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The simplest classification task is to divide a set of objects into two classes, but most of the problems we find in real
life applications are multi-class. There are many methods of decomposing such a task into a set of smaller classification
problems involving two classes only. Among the methods, pairwise coupling proposed by Hastie and Tibshirani (1998) is
one of the best known. Its principle is to separate each pair of classes ignoring the remaining ones. Then all objects are
tested against these classifiers and a voting scheme is applied using pairwise class probability estimates in a joint probability
estimate for all classes. A closer look at the pairwise strategy shows the problem which impacts the final result. Each binary
classifier votes for each object even if it does not belong to one of the two classes which it is trained on. This problem is
addressed in our strategy. We propose to use additional classifiers to select the objects which will be considered by the
pairwise classifiers. A similar solution was proposed by Moreira and Mayoraz (1998), but they use classifiers which are
biased according to imbalance in the number of samples representing classes.
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1. Introduction

Classification tasks are widely used in real-world
applications. Most of them are classification problems
that involve more than two classes. We call them
multi-class problems. There are many methods
of decomposing such a task into the set of the
smaller classification problems involving two classes
only. Benefits obtained from the decomposition of the
multi-class task have been addressed by many authors
(e.g., Allwein et al., 2001; Kahsay et al., 2005; Ou
and Murphey, 2006; Krzysko and Wolynski, 2009; Saez
et al., 2012).

Among the methods of decomposition, pairwise
coupling proposed by Hastie and Tibshirani (1998) is one
of the best known. In general, its principle is to separate
each pair of classes ignoring the remaining ones. In this
way a number of binary classifiers are trained between all
possible pairs of classes. The multi-class problem with K
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classes creates K(K − 1)/2 binary sub-problems and the
corresponding binary classifiers.

Then all the objects represented by the feature
vectors are tested against these binary classifiers, and in
the next step a voting scheme is used. Friedman (1996)
proposed a max-voting scheme, which means that the
object with the maximum number of votes is classified as
the correct class. Hastie and Tibshirani (1998) suggested
that it can be improved by using pairwise class probability
estimates in a joint probability estimate for all classes.

A closer look at the pairwise strategy shows the
problem which impacts the final result of the combined
classifier. Each binary classifier votes for each object even
if it does not belong to one of the two classes which it
is trained on. So we use the class probability estimates
produced by this classifier even if the object belongs to
the class which the classifier is not aware of, i.e., objects
representing this class are not present in the training data
set of the classifier.
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This problem is addressed in our strategy. In our
solution, additional correcting classifiers are used to select
the objects which will be considered by the pairwise
classifiers. A similar solution was proposed by Moreira
and Mayoraz (1998), but they use classifiers which biased
according to the imbalance in the number of objects
representing the classes.

The proposed solution was tested on several
databases using two different classifiers. We employed
four real life databases: MNIST (modified NIST) (LeCun
et al., 2014), the Gesture database (Glomb et al.,
2011), Proteins (Ding and Dubchak, 2001), Gestures II
(database of 32 gestures created by the authors of this
paper) and six other databases from the UCI Machine
Learning Repository (UCIMLR, 2014). The obtained
results show that our strategy outperforms not only the
original pairwise coupling algorithm but also the solution
proposed by Moreira and Mayoraz (1998). The difference
is more significant when the number of classes in the
problem is growing.

2. Related work

There are many methods of decomposition of multi-class
problems into a set of the binary classification
problems such as the OVR (one-versus-rest) and OVO
(one-versus-one) strategies, DAG (directed acyclic graph)
and ADAG (adaptive directed acyclic graph) methods
(Platt et al., 2000; Kijsirikul and Ussivakul, 2002),
the BDT (binary decision tree) approach (Fei and
Liu, 2006), the DB2 method (Vural and Dy, 2004), PWC
(pairwise coupling) (Hastie and Tibshirani, 1998) or
ECOCs (error-correcting output codes) (Dietterich and
Bakiri, 1995).

