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In this paper, control-oriented modeling approaches are presented for distributed parameter systems. These systems, which
are in the focus of this contribution, are assumed to be described by suitable partial differential equations. They arise
naturally during the modeling of dynamic heat transfer processes. The presented approaches aim at developing finite-
dimensional system descriptions for the design of various open-loop, closed-loop, and optimal control strategies as well
as state, disturbance, and parameter estimation techniques. Here, the modeling is based on the method of integrodifferen-
tial relations, which can be employed to determine accurate, finite-dimensional sets of state equations by using projection
techniques. These lead to a finite element representation of the distributed parameter system. Where applicable, these fi-
nite element models are combined with finite volume representations to describe storage variables that are—with good
accuracy—homogeneous over sufficiently large space domains. The advantage of this combination is keeping the compu-
tational complexity as low as possible. Under these prerequisites, real-time applicable control algorithms are derived and
validated via simulation and experiment for a laboratory-scale heat transfer system at the Chair of Mechatronics at the
University of Rostock. This benchmark system consists of a metallic rod that is equipped with a finite number of Peltier
elements which are used either as distributed control inputs, allowing active cooling and heating, or as spatially distributed
disturbance inputs.

Keywords: heat transfer, predictive control, optimal control, state and disturbance estimation, distributed parameter sys-
tems, sensitivity analysis.

1. Introduction

In recent years, the modeling of systems with
spatiotemporal dynamics and the design of optimal
and adaptive control strategies for such systems have
been studied actively. These systems are part of many
applications in science and engineering, involving
processes such as heat transfer, diffusion, and convection.
In the following, a brief overview of related research
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is given which deals with different methodologies for
modeling as well as feedforward, feedback, and optimal
control for distributed parameter systems (Rauh et
al., 2012b; Saurin et al., 2012).

The theoretical foundation for optimal control
problems with linear partial differential equations (PDEs)
and convex functionals was established by Lions (1971).
In the work of Tao (2003), efficient adaptive control
approaches, including model reference adaptive control,
adaptive pole placement, and adaptive backstepping,
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were presented and analyzed. The book of Krstic
and Smyshlyaev (2010) introduces a comprehensive
methodology for adaptive control of parabolic PDEs
with unknown functional parameters, including
reaction-convection-diffusion systems ubiquitous in
chemical, thermal, biomedical, aerospace, and energy
systems.

If the derivation of real-time capable control
strategies is of interest, two fundamentally different
approaches can be distinguished (see Deutscher and
Harkort, 2008; 2010). In late lumping procedures,
infinite-dimensional control strategies are developed
which are approximated by (finite-dimensional) series
representations at the latest possible design stages to
obtain procedures that have sufficiently low numerical
complexity. As modeling and control design are strongly
interwoven in these approaches, they are often restricted
to special input/output configurations (Kharitonov and
Sawodny, 2006; Meurer and Zeitz, 2003; Winkler and
Lohmann, 2009; Meurer and Kugi, 2009).

This is due to the fact that special system properties
such as differential flatness or linearity assumptions
are advantageously exploited in many research articles
(Malchow and Sawodny, 2011; Utz et al., 2011;
Thull et al., 2010; Touré and Rudolph, 2002; Gehring
et al., 2012; Bachmayer et al., 2011). Moreover, these
restrictions also involve assumptions on the structure of
boundary conditions which are not always fulfilled in
practice. Hence, alternative early lumping approaches are
often more flexible if a finite-dimensional approximation
of models with spatiotemporal dynamics is of interest.
This is especially true if real-time applicable control
techniques are developed.

Classical early lumping approaches make use of
finite volume, finite element or finite difference schemes
to reduce the original initial-boundary value problem to a
system of ordinary differential equations (ODEs) or—if
the model was discretized in both space and time—to
systems of algebraic equations. However, the drawback
of many classical early lumping techniques is the fact
that they do not allow a rigorous quantification of the
resulting approximation quality. Therefore, the method of
integrodifferential relations (MIDR) has been proposed by
the authors to obtain finite-dimensional system models
for control purposes with an approximation quality that
can be quantified by (energy-related) error measures.
For example, in the work of Kostin and Saurin (2006)
this method was employed for optimal control design
of elastic beam motions, while a variational principle
has been applied by Aschemann et al. (2010) on the
basis of an MIDR formulation for a parabolic PDE.
This latter system describes an application from the field
of heat transfer for which accurate trajectory tracking
is the main control objective. Moreover, a projection
approach, which is also based on the MIDR, has

been developed by Rauh et al. (2010) for the same
application. Both of these publications are the basis for the
experimental case study for a spatially one-dimensional
heat transfer process in this paper. For further information
concerning the theoretical background of the MIDR, see
the work of Kostin and Saurin (2012). Possible extensions
of this approach to a problem-oriented modeling of
higher-dimensional applications can be found in the
works of Rauh et al. (2013b) and Kersten et al. (2014).
Additionally, strategies for a order reduction—aiming
at real-time applicability of the finite element model in
control and state estimation—are described exemplarily
by Rauh et al. (2015).

