +Φ1 +Φ2 N

NT −Re−2στ

]
< 0.

If [Φ0]2,2 + [Φ1]2,2 + [Φ2]2,2 = [Φ0]2,2 + [Φ1]2,2 +

KT
z,τSKz,τ denotes the block entry (2, 2) of the previous

matrix, the Schur complement can be applied again
yielding Eqn. (24). By the relaxation lemma, it is now
clear that (24) holds if the LMIs (5) are satisfied for Υk

ij ,
i, j, k ∈ {1, 2, . . . , r} as defined in (11).

We can now return to the guaranteed cost function.
Since V̇ + 2σV < 0 and bounds given on (13) have been
established, Theorem 1 guarantees that solutions of the
closed-loop model (7) satisfy (10). On the other hand,
note that (24) guaranteesΦ0+Φ1+Φ2+NR

−1e2στNT <
0; therefore, (23) is guaranteed if

xT (t)Wx(t) + uT (t− τ)Su(t− τ) ≤ −V̇ . (25)

Integrating (25) on the interval [0, T ], we have

∫ T

0

(xT (t)Wx(t) + uT (t− τ)Su(t− τ)) dt

≤ −V (T ) + V (0)

= −V (T ) + xT (0)Px(0) +

∫ 0

−τ

xT (s)Qe2σsx(s) ds

+ τ

∫ 0

−τ

∫ 0

θ

ẋT (s)Re2σsẋ(s) ds dθ.

Since V̇ < 0, V (t) > 0 and ∃ V (T ) > 0 as T → ∞, we
get

∫ ∞

0

(xT (t)Wx(t) + uT (t− τ)Su(t− τ)) dt

≤ xT (0)Px(0) +

∫ 0

−τ

xT (s)Qe2σsx(s) ds

+ τ

∫ 0

−τ

∫ 0

θ

ẋT (s)Re2σsẋ(s) ds dθ,

which means that the guaranteed cost (9) is satisfied, thus
completing the proof. �

Remark 1. Note that, traditionally, the constraints (15)
and (16) are incorporated in the Lyapunov time-derivative
(14) via zero additions instead of Finsler’s lemma (Chen
et al., 2007a). Nevertheless, both the approaches lead to
the same results.

3.2. Stabilization. Theorem 1 assumes the gains Ki,
i ∈ {1, 2, . . . , r}, are already given: it therefore performs
a stability analysis. The next result provides sufficient
conditions for stabilization (i.e., controller synthesis) of
a nonlinear model of the form (1) under a delayed control
law. As before, the result is obtained through a convex
rewriting (4) of the original model (1), provided the
control law (6) also shares the convex structure of this
representation.

Theorem 3. The closed-loop nonlinear system (7) with
time delay R � τ > 0 is exponentially stable with guaran-
teed cost J0 in (9) for the cost function (8) and holds the
exponential estimates (10) for a decay rate R � σ > 0
with α1 = λmin(P ), α2 = λmax(P ) + λmax(Q)τ +
λmax(R)τ , if there exist matrices Q̄, P̄ , R̄,W ∈ R

n×n

such that Q̄ = Q̄T > 0, P̄ = P̄T > 0, W = WT > 0,
R

m×m � S = ST > 0, Y ∈ R
n×n, Fk ∈ R

m×n,

Φ0 =

⎡

⎢
⎣
H1

zAz + (∗) + 2σP +Q H1
zBzKz,τ +AT

z

(
H2

z

)T
P −H1

z +AT
z

(
H3

z

)T

(∗) H2
zBzKz,τ + (∗)−Qe−2στ −H2

z +KT
z,τB

T
z

(
H3

z

)T

(∗) (∗) τ2R−H3
z − (

H3
z

)T

⎤

⎥
⎦. (18)
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Υz,τ
zz =

⎡

⎢
⎢
⎢
⎢
⎣

⎡

⎢
⎢
⎣
Φ0 +Φ1 +

⎡

⎣
W 0 0
0 0 0
0 0 0

⎤

⎦

⎡

⎣
N1

zz

N2
zz

N3
zz

⎤

⎦

(∗) −Re−2στ

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

0
KT

z,τ

0
0

⎤

⎥
⎥
⎦

(∗) −S−1

⎤

⎥
⎥
⎥
⎥
⎦
< 0. (24)

k ∈ {1, 2, . . . , r}, N̄p ∈ R
n×n, p ∈ {1, 2, 3}, and con-

stants a2, a3 ∈ R, satisfying
⎡

⎢
⎢
⎢⎢
⎢
⎢
⎣

ψ̄11 ψ̄12 ψ̄13 ψ̄14 0 ψ̄16

(∗) ψ̄22 ψ̄23 ψ̄24 ψ̄25 0
(∗) (∗) ψ̄33 ψ̄34 0 0
(∗) (∗) (∗) ψ̄44 0 0
(∗) (∗) (∗) (∗) ψ̄55 0
(∗) (∗) (∗) (∗) (∗) ψ̄66