Additionally, some interesting reviews considering
this topic can be found in the works of Lorena et al. (2008)
or Krzysko and Wolynski (2009). We can also look at
the problem of decomposition from the efficiency point
of view (Chmielnicki et al., 2012), or we can investigate
how the problem properties can be employed for the
construction of the decomposition scheme (Lorena and
Carvalho, 2010).

Another approach based on an ensemble of binary
predictors is presented by Galar et al. (2011). This
paper provides a study on the one-versus-one and
one-versus-rest methods, with special attention on the
final step of the ensembles; the combination of the outputs
of the binary classifiers. The dynamic classifier selection
strategy for the one-versus-one scheme that tries to avoid
non-competent classifiers is addressed by Galar et al.
(2013).

Worth mentioning is also the one class classifiers
(OCC) approach. For example, we can propose
building an ensemble of one-class classifiers based on the
clustering of the target class (Krawczyk et al., 2014). The

main advantage of such a method is that the combined
classifiers trained on the basis of clusters allow us to
exploit individual classifier strengths.

One of the best known and widely used methods
of decomposition is one-versus-one strategy, where the
input vector x is presented to the binary classifiers trained
against each pair of the classes. We can assume that each
classifier discriminates between class ωi and class ωj and
computes the estimate p̂ij of the probability

pij = P (x ∈ ωi|x, x ∈ ωi ∪ ωj). (1)

Then the classification rule is defined as

arg max
1≤i≤K

∑

j �=i

I(p̂ij), (2)

where K is the number of the classes and I(p̂ij) is defined
as

I(p̂ij) =

{
1, p̂ij > 0.5,

0, otherwise.
(3)

This approach was proposed by Friedman (1996) and
we call it the max-voting scheme. Another approach
was suggested by Hastie and Tibshirani (1998) as well
as Moreira and Mayoraz (1998). We can take into
consideration that the outputs p̂ij of the binary classifiers
represent the class probabilities. Consequently, these
values can be used as the estimates p̂i of a posteriori
probabilities

pi = P (x ∈ ωi|x), (4)

Assuming that we have a square matrix K × K of p̂ij’s
for i, j = 1 . . .K and p̂ji = 1− p̂ij , we can calculate the
values of p̂i’s as

p̂i =
2

K(K − 1)

∑

j �=i

σ(p̂ij), (5)

for i = 1, . . . ,K , and then we can use the classification
rule

arg max
1≤i≤K

p̂i, (6)

where σ takes the form a threshold function at 0.5 for
the max-voting scheme and the identity function for the
solution proposed by Hastie and Tibshirani (1998). Some
other σ functions are considered by Moreira and Mayoraz
(1998).

If we look closer at the PWC decomposition scheme,
we will see that in all approaches we are using values
of σ(p̂ij) for a given vector x which belongs neither to
the class ωi nor to ωj . Looking at (5), we see that the
estimation of pi takes into account all classifiers even if
they are not trained on the samples of the class to which x
belongs to.

For example, let us consider the classifier which
has been trained on the samples of ωi and ωj classes.
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Accordingly, if x belongs to some other class (let us
say, k, k �= i and k �= j), then p̂ik and p̂kj are
completely irrelevant because the referred classifier has
no competence to deal with the class ωk. There were no
samples of the class ωk in its training data set.

A procedure to overcome this problem was proposed
by Moreira and Mayoraz (1998), which consists in
training additional correcting classifiers separating the
classes i and j from all the other classes. These classifiers
produce the outputs q̂ij , which provide us with an estimate
of the probability that sample x belongs to the class i or
to the class j. Therefore, we can modify (5), which now
becomes

p̃i =
2

K(K − 1)

∑

j �=i

σ(p̂ij)q̂ij . (7)

The use of these classifiers should cause that the
incompetent classifiers have no significance and improve
the quality of the estimation p̂i. Another approach to
correcting classifiers using the weights (produced by a
different classifier) was proposed by Chmielnicki and
Stąpor (2010). We can also consider the neighborhood of
each instance to decide whether a classifier is competent
or not (Galar et al., 2013).