In this paper, a projection formulation of the
MIDR is combined with a finite element modeling
scheme to describe the space and time dependency
of the temperature distribution in rod-like structures;
cf. Section 2. These system models are combined
with finite volume representations—assuming piecewise
homogeneous distributions of the temperature over
finitely large domains—to account for disturbances that
are caused by convective heat transfer as soon as the
ambient temperature is subject to variations. With the
help of these models, predictive and optimal control
strategies are developed and implemented experimentally
for the before-mentioned rod-like distributed heating
system. As shown by Saurin et al. (2011a; 2011b), the
problem of tracking control can be solved efficiently
by combining adaptive control approaches with the
MIDR if non-negligible external disturbances or uncertain
parameters influence the system behavior. To make the
developed control procedures robust against measurement
noise and external disturbances, an online applicable
state and disturbance observer is described in Section 3.
Here, typical disturbances are variations of the ambient
temperature and non-modeled external heat flows. This
estimation approach is validated experimentally for
real-time implementation of an optimal controller (Rauh
et al., 2012b). Finally, the observer-based control
architecture is extended in Section 4 to the design of a
predictive control strategy which has proven its efficiency
in cases in which the system becomes non-linear due to
the mass flow dependency of coefficients for convective
heat transfer between the rod and the ambient medium.
Conclusions and an outlook on future research are given
in Section 5.

2. Application-oriented benchmark for
modeling distributed heating systems by
the method of integrodifferential
relations (MIDR)

In this paper, modeling procedures with a quantifiable
approximation accuracy are developed for distributed
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heating systems. These models are a prerequisite for
a reliable control of this kind of systems. The focus
of the presented modeling approaches is on spatially
one-dimensional scenarios. However, these models can be
generalized to higher-dimensional applications (see Rauh
et al., 2013b; Kersten et al., 2014). Note that the modeling
and control aspects in this paper are selected in such a way
that they allow highlighting all fundamental properties of
the MIDR procedure.

2.1. Spatially one-dimensional benchmark applica-
tion. In Fig. 1, the benchmark application used for
modeling as well as control and observer design is
depicted. It is a distributed heating system consisting of
a metallic rod that can be heated or cooled from below by
four independent Peltier elements. These Peltier elements
with the heat flows Q̇Hi, i ∈ {1, . . . , 4}, either serve as
distributed control or disturbance inputs. In addition, an
air canal is fixed to the top of the metallic rod which can
be used for active cooling. Besides the air mass flow, the
temperatures at the geometric midpoints of the four rod
segments (each using PT100 resistance sensors) and at
the midpoints of the air canal elements 5 and 8 (using
thermocouples) are measured.

With this setup, the following two control tasks can
be validated in experiments:

1. Tracking of a desired (or optimized) temperature
profile in one of the rod segments, where a single
Peltier element is used as a controlled heat source (input
variable). All other Peltier elements and the time-varying
temperature of the air canal are interpreted as a-priori
unknown disturbances that have to be compensated
efficiently by the controller; see Section 3.

2. Use of a fan with adjustable speed connected to the
air canal as the control input to prevent the violation of an
upper bound for the admissible temperature at the position
where the maximum rod temperature is expected. In this
case, all Peltier elements play the role of disturbance
inputs. The predictive control law should reduce the
fan speed as far as possible for operating conditions in
which the rod temperature falls below its threshold value.
Moreover, high frequency variations of the fan speed
should be avoided for the bounded air mass flow ṁ ∈
[0 kg/s, ṁmax]; see Section 4. Note that the location of
the maximum rod temperature has to be estimated in real
time by means of a suitable observer. This observer is
based on a suitable coupling of two dynamic models: (i)
the model for the temperature distribution in the rod and
(ii) the model for the temperature variation in the air canal.

Throughout this paper, the fixed system parameters
are given by the length l = 0.32m of the rod and air
canal (which are each subdivided into N = 4 segments

according to the locations of the Peltier elements), the
height hRE = 0.012m of the rod, its width bRE =
0.040m, the heat conductivity λR = 110W/(m ·K),
the height hAE = 0.015m, the convective heat transfer
coefficient αR = 50W/(m2 ·K) between the rod and the
air canal for ṁ = 0, the rod density ρR = 7800 kg/m3,
its specific heat capacity cR = 420 J/(kg ·K), and the
corresponding parameters ρA and cA of air.

2.2. Finite volume discretization. As shown in Fig. 1,
a basic finite-dimensional model can be derived if the
rod and the air canal are discretized into a finite number
of segments (Rauh et al., 2012c). If the number of rod
segments and the number of Peltier elements (N = 4)
are chosen equal, heat flow balances between directly
neighboring segments lead to a system of ODEs for the
rod temperatures,