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎦

< 0, (26)

where i, k ∈ {1, 2, . . . , r} , and

ψ̄11 = AiY
T + Y AT

i + N̄1 + N̄1
T

+ 2σP̄ + Q̄,

ψ̄12 = BiFk + a2Y A
T
i − N̄1 + N̄2

T
,

ψ̄13 = −Y T + a3Y A
T
i + N̄3

T
+ P̄ ,

ψ̄14 = N̄1,

ψ̄16 = Y,

ψ̄22 = a2BiFk + a2F
T
k B

T
i − N̄2

− N̄2
T − Q̄e2στ ,

ψ̄23 = −a2Y T + a3F
T
k B

T
i − N̄3

T
,

ψ̄24 = N̄2,

ψ̄25 = FT
k ,

ψ̄33 = −a3Y T − a3Y + τ2R̄,

ψ̄34 = N̄3,

ψ̄44 = −R̄e−2στ ,

ψ̄55 = −S−1,

ψ̄66 = −W−1.

The controller gains in (6) are thus calculated as Kk =
FkY

−T , k ∈ {1, 2, . . . , r}. The matrices correspond-
ing to the Lyapunov–Krasovskii functional (12) are cal-
culated as P = Y −1P̄ Y −T , Q = Y −1Q̄Y −T and
R = Y −1R̄Y −T .

Proof. Gains in (11) are multiplied by different sets of
matrices Hp

j . In order to accomplish controller synthesis,
these matrices are uniformized by choosing them asH1

j =

H1, H2
j = a2H1, and H3

j = a3H1, with H1 ∈ R
n×n

invertible and real constants a2, a3. This makes the
same-instant crossed terms in (11) disappear; therefore,
matrices Np

ij are also reduced as N1
ij = N1, N2

ij = N2,
and N3

ij = N3, for N1, N2, N3 ∈ R
n×n.

Let Y = H−1
1 . The desired result easily arises after

three steps:

1. Rewrite the expression (11) with the aforementioned
reductions.

2. Pre- and post-multiply (11) by

block-diag
[
Y Y Y Y I

]

and its transpose, respectively.

3. For the resulting expression, take the Schur
complement of the block-entry (1, 1) over the term
YWY T .

Hence, the expression (26) arises, thus concluding the
proof. �

Remark 2. Notice that only indexes i and k remain
in the expression, and that index k corresponds to gains
Kk which occur at a different instant than indexes i from
the system, due to the time delay; therefore, no relaxation
lemma can be applied here and all the combinations (i, k)
should be tested.

Remark 3. Theorem 3 is applicable to time-delay
nonlinear systems exactly represented in the convex TS
form via the sector nonlinearity approach (Taniguchi
et al., 2001). This representation is not an approximation
of the original model as happens with many other “fuzzy”
methodologies such as that by Liu et al. (2014), which
rely on fuzzy structures that are not fired simultaneously.

Remark 4. Convex structures in matrices Q and R
of the Lyapunov–Krasovskii functional (12) can be easily
exploited, since their time derivative will not include the
time derivatives of the MFs hi(·), i.e.,

V (xt) (27)

= xT (t)Px(t) +

∫ t

t−τ

xT (s)Qze
2σ(s−t)x(s) ds

+ τ

∫ 0

−τ

∫ t

t+θ

ẋT (s)Rze
2σ(s−t)ẋ(s) ds dθ, (28)

with Qz =
∑r

i=1 hi(z)Qi and Rz =
∑r

i=1 hi(z)Ri.
Clearly, this may provide additional degrees of freedom
to relax the aforementioned results (Liu et al., 2014).
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4. Implementation on the twin rotor MIMO
system

In order to illustrate the applicability of the proposed
approach in a real-time application whose behavior is
highly sensitive to time delays, this section considers the
twin rotor MIMO system (TRMS) (Fee, 1998). Most
of the state-space representations of the TRMS have 6
states (Nejjari et al., 2011; Pratap and Purwar, 2010; Tao
et al., 2010): the elevation and azimuth angles, their
corresponding angular speeds, and the motor speeds.
Some other models add a coupling internal state; this is the
case of the TRMS model employed in this investigation
(Fee, 1998; Ahmed et al., 2009; Gonzalez et al., 2012).
Thus, considering x1 to be the main motor speed, x2 the
elevation angle, x3 the elevation angular speed, x4 the tail
motor speed, x5 the azimuth angle, x6 the azimuth angular
speed, and x7 a coupling internal state, the TRMS model
is given by (Fee, 1998; Gonzalez et al., 2012)