Moreira and Mayoraz (1998) proved that the
correcting procedure they proposed is able to improve
the performance of the decomposition scheme. However,
this improvement is achieved at the cost of having twice
as many classifiers as in the standard PWC algorithm,
because we need one correcting classifier for each pair of
the classes. The authors point out that this problem can
be eased by distributing these classifiers, especially using
multi-core and multi-processor machines.

They compared PWC methods using different σ
functions with PWC-CC methods including correcting
classifiers on several databases. The results show that
this solution decreased misclassification errors on all the
tested data sets.

3. Comparison of the OVO and OVR
methods

Pairwise coupling is using the OVO (one-versus-one)
strategy employing binary classifiers between each pair
of the classes. The correcting classifiers introduced
by Moreira and Mayoraz (1998) use the OVR
(one-versus-rest) strategy. Both the strategies have
their advantages and disadvantages which may impact the
final result of the combined classifier. The strategies will
be shortly discussed in this section.

When we use the OVO strategy, we have to train a set
of K(K−1)/2 binary classifiers between each pair of the
classes. Then all the samples representing all classes are
tested against these classifiers which vote for each sample.

This brings us to the problem of incompetent classifiers
and votes that should be ignored, which was mentioned in
the previous section.

This problem is clearly visible in Fig. 1. The 2 vs 8
classifier is used to test the samples of all classes from 0 to
9. We can see, for example, that all the samples of class 4
are classified as class 2. On the other hand, some samples
of class 6 are classified as class 8 but some other as class
2, which is even worse especially when we are using the
max-voting scheme.

Another problem can be seen when the number
of classes increases. The number of binary classifiers
rises quadratically and all the samples have to be tested
against each classifier during the testing phase. For
example, 1000 classes mean about half a million of binary
classifiers. There are several methods to deal with the
issue. Some solutions addressing this problem were
proposed by Chmielnicki and Stąpor (2012).

The OVR strategy uses samples of all the classes to
train each binary classifier. However, the samples from
one distinguished class are treated as the class one, ω1,
and all the other samples are considered to belong to
the class rest, ωr. When we are using the Moreira and
Mayoraz correcting classifiers, we treat the samples from
the two classes i and j as the class ω1 and all the others as
the class ωr.

Compared with the OVO strategy, the number of
binary classifiers which we have to train is quite small.
We need K binary classifiers only, and we see that this
number increases linearly with the number of classes. We
should also notice that we have many more samples in the
training data set at the training phase, especially when the
number of classes is large. This can impact the training
time. However, usually the time of the training phase is
much less important that the time of the testing phase.

When the number of classes increases, yet another
problem can be seen. As has been stated earlier in this

Fig. 1. One-versus-one approach.
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Fig. 2. One-versus-rest approach.

section, almost all the samples representing the classes
except the one distinguished class are treated as one
big class. This causes the problem of overrepresenting
the rest class. Therefore, the result of these binary
classifiers could be very biased. For example, if we have
1000 classes and the classes are represented by the same
number of samples, then we will have 999 times more
samples of the rest class than the samples of the one
class. In this problem, if a learning algorithm classifies
all the samples as the majority class, it achieves a very
high recognition ratio, i.e., 99.9%.

We can see this problem in Fig. 2. Three samples
of the 7 class were misclassified because the class rest is
overrepresented. When the number of classes increases,
the problem is much worse.

The issue mentioned above is widely known and was
addressed in several papers (e.g., Chawla et al., 2002;
Liu et al., 2008; He and Garcia, 2009; Cateni et al.,
2014; Beyan and Fisher, 2015). Generally, there are two
popular methods dealing with class-imbalance problems:
over-sampling the minority class and under-sampling the
majority class.

In the former approach we create “synthetic” samples
representing the minority class or we duplicate real data
entries. Under-sampling is a method which uses only
a subset of samples from the majority class. The main
deficiency of this approach is that many majority class
samples are ignored.