ϑ̇1,FV = K1Q̇H1 − ϑ1,2
1 − ϑ1,8

2 ,

ϑ̇2,FV = K1Q̇H2 + ϑ1,2
1 − ϑ2,3

1 − ϑ2,7
2 ,

ϑ̇3,FV = K1Q̇H3 + ϑ2,3
1 − ϑ3,4

1 − ϑ3,6
2 ,

ϑ̇4,FV = K1Q̇H4 + ϑ3,4
1 − ϑ4,5

2 ,

(1)

and the air canal temperatures,

ϑ̇5,FV = ṁϑ6,5
3 − ϑ5,A

4 + ϑ4,5
5 ,

ϑ̇6,FV = ṁϑ7,6
3 − ϑ6,A

4 + ϑ3,6
5 ,

ϑ̇7,FV = ṁϑ8,7
3 − ϑ7,A

4 + ϑ2,7
5 ,

ϑ̇8,FV = ṁϑI,8
3 − ϑ8,A

4 + ϑ1,8
5

(2)

with the parameters

K1 =
1

ρRcRVRE
, p1 = K1

λRARC

lRE
,

p2 = K1αRARE , p3 =
1

ρAVAE
, (3)

p4 =
p3αAAAE

cA
, p5 =

p3αRARE

cA
,

and ϑj,k
i = pi · (ϑj,FV − ϑk,FV). In (1), (2), it is assumed

that all rod surfaces that are not in direct contact with
the air canal are adiabatically insulated. This information
serves as a virtual measurement that further becomes
relevant for the observer approaches in Section 3.

In the model (1), (2), heat conduction is taken into
account in the metallic rod (density ρR, heat capacity
cR) by the coefficient λR. Moreover, convective heat
transfer processes between the rod and the air canal,
as well as between the air canal and the ambient air
(coefficients αR and αA), are included in the ODEs (1)
and (2). Furthermore, the transport of air with the density
ρA and the specific heat capacity cA in the canal is
characterized by the mass flow ṁ. The finite volume
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Fig. 1. Experimental setup for the distributed heating system including all sensor locations (RE: rod element, RC: rod cross section,
AE: air canal element, FV: finite volume representation).

approximation (1), (2) accounts for the enthalpy flow of
air as a system input in the first terms of the ODEs for
the temperatures ϑ5,FV, . . . , ϑ8,FV with the air canal inlet
temperature ϑI = ϑI,FV, cf. Fig. 1 with a list of all further
parameters. Since l � hRE and l � bRE, system models
treating the position variable z as the only relevant space
coordinate are sufficiently accurate for control purposes.
These models neglect space dependencies in the x and
y coordinates, except for a step-like variation of the
temperature between the rod and the air canal.

All Peltier elements serve as distributed heat sources
with homogeneous heat flows Q̇Hi, i ∈ {1, . . . , 4},
along the i-th rod segment. In the experiments presented
in this paper, these heat flows are determined by
subsidiary control strategies which make use of a Peltier
element model relating the heat flows Q̇Hi to the
supply voltages provided by suitable power controllers.
According to Rauh and Aschemann (2012), the mass flow
dependency of all system parameters p1 = p1(ṁ), . . .,
p5 = p5(ṁ) has been identified experimentally for the
case of ṁ(t) > 0.

A drawback of this finite volume model is the rough
spatial resolution of the temperature distribution in the
metallic rod (leading to piecewise homogeneous values)
if the finite volume model is applied. For that reason,
the MIDR is introduced in the following subsection to
describe the rod temperature more accurately and to allow
a model-based detection of the rod position at which the
maximum temperature occurs.

2.3. Integrodifferential statement of the one-
dimensional heat transfer problem. The spatial
resolution of the approximation for the temperature
distribution in the metallic rod can be improved by
employing the MIDR system formulation. In this
case, the distributed parameter model for the spatially
one-dimensional heat transfer process is split up into a
constitutive relation and a corresponding energy balance.

The constitutive relation is the heat flux law
(Fourier’s law) coupling the heat flux density q(z, t) with

the temperature gradient in the interior of the metallic rod
according to

ξ
(
ϑ(z, t), q(z, t)

)
:= q(z, t) + λR

∂ϑ(z, t)

∂z
= 0. (4)

Basically, both the heat flux density q(z, t) and
the temperature distribution ϑ(z, t) are treated as the
exact values q∗(z, t) and ϑ∗(z, t) that arise in the
benchmark application. In contrast to the previous finite
volume model, it is assumed—for the derivation of the
MIDR—that the air mass flow ṁ = 0 and that the
temperature in the air canal is given by the corresponding
profile ϑAC(z, t).

The energy balance (first law of thermodynamics)
leads to the expression

∂q(z, t)

∂z
+ κ1

∂ϑ(z, t)

∂t
+ κ2ϑ(z, t) = μ(z, t). (5)

In (5), the parameters κ1 = ρRcR and κ2 = αRh
−1
RE

characterize the heat capacity and the heat transfer to
the air canal, respectively. The function μ(z, t), 0 ≤
z ≤ l, represents distributed control inputs as well as
disturbances along the length of the rod (both provided by
the Peltier elements). Moreover, it accounts for variations
of the air canal temperature ϑAC(z, t) in space and time.