ẋ(t) = f(x)x(t) + g(x)u(t), (29)

with x(t) =
[
x1 x2 x3 x4 x5 x6 x7

]T
being

the state vector, u(t) ∈ R
2×1 being the input vector (recall

the system has two actuators corresponding to the motors
torque), and

f(x) =

⎡

⎢⎢
⎢
⎢
⎢
⎢⎢
⎣

−0.83 0 0 0 0 0 0
0 0 1 0 0 0 0

E1(x) E2(x) −0.006

I1
0 0 E3(x) 0

0 0 0 −1 0 0 0
0 0 0 0 0 1 0

0 0 0 E4(x) 0 −0.1

I2
− 1

I2
E5(x) 0 0 0 0 0 −0.5

⎤

⎥⎥
⎥
⎥
⎥
⎥⎥
⎦

,

g(x) =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

0.917 0
0 0
0 0
0 0.8
0 0
0 0

E6(x) 0

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

,

E1(x) = (b1 + a1x1)

(
1− 0.05x6 cosx2

I1

)
,

E2(x) = −0.32 sinx2
I1x2

,

E3(x) =
0.0163x6 sin (2x2)

I1
,

E4(x) =
b2 + a2x4

I2
,

E5(x) = −0.1 (b1 + a1x1) + 0.583

(
b1
2

+ a1x1

)
,

E6(x) =
1.1Acte

1.2

(
b1
2

+ a1x1

)
,

Acte = −0.7, a1 = 0.0135, a2 = 0.02, b1 = 0.0924,
b2 = 0.09, I1 = 0.068, and I2 = 0.02.

An exact convex representation of the nonlinear
model (29) can be found through the sector nonlinearity
approach described in Section 2 by taking zi ∈ [zi, zi] as

z1 = x1 ∈ [−0.8, 0.8] ,

z2 = x6 cosx2 ∈ [−0.5574, 0.8] ,

z3 =
sinx2
x2

∈ [0.8967, 1] ,

z4 = x6 sin (2x2) ∈ [−0.8, 0.8] ,

z5 = x5 ∈ [−0.6, 0.6] ,

from which weighing functions

ωi
0 =

zi − zi
zi − zi

,

ω1
1 = 1− ωi

0

are defined to produce MFs

hi = h1+i1+i2×2+...+i5×24 =

5∏

j=1

wj
ij

(
zj
)
.

The resulting model has the form

ẋ(t) =

32∑

i=1

hi(z(t)) (Aix(t) +Biu(t)) , (30)

with (Ai, Bi) = (f(x), g(x)) |hi=1.
Conditions in Theorem 3 were found feasible in the

MATLAB LMI Toolbox (Gahinet et al., 1995) for a time
delay of τ = 0.27 and decay rate σ = 0.25. The
resulting PDC control law is (6) with 32 gains Ki, which,
along with the MFs hi, i ∈ {1, 2, . . . , 32}, constitute the
convex sumKz . Here, the exponential estimates for initial
condition φ = [0 0.57 0 0 − 0.4 0 0] are

||x(t;φ)|| ≤
√
α2

α1
e−σt||φ||τ

= 46.6971e−0.25t||φ||0.27,
with a guaranteed cost of J0 = 16.4828. The
Lyapunov–Krasovskii functional matrices and some of the
32 gains are shown below.

The time evolution of the TRMS states under the
time-delayed control law above is shown on the left in
Fig. 1, and the control law is depicted on the right. It can
be seen that, despite the time delay, stabilization as well
as the exponential bound are achieved.

The TRMS employed for real time-implementation
only provides states x2, x3, x5, and x6, which are
measurements from the encoder sensors; the remaining
states have to be estimated (Fee, 1998). As can be
checked in the user’s guide, states x1, x4, and x7 can be
filtered from the input torques; note that this task does
not lead to algebraic loops if the input is delayed. Thus,
real-time implementation of the simulation results above
is shown in Fig. 2. The peaks presented in the figure are
user-induced perturbations.
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5. Conclusions

A novel approach to stability and stabilization of nonlinear
systems with delayed multivariable inputs providing
exponential estimates as well as a guaranteed cost of
the system solutions has been presented. An exact
convex representation of the system in a compact
set of the state-space has been used altogether with
a Lyapunov–Krasovskii functional to obtain sufficient
conditions in the form of linear matrix inequalities, which
are efficiently solved via convex optimization techniques.
In contrast to other results on the subject, this development
makes use of recent techniques such as Finsler’s lemma in
order to combine inequalities and restrictions in a single
unified framework. The developed approach has been
successfully implemented in real time on the twin rotor
MIMO system.
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Fig. 1. State evolution of the TRMS under the control law (6)
obtained via Theorem 3 with τ = 0.27, σ = 0.25 (a).
Time evolution of the control signals (b).
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dad Politécnica de Pachuca, Mexico, in 2012, and
the M.Sc. degree in automation and control sci-
ences from Universidad Autónoma del Estado de
Hidalgo, Mexico, in 2014. Currently, he is a
Ph.D. student at the Automatic Control Depart-
ment at CINVESTAV/Guadalajara Unit, Mexico.
His research interest includes nonlinear control,
time delay systems and neural networks design.
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