4. Proposed method

As we stated in the previous section, one of the
weaknesses of the Moreira and Mayoraz approach is the
number of correcting classifiers. Another weakness can
be noticed when we look at Fig. 3. We use the OVR
scheme for every possible class, treating samples from
two different classes as samples of the same class. If the
classes are similar, the results can be quite good (see the

classifier 4,5 vs rest in Fig. 3 but we are training correcting
classifiers for all possible pair of classes. For example,
if we look at 0,7 vs rest classifier, the results are not so
encouraging.

We can notice that instead of using 0,7 vs rest we can
use the 0 vs rest and 7 vs rest classifiers. The results of
these classifiers will be usually much better. However, we
need the values of q̂ij to evaluate (7). We can obtain these
values as

q̃ij = max(p̃i, p̃j), (8)

where p̃i and p̃j are the estimates that the sample x
belongs the to the class i or the class j, respectively.

This approach decreases the number of correcting
classifiers needed from K(K − 1)/2 to K and we do
not mix samples from two different classes into one. Of
course, the problem of the overrepresenting one class in
the OVR strategy is even more visible in this solution, but
we will try to deal with it in the next step.

The main problem visible in the solution proposed
by Moreira and Mayoraz (1992) is that the number of
samples of the one class is much smaller than that of
samples of the class rest. It will be even more serious
if we use the solution proposed in our paper. Moreover,
the problem is more and more visible when the number
of classes grows. As a consequence, the result of the
correcting classifier can be very biased.

The problem with the imbalance of the number
of samples representing classes is visible in many
applications. It has been discussed by many authors (one
of the interesting works is that of He and Garcia (2009)).
It usually occurs when we have more samples of one class
than of the others. In such cases, classifiers tend to be
overwhelmed by the large class and ignore the small one.
They tend to produce high predictive accuracy for the
majority class but poor accuracy for the minority class.

A number of solutions to class-imbalance problems
have been proposed both at the data and algorithmic

Fig. 3. Correcting classifiers.
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levels. As we mentioned in the previous section, two
of them: over and under-sampling are most popular.
However, over-sampling increases the training data set
size and thus requires longer training time. Furthermore,
it tends to lead to overfitting since it repeats minority
class samples (Chawla et al., 2002). Consequently, in
our solution we focus on the method which is a kind of
under-sampling.

In our first approach to the problem we suggest to
use the subset of the rest data set by sampling the whole
set to balance the number of samples in one set None and
in the rest set Nrest, see Fig. 4. However, this solution
will not work well because of the random choice of the
samples. Consequently, to improve the solution, we can
use the method resembling bagging (Breiman, 1996). We
can draw M different data subsets from the rest data set.
Then we can use the average result from the M classifiers
which have been taught on these training data subsets, i.e.,

q̂i =
1

M

M∑

j=1

q̂ij . (9)

A weak point of this procedure is that the samples of
some classes will not be present in some rest data subsets.
There is even a possibility that some particular rest data
subset will be constituted from samples of one class only.
The problem is more visible when None ≤ K . This
will impact the result of such a classifier. To avoid this
situation, we can change the drawing procedure to look
for classes with the same numbers.

Algorithm 1. Building the rest data subset.
Require: None, rest_dataset

1: rest_subset := ∅
2: while (None > 0) do
3: sample, class := GetSample(rest_dataset)
4: if not IsPresent(class, rest_subset) then
5: None := None − 1
6: rest_subset := rest_subset + sample
7: end if
8: end while
9: return rest_subset

The procedure of building the rest data subset is
described in Algorithm 1. Once more, observe that when
None > K we have to change the IsPresent function. Now,
for the first K samples it should check if the sample of the
class class is present in rest_subset, but for the next K it
should check if the sample of the class class is represented
in rest_subset at least once and so on.