In such a way, the function μ(z, t) can be stated as

μ(z, t) = μd(z, t) + μc(z, t) (6)

with μd(z, t) = adϑAC(z, t), ad = κ2, and

μc(z, t) =

N∑
i=1

ac,i(z)Q̇Hi(t), (7)

where

ac,i(z) =

⎧⎨
⎩

1

bRE hRE lRE
for zi−1 < z < zi ,

0 otherwise.
(8)

In (8), the positions z0, . . . , zN denote the edges of the
Peltier elements in the space direction z.



An integrodifferential approach to modeling, control, state estimation and optimization. . . 19

In terms of the heat flux density q(z, t), the boundary
conditions for the one-dimensional heat transfer process
are given by q(0, t) = q̄0(t) and q(l, t) = q̄l(t) at both
edges of the rod. In the case of an adiabatic insulation
of the rod at both ends z = 0 and z = l according
to Section 2.2, these generally time-dependent boundary
conditions simplify to q̄0(t) = 0 and q̄l(t) = 0. To make
the formulation of the initial-boundary value problem
complete, the initial temperature distribution in the rod has
to be specified according to

ϑ(z, 0) = ϑ̄0(z). (9)

Without any loss of generality, ϑ̄0(z) can be set equal
to the ambient temperature ϑA(t = 0) = ϑI(t = 0)
in all simulations and experiments (corresponding to an
initialization with the thermodynamic equilibrium).

Integrating (5) with respect to the coordinate z and
taking into account the boundary condition q(0, t) = q̄0(t)
lead to an explicit expression for the heat flux density

q(z, t) = q̄0(t)

+

∫ z

0

[
μ(x, t) − κ1

∂ϑ(x, t)

∂t
− κ2ϑ(x, t)

]
dx .

(10)

Then, the second boundary condition q(l, t) = q̄l(t) is
included in a linear integrodifferential equation according
to

∫ l

0

[
κ1

∂ϑ(x, t)

∂t
+ κ2ϑ(x, t)

]
dx

=

∫ l

0

μ(x, t)dx + q̄0(t)− q̄l(t) .

(11)

Using the expression (10) for the heat flux density
q(z, t), the constitutive relation (4) can be rewritten as

ξ(z, t, ϑ) := λR
∂ϑ(z, t)

∂z

+

∫ z

0

[
μ(x, t)− κ1

∂ϑ(x, t)

∂t
− κ2ϑ(x, t)

]
dx

+ q̄0(t) = 0 . (12)

To solve the corresponding initial-boundary value
problem (9), (11), (12), the MIDR is applied in which the
constitutive relation (12) is replaced according to Rauh et
al. (2012b) by the integral relation

Φ(ϑ) =

∫ tf

0

∫ l

0

ϕ(z, t, ϑ) dz dt = 0 (13)

with ϕ(z, t, ϑ) := ξ2(z, t, ϑ). In (13), the interval [0, tf ]
denotes the time horizon over which the process is
considered with the given terminal instant tf .

Thus, the initial-boundary value problem can be
reformulated: Find a temperature distribution ϑ∗(z, t) that

obeys the initial condition ϑ(z, 0) = ϑ̄0(z) according
to (9) as well as the boundary conditions q̄0(t) and q̄l(t)
and simultaneously satisfies the integral relation (13).

Since it is not always possible to solve the
integrodifferential formulation of the boundary value
problem exactly, approximations ϑ̃(z, t) to the true
temperature distribution ϑ(z, t) = ϑ∗(z, t) are determined
in the following. In this case, the integrodifferential
formulation provides the possibility to estimate the quality
of ϑ̃(z, t).

As the integrand ϕ(z, t, ϑ) in (13) is guaranteed
to be non-negative, the integral Φ̃ = Φ(ϑ̃) is always
non-negative and reaches its absolute minimum Φ =
0 solely on the exact solution ϑ(z, t) ≡ ϑ∗(z, t)
(see Aschemann et al., 2010). This holds for any
admissible temperature distribution ϑ̃(z, t) satisfying
the initial conditions, boundary conditions as well
as the energy conservation law. Therefore, the value
Φ̃ = Φ(ϑ̃) �= 0 defined according to (13) serves as a
measure for the integral quality of the approximate
solution ϑ̃(z, t). Additionally, the integrand ϕ(z, t, ϑ̃)
shows the local error distribution in both space and time.

Note that the dimensionless ratio

Δ =
Φ̃

Ψ̃
, Ψ̃ =

∫ tf

0

∫ l

0

(
λR

∂ϑ̃(z, t)

∂z

)2

dz dt (14)

can be used as the relative integral error of any
admissible temperature field. In (14), the dimensionless
error measure is defined as the ratio between the
integral square error in the approximation of the heat
flux density and the corresponding square value of this
approximation. A suitable approximation ϑ̃(z, t) can
be determined by either directly minimizing the term
Δ or by minimizing the corresponding numerator Φ̃.
This leads to the variational problem formulation given
by Saurin et al. (2011b). Leaving out the time integral
in (13) corresponds to the optimization-based solution
described by Rauh et al. (2012b). Alternatively, the
following projection scheme can be employed. For all
three options (namely, the projection, variational, and
optimization-based formulations), combinations with a
finite element discretization of the temperature field are
reasonable to keep the approximations ϑ̃(z, t) as simple
as possible. Here, it is typically desired to find polynomial
approximations for the temperature distribution with the
smallest possible degree.

2.4. Projection approach for finite element mode-
ling. To determine the approximate solution ϑ̃(z, t) by
solving a set of ODEs that corresponds to a projection
formulation of the aforementioned integrodifferential
problem statement, it is assumed that the temperature
in the spatially one-dimensional heat transfer problem is
described by a piecewise polynomial approximation of the
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unknown temperature distribution ϑ∗(z, t), cf. (Rauh et
al., 2012b).

For that purpose, the rod length z ∈ [0, l] is divided
into N finite elements with z ∈ [zi−1, zi], i = 1, . . . , N ,
where 0 = z0 < z1 < . . . < zN−1 < zN = l are the
nodal coordinates. For the sake of simplicity, it is assumed
that the number of Peltier elements in Fig. 2 is equal to the
number N of finite elements.

Hence, the approximation ϑ̃(z, t) of the temperature
profile is defined by

ϑ̃(z, t) =
N∑
i=1

M∑
k=0

bi,k,M (z) · θi,k,M (t) ,

ϑ̃(z, t) = ϑi,FE(z, t) for z ∈ [zi−1, zi] ,

(15)

where θi,k,M (t) are unknown time-dependent coefficients
and M is the fixed polynomial degree of the functions
bi,k,M (z) with respect to the coordinate z. For numerical
reasons and to simplify the computation of the required
inter-element conditions, Bernstein polynomials

bi,k,M (z) =

{
bk,Mi (z) for z ∈ [zi−1, zi],

0 otherwise
(16)

of degree M are used instead of pure monomials zk

to approximate the temperature distribution in each rod
segment, where

bk,Mi (z) =

(
M

k

)(
z − zi−1

zi − zi−1

)k (
zi − z

zi − zi−1

)M−k

.

(17)
The continuity of the temperature distribution at the

common node zi between two directly neighboring finite
elements i and i+ 1 is guaranteed by the relation

θi,M,M (t) = θi+1,0,M (t). (18)

To simplify the notation, vectors

bi,M (z) =
[
bi,0,M (z) . . . bi,M,M (z)

]T
and

BM (z) =
[
bT1,M (z) . . . bTN,M (z)

]T
(19)

are introduced to denote all Bernstein polynomials of
order M for either one rod segment i or for the union of
all segments, respectively.1

Accordingly, the coefficient vectors

θi,M (t) =
[
θi,0,M (t) . . . θi,M,M (t)

]T
and

ΘM (t) =
[
θT
1,M (t) . . . θT

N,M (t)
]T

(20)

1To make the short-hand notation in (15) and (21) non-ambiguous,
bi,k,M (zi) = 0 is assumed for i ∈ {1, . . . , N − 1}.

are defined. Hence, ϑ̃(z, t) in (15) can be replaced with

ϑ̃(z, t) =

N∑
i=1

θT
i,M (t)bi,M (z) = ΘT

M (t)BM (z). (21)

To determine the set of ODEs for the coefficient
vector ΘM := ΘM (t), Bernstein polynomials of order
M−1 are used as test functions in the following projection
approach that replaces the equality (13).

The formulation of a projection relation
∫ zi

zi−1

(
ξ(z, t, ϑ̃) · bi,k,M−1(z)

)
dz = 0 (22)

for each finite element i ∈ {1, . . . , N} as well as for
each polynomial degree k ∈ {0, . . . ,M − 1} leads to
a system of M · N ODEs for the unknown coefficients
ΘM . However, after elimination of the coefficients
θ2,0,M (t), . . . , θN,0,M(t) from the vector ΘM according
to the inter-element conditions (18), there are M ·N + 1
remaining unknowns. The missing relation that has to be
appended to the before-mentioned system of ODEs results
from the boundary condition (11) with

∫ l

0

[
κ1

∂ϑ̃(x,ΘM )

∂t
+ κ2ϑ̃(x,ΘM )

]
dx

=

∫ l

0

μ(x, t)dx + q̄0(t)− q̄l(t) ,

(23)

where the function μ(z, t) is defined as given in (6).
Appropriate initial conditions to this set of ODEs

are computed from a least-squares approximation of the
initial temperature distribution (9) according to

Θ∗
M (0) = arg min

ΘM (0)

∫ l

0

(
ΘT

M (0)BM (z)− ϑ̄0(z)
)2

dz.