However, if None < K , then even using the
procedure described in Algorithm 1 we cannot avoid
the situation that there are some classes which are not
represented in the rest data subset. To solve this problem,
we allow a small imbalance between the number of

samples for the sake of representing of all the classes
in the rest data subset. In our experiments we used the
formula below to set the number of samples in the rest
data subset,

Nrest = min{2(K − 1), None}, (10)

where Nrest is the number of samples in the rest data
subset, None is the number of samples representing one
class and K is the number of all classes. This guarantees
us that at least two samples of each class are present in the
training set for the rest class.

The above formula offers some trade-off between
balancing the data sets and the problem that every class
should be represented in the training data set. As we can
see in Fig. 5, the results using this strategy overcome the
two others.

All the correcting classifiers produce the values of
the probabilities q̂ij used in (7). Evaluating this formula
requires testing every sample against each of the K(K −
1)/2 OVO classifiers to get the values of p̂ij . It is a very

Fig. 4. Approach with strict balancing.

Fig. 5. Approach with soft balancing.
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expensive operation, especially if the number of classes is
very large.

It can be easily noticed that some of the probabilities
q̂ij are quite small, so it makes no sense to test a sample
with a small value of q̂ij . By introducing a threshold for
the value of q̂ij , we can speed up our algorithm. In our
experiments we tested the samples with q̂ij > 0.25 only,
and the result of the final classifier did not change.

Further experiments can be carried out to test how
the value of this threshold impacts both classifier speed
and accuracy. We can see that for the maximum sensible
value of the threshold q̂ij ≥ 0.5 we have to test 2N/K
samples in the most optimistic case (assuming that every
class is represented by the same number of samples and
that each of the OVR classifiers has 100% accuracy).

5. Results of the experiments

Several experiments were conducted to test the proposed
methods. Two different classifiers were used: the
support vector machine (SVM), which represents the
generative approach to the classification task, and linear
discrimination analysis (LDA), which is a discriminative
classifier. We used these classifiers because we wanted
to check if our solution could be applied with these
two kinds of approaches. The characteristics of these
classifiers differ in several respects. For a more detailed
discussion, see the work of Liu and Fujisava (2005).
Both the classifiers are briefly described in the following
paragraphs.

The support vector machine is a well-known large
margin classifier proposed by Vapnik (1995). The basic
concept behind the SVM classifier is to find an optimal
separating hyperplane, which separates two classes. The
decision function of the binary SVM is

f(x) = sign
( N∑

i=1

αiyiK(xi, x) + b
)
, (11)

where 0 ≤ αi ≤ C, i = 1, 2, . . . , N , are nonnegative
Lagrange multipliers, C is a cost parameter which
controls the trade-off between allowing training errors
and forcing rigid margins, xi are the support vectors and
K(xi, x) is the kernel function.

Quadratic discriminant analysis (QDA) models the
likelihood of a class as a Gaussian distribution and then
uses the posterior distributions to estimate the class for a
given test vector. This approach leads to the discriminant
function

dk(x) = (x−μk)
TΣ−1

k (x−μk)+ln |Σk|−2 lnπk , (12)

where x is the test vector, μk is the mean vector, Σk the
covariance matrix and pk is the prior probability of the
class k. The Gaussian parameters for each class can be
estimated from the training data set, so the values of Σk

and μk are replaced in the formula (12) by its estimates
Σ̂k and μ̂k.

However, when the number of training samples N
is small compared with the number of dimensions of the
training vector, the covariance estimation can be ill-posed.
The approach to resolve the ill-posed estimation is to
replace Σ̂k by the pooled covariance matrix, i.e.,

Σ̂ =
1

N −K

K∑

k=1

∑

yi=k

(xi − μ̂k)(xi − μ̂k)
T , (13)

which brings us to linear discriminant analysis with the
decision function as

dk(x) = xT Σ̂−1μ̂k − 1

2
μ̂T
k Σ̂

−1μ̂k + lnπk. (14)

We have to employ several databases with different
characteristics to test our solution. Some of the databases
can be found in the UCI Machine Learning Repository
(UCIMLR, 2014). We also used the databases MNIST
and Gestures, created at the Institute of Theoretical and
Applied Informatics of the Polish Academy of Sciences
(Glomb et al., 2011). The databases Leafs II and Leafs
III are in fact the same database but used with different
feature vectors (based on shapes—Leafs II, and based on
margins—Leafs III). In Table 1 we show the number of
classes and the size of the feature vector for all databases
used.