(24)
Since Eqns. (22) and (23) are linear in ΘM and Θ̇M ,
an explicit set of ODEs can be obtained easily by means
of symbolic formula manipulation after eliminating the
redundant coefficients (18). The resulting set of ODEs2

ẋ(t) = Ax(t) +Bu(t) +Ez(t) , (25)

wherex includes the non-redundant Bernstein polynomial
coefficients ΘM for the approximation of the temperature
distribution. Moreover, the heat flows of all Peltier
elements serving as control inputsu(t) and the vector z(t)
of all disturbance heat flows provided by the remaining
Peltier elements are included as well as the (Bernstein

2For a symbolic formula manipulation routine, allowing the extrac-
tion of the corresponding matrix entries, the reader is referred to the
work of Rauh et al. (2013b). Generally, dim{x} is equal to the sum
of M · N + 1 and the number of state variables for the air canal (i.e.,
N additional state variables ϑN+1,FV, . . . , ϑ2N,FV for the basic finite
volume model).
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Fig. 2. Finite element representation of the temperature in the heating system (FE: finite element approximation, AC: air canal).

polynomial) representation of the air canal temperature
ϑAC(z, t). Assuming that the air canal temperature can be
approximated by a piecewise homogeneous distribution,
the finite volume element temperatures ϑFV,5, . . . , ϑFV,8

can be coupled directly with the above-mentioned finite
element representation for the rod temperature; see Fig. 3
and Sections 3 and 4.

An efficient alternative to this projection approach
is the optimization-based solution procedure that has
been described in detail by Rauh et al. (2012b). It is
characterized by the use of independent ansatz functions
for both the temperature distribution and the heat
flux density. In such a way, it provides an improved
capability of computing accurate approximations to the
heat transfer equation. However, this improved accuracy
goes along with an increased system dimension. Hence,
we restrict ourselves to the previously presented approach
for an application of the system model in a real-time
control environment. Details on a comparison of the
approximation quality of both the approaches can be
found in the work of Rauh et al. (2012b). Note that
the MIDR can furthermore be employed to quantify
the approximation quality of other solution approaches.
An example where a finite-dimensional realization of
an infinite-dimensional flatness-based control design
(implemented as a truncated series expansion) was
analyzed is given by Rauh et al. (2010).

3. Optimal control and model-based
observer design

3.1. Design of optimal feedforward control strate-
gies. Assume that the linear state equations resulting
from the projection approach with a fixed degree M and
the air mass flow ṁ = 0 are abbreviated by the linear
time-invariant state-space representation (25) introduced
in Section 2.4.

The goal of the following control and observer design
is the offline computation of an optimal heating strategy
and its experimental implementation on the available
test rig. In the experiment, the offline computed control
input and the corresponding output trajectory are used
as a feedforward control sequence and as a reference
trajectory, respectively.

To compensate disturbances, the online
implementation extends the offline computed feedforward

control by a state and output feedback which makes use of
estimates for the non-measured components of the vector
ΘM and the external disturbances z. This disturbance
vector is defined as

z(t) =
[
ϑ5,FV(t) ϑ6,FV(t) ϑ7,FV(t) ϑ8,FV(t)

]T
(26)

to account for deviations of the temperatures
ϑ5,FV(t), . . . , ϑ8,FV(t) from the value ϑA ≡ ϑ5,FV(0) =
. . . = ϑ8,FV(0) that is assumed during the offline
optimization of the feedforward control signal. Since
these temperature variations are significantly slower than
the dynamics of the rod temperature, they are included as
an integrator disturbance model with the ODEs

ż(t) =
[
0 0 0 0

]T
(27)

in the observer-based feedback control design that is
presented in the following subsections.

Moreover, the control synthesis makes use of the
input vector

u(t) =
[
Q̇H1(t) Q̇H2(t) Q̇H3(t) Q̇H4(t)

]T

=
[
u(t) 0 0 0

]T
,

(28)

so that only the first Peltier element acts as an active
heat source and all others are deactivated. In this case,
changes in z(t) do not only represent variations of the air
temperature above the rod but they also serve as a lumped
disturbance variable for effects that are caused by parasitic
heat flows (non-ideal adiabatic insulation) through the
non-actuated Peltier elements.

3.2. Energy-optimal heating strategy. The goal of
the optimal feedforward control synthesis is to transfer
the temperature ϑ̃(zd, t) at a given position zd in the
pre-defined time tf to a desired final value ϑd with a
vanishing final variation rate d

dt ϑ̃(zd, tf) = 0.
In the performance criterion

JC := fT +

∫ tf

0

f0(t) dt
!
= min, f0(t) = u2(t), (29)

this goal is taken into account by sufficiently large
weighting factors ν1 and ν2 in the terminal cost function

fT := ν1 ·
(
ϑ̃(zd, tf)−ϑd

)2

+ν2 ·
(

d
dt ϑ̃(zd, tf)

)2

. (30)
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Fig. 3. Coupling of the finite element representation of the rod temperature with a finite volume model for the air canal (with the mass
flow-dependent parameters p1(ṁ), . . . , p5(ṁ) in (1) and (2)).

The minimization of JC is performed numerically
with the help of Pontryagin’s maximum principle. For that
purpose, the Hamiltonian

H(u(t)) := −f0(t) + pT (t)
(
Ax(t)

+B
[
u(t) 0 0 0

]T
+Ez(0)

) (31)

with the adjoint states p = p(t) is maximized by the
control u(t) = uopt(t) fulfilling the condition

∂H

∂u

∣∣∣∣
u=uopt

= 0.

Defining Hopt := H(uopt(t)), the set of canonical
equations

[
ẋ
ṗ

]
=

⎡
⎣Ax+B

[
uopt(t) 0 0 0

]T
+Ez(0)

−∂Hopt

∂x

⎤
⎦

(32)
is obtained. The boundary value problem for
the Eqns. (32) with the initial states x(0) =[
ϑA(0) . . . ϑA(0)

]T
and the terminal conditions

p (tf) = −∂fT
∂x

∣∣∣∣
x=x(tf )

(33)

is solved numerically by the boundary value problem
solver bvp4c in MATLAB. To improve the numerical
convergence properties of this solver, an intermediate
solution is firstly determined for ν1 = 105 and ν2 = 0.
Secondly, this solution is used to re-initialize bvp4c with
ν1 = ν2 = 105.

For the online application, the control input is defined
as

u = uopt + uPI − kT

⎡
⎢⎣
θ1,M − Iϑ8,FV

...
θ4,M − Iϑ5,FV

⎤
⎥⎦ , (34)

where I is an identity matrix of appropriate dimensions.
All non-measured values θi,M (t), i ∈ {1, . . . , 4},
are replaced by the observer outputs described in the
following subsection. The control part uPI(t) represents

an additional PI3 (proportional, integrating) output
feedback determined by the transfer function

UPI(s)

Yd(s)− Θ̃(7l8 , s)
=

(
1 +KR

TIs+ 1

TIs

)
Sv, (35)

where s is the complex Laplace variable. The feedback
and prefilter gains k and Sv, respectively, are chosen by a
linear quadratic regulator design exploiting the condition
for steady-state accuracy. Moreover, TI compensates
the largest time constant of the approximating system
model (25) with a fixed value KR = 3.

3.3. State and disturbance observer design. Since
the vector ΘM (and therefore also the state vector x)
of the MIDR-based finite element representation is not
directly measurable, these values have to be reconstructed
during experiments by means of a state observer. This
observer is designed in such a way that, furthermore, it
reconstructs the disturbance values z defined in (26).

For that purpose, the ODEs (25) obtained from the
projection approach in the MIDR are extended by the
integrator disturbance models for z according to

˙̃x(t) = Ãx̃(t) + B̃
[
u(t) 0 0 0

]T
, (36)

where the extended state vector as well as the modified
system and input matrices are given by

x̃ :=

[
x
z

]
, Ã :=

[
A E
0 0

]
, B̃ :=

[
B
0

]
. (37)

Estimates ˆ̃x for the non-measurable state vector
x̃ are then determined numerically by integrating the
differential equations for the linear Luenberger observer

˙̂
x̃ = Ãˆ̃x+ B̃

[
u 0 0 0

]T
+L (y − ŷ) , (38)

in which the gain matrix L has to be defined in
such a manner that the estimation error dynamics

3The integral part is included in the control law in order to guaran-
tee steady-state accuracy also in cases in which the non-measured am-
bient temperature changes. In such a way, the integral feedback helps to
compensate non-modeled disturbance heat flows. This equally holds for
compensating non-ideal insulation properties at the rod edges and sligh-
tly imperfect behavior of the subsidiary heat flow control of the Peltier
elements.
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becomes asymptotically stable. This can be achieved by
a minimization of the integral quadratic error measure

JO =
1

2

∫ ∞

0

(
Δx̃TQΔx̃+ΔyTRΔy

)
dt (39)

with weighting matrices Q = QT ≥ 0 and R =
RT > 0. Solving this optimization problem with the
estimation errors Δx̃(t) (deviations between the true and
estimated state vectors) concerning the extended state
vector and Δy(t) (the difference between the measured
and estimated outputs) for the system outputs y = Cx
leads to the algebraic Riccati equation

PCTR−1CP − ÃP − PÃT −Q = 0, (40)

for which a positive definite, symmetric matrix P =
P T > 0 has to be determined (Rauh et al., 2013a; Åström,
1970; Stengel, 1994). Using this matrix P , the observer
gain is given by

L = PCTR−1. (41)

As shown by Saurin et al. (2012), the matrices Q
and R can be set to identity matrices of appropriate
dimensions to obtain sufficiently accurate estimation
results in simulations and experiments.4 Reasonable
definitions for the vectors of system outputs are either

y =
[
ϑ1,FE(

l
8 , t) , ϑ4,FE(

7l
8 , t) , ϑ

′
1,FE(0, t) , ϑ

′
4,FE(l, t)

]T

= C1

[
ΘM

z

]
, C := C1 (42)

with

C1 =

⎡
⎢⎢⎢⎣

bT1,M
(
l
8

)
0T
M+1 0T

M+1 0T
M+1 0T

4

0T
M+1 0T

M+1 0T
M+1 bT4,M

(
7l
8

)
0T
4

b′ T1,M (0) 0T
M+1 0T

M+1 0T
M+1 0T

4

0T
M+1 0T

M+1 0T
M+1 b′ T4,M (l) 0T

4

⎤
⎥⎥⎥⎦

(43)
or

y =
[
ϑ1,FE(

l
8 , t) , ϑ2,FE(

3l
8 , t) , ϑ3,FE(

5l
8 , t) ,

ϑ4,FE(
7l
8 , t) , ϑ

′
1,FE(0, t) , ϑ

′
4,FE(l, t)