Table 1. Databases used in the experiments.
Name Classes Samples Features

MNIST 10 70 000 102
Activities 19 9 120 45
Gestures 22 1 320 256
ISOLET 26 7 797 617
Proteins 27 698 126

Gestures II 32 640 512
Leafs 36 340 13
ACRS 50 1 500 10 000

AusLan 95 2565 88
Leafs II 100 1 600 64
Leafs III 100 1 600 64

On each database, four algorithms were tested,
i.e., one-versus-one (OVO), pairwise coupling (PWC),
pairwise coupling with corrected classifiers (PWC-CC),
proposed by Moreira and Mayoraz (1998), and our
algorithm—pairwise coupling with samples balancing
(PWC-B). All these algorithms were tested using the SVM
and LDA classifiers. The results (the average recognition
ratios from the k-crossvalidation procedure) are presented
in Tables 2 and 3.

The LDA classifier was implemented by the authors.
The implementation of the SVM classifier used in the
experiments is from the work of Chang and Lin (2001).
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Figure 6 shows the results obtained by the correcting
classifiers using different methods of balancing. The first
method, Random, just draws None samples from the rest
data set. In the next approach, RCB (random with class
balancing), we use the class aware method described
in the Algorithm 1, and finally we apply our ultimate
solution, M-RCB (modified random with class balancing)
to ensure that at least two samples of each class are present
in the rest data set.

Fig. 6. Correlation between accuracy and M—the number of
data subsets.

In our solution we propose three random procedures
to balance the number of samples in the one and the rest
data sets, which should improve the recognition ratios
achieved by the correcting classifiers. We also use a
procedure of selecting M data subsets from the rest data
set to obtain better results. The relationship between the
number of data subsets M and the average recognition
ratio obtained by binary classifiers is presented in Fig. 6.

We can notice from the figure that the accuracy is
not monotone increasing when the number of subsets is
growing. This is not surprising because we are using a
randomized procedure to generate the rest data subsets.
Some of these data sets are very poor. For example, we
can imagine the situation when we draw to the rest data
set samples representing one class only.

However, when we are using the RCB method,
this situation is not possible but still we may obtain
the rest data subset, which does not contain any sample
representing one or more classes. This problem is even
more visible when the number of classes is large and the
number of samples representing each class is small (it
always happens when None < K).

Finally, the last approach, M-RCB, guarantees that
all the classes are represented at the cost of having a
slightly imbalanced data sets. We see that this approach
gives us the best accuracy but also the accuracy, is
increasing with the number of the generated data subsets.

In our experiments we just start from training M×K
binary correcting classifiers, and then we calculate q̂ij
probabilities for each sample from the testing data set.
Finally, we apply the standard PWC algorithm using these
probabilities, but each OVO classifier is running only
against samples which have q̂ij > 0.25.

The procedure of k-crossvalidation was used to avoid
biased results. We use k = 10 in our experiments. Only
the average value of the k-crossvalidation is shown in
the tables. We can observe that our solution overcomes
all other algorithms on all databases no matter which
classifier is used. Only the results obtained on the MNIST
database are almost the same.

The results of the PWC-B algorithm are better than
those of PWC by 1.2 to 2.5% for the LDA classifier and by
0.7 to 2.6 for the SVM classifier (we neglect the results for
the MNIST database, which will be discussed later in the
next section). When we compare the results of the PWC-B
versus the PWC-CC algorithm, we obtain 0.6 to 3.1 and
0.5 to 3.2, respectively. The question is if this difference
is statistically significant.

There are many methods described in the literature
which deal with the comparison of classfiers, starting
from the most cited (Dietterich, 1998), recommending the
5 × 2cv t-test, while Nadeau and Bengio (2003) propose
the corrected resampled t-test that adjusts the variance

Table 2. Results using the LDA classifier.
DB name OVO PWC PWC-CC PWC-B

MNIST 98.7% 98.8% 98.7% 98.8%
Activities 92.2% 93.5% 93.9% 94.8%
Gestures 86.2% 86.5% 87.1% 87.7%
ISOLET 94.1% 94.2% 94.6% 96.0%
Proteins 56.1% 56.3% 56.5% 58.1%

Gestures II 58.4% 59.5% 59.5% 60.9%
Leafs 75.2% 76.1% 76.0% 78.6%
ACRS 65.4% 65.7% 65.5% 67.7%

AusLan 85.2% 85.8% 86.3% 88.4%
Leafs II 69.1% 71.2% 70.7% 73.4%
Leafs III 84.5% 85.7% 85.0% 88.1%

Table 3. Results of testing the accuracy of the SVM classifier.
DB name OVO PWC PWC-CC PWC-B

MNIST 99.0% 99.1% 99.1% 99.1%
Activities 95.1% 95.8% 96.2% 96.9%
Gestures 81.2% 81.8% 82.1% 82.9%
ISOLET 96.3% 96.4% 96.6% 97.1%
Proteins 57.2% 58.0% 57.9% 58.9%

Gestures II 60.2% 60.5% 60.3% 61.7%
Leafs 79.1% 79.5% 79.4% 80.7%
ACRS 73.4% 73.7% 73.1% 75.6%

AusLan 87.2% 87.4% 87.7% 90.5%
Leafs II 72.6% 74.5% 74.2% 76.9%
Leafs III 85.6% 86.4% 85.8% 89.0%
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Fig. 7. Results obtained using the LDA classifier.

based on the overlaps between subsets of examples.
However, the most comprehensive study on this subject
was prepared by Demsar (2006). He recommended to use
the Wilcoxon (1945) signed-ranks test for comparisons of
two classifiers.

We tested PWC-B versus the original PWC
algorithm and PWC-B versus PWC-CC using the
Wilcoxon signed-ranks test. The results show that in
both cases the difference is statistically significant at the
significance level equal to 0.05.

Additionally, in the next section, we present a more
detailed comparison of the proposed classifiers using the
Iman and Davenport test with the Nemenyi post hoc
analysis.

6. Statistical comparison of the classifiers

As the last step of our experiments, we test the null
hypothesis that all tested classifiers (i.e., PWC-B, PWC,
PWC-CC and OVO) perform the same and the observed

Fig. 8. Results obtained using the SVM classifier.

differences are merely random. We used the Iman and
Davenport test (Iman and Davenport, 1980), which is a
nonparametric equivalent of ANOVA.

Let Rij be the rank of the j-th of K classifiers on the
i-th of N data sets. The test compares the mean ranks of
the classifiers and it is based on the statistic

Ff =
(N − 1)χ2

f

N(K − 1)− χ2
f

, (15)

where

χ2
f =

12N

K(K + 1)

K∑

i=1

R2
i − 3N(K + 1) (16)

is the Friedman statistic which is distributed according to
the F distribution with K−1 and (K−1)(N−1) degrees
of freedom and

Ri =
1

N

N∑

i=1

Rij . (17)

In our case, the p-value of the test statistic is equal to
p = 9.9366×10−12 for SVM classifiers and p = 1.9462×
10−13 for LDA classifiers. We see that the null hypothesis
that all classifiers give the same results is rejected (as the
p-value is less than the significance level).

Hence in the next step we can use the Nemenyi
post hoc test (Nemenyi, 1963), in which all classifiers
are compared to each other. The performance of two
classifiers is significantly different at the significance level
α if the corresponding average ranks differ by at least the
critical difference (CD):

|Ri −Rj | > CD = q(α,K,∞)
(K(K + 1)

12N

)1/2

, (18)

where i = 1, . . .K − 1, j = i + 1, . . . ,K , and where the
critical values of q(α,K,∞) are based on the Studentized
range statistic and can be found, for example, in the work
of Hollander and Wolfe (1973).

In our cases, for α = 0.1, K = 4, N = 11, the
right-hand side of the inequality (18), i.e., the critical
distance CD, is equal to 1.3. The results of the multiple
comparisons are presented graphically for SVM and LDA
in Figs. 9 and 10, respectively.

Those classifiers connected by a vertical line have
average ranks that are not significantly different from each
other. Those groups are identified using the average rank
of a model ± the critical distance.

The mean ranks of the model for the classifiers
PWC-B, PWC, PWC-CC, OVO are

3.9091, 2.3636, 2.6364, 1.0909 for SVM,
3.9545, 2.4545, 2.5455, 1.0455 for LDA.

(Classifiers are listed in accordance with their ranking.)
We obtained three disjoint, homogenous groups of
classifiers (Figs. 9 and 10):
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PWC-B, (PWC, PWC-CC), OVO.

We see that the best classifier is contained in the first
group, which is composed of only one classifier, the
PWC-B one.

7. Conclusions

The problem with imbalanced data sets is intrinsic when
we are using the one-versus-rest approach. Moreover,
it grows with the number of classes used. It impacts
the results of correcting classifiers and therefore the final
result of the experiment. In the first step we proposed the
method (a kind of under-sampling) which requires that the
numbers of the classes be the same in the one and the rest
data sets, which improves the result but causes another

Fig. 9. Comparison of all SVM classifiers against each other
with the Nemenyi test. Groups of classifiers that are not
significantly different (at α = 0.1) are connected.

Fig. 10. Comparison of all LDA classifiers against each other
with the Nemenyi test. Groups of classifiers that are
not significantly different (at α = 0.1) are connected.

problem, with some classes being not represented in the
rest data set.

Therefore, in the next step we suggest to introduce
some trade-off between balancing data sets and the
goal that all the classes should be represented in the
rest data set. This solution was tested against several
databases. These represent various domains of science
and technology and as we can see from Table 1 they
have very different characteristics. This means they have
different numbers of classes, and samples, and different
sizes of feature vectors.

The results obtained from the experiments are
encouraging. They show that our algorithm overcomes the
other ones almost on all tested databases. Only the results
on the MNIST database are the same. This database
consists of 10 classes only, which means that the problem
of the imbalanced data sets is almost not visible in this
case. Additionally, our solution addresses the problem of
incompetent binary classifiers used in the PWC algorithm.
The problem which is almost not seen in this particular
database is that binary classifiers obtain recognition ratios
over 99.6%.

The results and the analysis of the proposed method
suggest that it should perform better as the number of
classes is increasing, which means that the problem of
imbalanced data sets is also more serious. Considering the
fact that the average number of classes in the databases
from the UCI Machine Learning Repository increases
from 5.6 in the years 1988–1992 to 35.3 in the years
2008–2012, this is a very important result.

Obviously, we lose some effectiveness due to the
usage of correcting classifiers, but we neutralize this effect
using a threshold based on q̂ij values, reducing the number
of samples we have to test against each from K(K−1)/2
OVO binary classifiers. The experiments show that the
proposed solution is as efficient as the original PWC
method.

Some future experiments in this area may be
interesting in two different aspects. We can consider
how much the rest data set might be imbalanced to get
better accuracy and what threshold value for correcting
classifiers should be used to improve the speed of the
combined algorithm without losing accuracy.
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Chmielnicki, W. and Stąpor, K. (2010). Protein fold recognition
with combined SVM-RDA classifier, in M.G. Romay and
E. Corchado (Eds.), Hybrid Artificial Intelligence Sys-
tems, Lecture Notes in Artificial Intelligence, Vol. 6076,
Springer, Berlin, pp. 162–169.
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