]T

= C2

[
ΘM

z

]
, C := C2

(44)

with

C2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

bT1,M
(
l
8

)
0T
M+1 0T

M+1 0T
M+1 0T

4

0T
M+1 bT2,M

(
3l
8

)
0T
M+1 0T

M+1 0T
4

0T
M+1 0T

M+1 bT3,M
(
5l
8

)
0T
M+1 0T

4

0T
M+1 0T

M+1 0T
M+1 bT4,M

(
7l
8

)
0T
4

b′ T1,M (0) 0T
M+1 0T

M+1 0T
M+1 0T

4

0T
M+1 0T

M+1 0T
M+1 b′ T4,M (l) 0T

4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(45)
4The identical weighing of all components of Δx̃ and Δy is reaso-

nable since all temperature components as well as the included spatial
derivatives of the temperature profile have nominal values of a similar
order of magnitude.

where zero blocks of appropriate dimensions 0ξ :=[
0 . . . 0

]T ∈ R
ξ are included in C1 and C2. Note that,

according to Fig. 1, both the vectors (42) and (44) contain
only values that are (virtually) measurable. In the output
corresponding to C1, temperature measurements (PT100
sensors) are performed at the midpoints of the first and the
last rod segment. In addition, information about adiabatic
insulation of both rod edges is taken into account by

ϑ′
j,FE(z

′
j , t) :=

∂ϑj,FE(z, t)

∂z

∣∣∣∣
z=z′

j

= 0,

j ∈ {1, 4} , z′j ∈ {z0, zN} , (46)

and

b′i,M (z) :=
dbi,M (z)

dz
(defined element wise).

As shown by the following simulation results, the
additional measurements of the temperature values at the
midpoints of the second and the third rod element (the
output definition usingC2) leads to a further improvement
of the observer accuracy5. For all simulations and
experiments, the approximation order M = 3 is chosen.
For a detailed justification of this parameter choice, refer
to the information about the absolute measure for the
approximation error reported by Rauh et al. (2012b).

Figures 4 and 5 show the results for the optimal
open-loop control synthesis as well as numerical
validation of the quality of the state and disturbance
observer with the output definition (42). In Fig. 5, it can be
seen that—despite the large initial estimation errors—all
rod temperatures (expressed by the coefficients ΘM (t))
are estimated accurately after significantly less than 200 s.
The swing-in phase for the disturbance vector is longer
by a factor of approximately five. However, as shown in
the following experimental results, this is sufficient for
practical purposes since this duration does not severely
influence the control quality.

According to Fig. 6(a), the experimental
implementation of the open-loop control, extended
by the combined state and output feedback, leads to an
accurate tracking of the energy-optimal output trajectory
determined by the previously summarized approach.
This can be achieved by the disturbance estimation
shown in Fig. 6(b) (left). This disturbance has to be
counter-acted by the output feedback since it influences

5Note that the observability of the pairs (Ã;C1) and (Ã;C2) is
a fundamental prerequisite for the presented observer approaches. Ob-
servability has been checked for the polynomial orders M = 3 and
M = 4 using symbolic formula manipulation. Smaller approximation
orders are not reasonable since they are not superior to the rough finite
volume model of Section 2.2. Higher-order approximations are not ne-
cessary from a practical point of view since their additional degrees of
freedom for the temperature distribution are associated with eigenvalues
that are significantly faster than the available Peltier element dynamics.
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Fig. 4. Results of energy-optimal control synthesis (optimal feedforward control and reference trajectory): energy-optimal feedforward
control strategy uopt (a), optimized temperature profile for Q̇H1 = uopt (b).
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Fig. 5. Estimation of the coefficients ΘM (t) and the disturbances ϑ2N−i+1,FV(t) in each rod segment i ∈ {1, . . . , 4} with initial
errors of 6K in all variables under consideration of the output definition (42): estimates for the coefficients θi,k,M of the
Bernstein polynomial-based approximation of the temperature profile in the metallic rod (a), estimates for the disturbances
ϑ2N−i+1,FV (true values 296K) (b), estimation errors for the coefficients θi,k,M (c), estimation errors for ϑ2N−i+1,FV (d).

the rod temperature like an additional convective heat
input. Although no direct disturbance compensation (as,
e.g., presented by Rauh et al., 2013b) is implemented
here, the tracking errors remain in the range [−0.1, 0.1]K
(which corresponds to the interval of typical measurement
errors of the available PT100 elements in Fig. 1) over the
complete time horizon. The resulting control signal is
depicted in Fig. 6(b) (right).

After a comparison of the estimation results in
Fig. 5 with the results that can be achieved by using
temperature measurements in each rod segment (Fig. 7),
it can be noticed that the resulting estimation errors and
the corresponding transient phases can be reduced further
by this extension.

However, the effort for rod temperature
measurements becomes twice as large as before.



An integrodifferential approach to modeling, control, state estimation and optimization. . . 25

t in s

0 1500 3000
t in s

0 1500 3000

ϑ
(z

d
,t
),
y
d
(t
)
in

K

y
d
(t
)
−
ϑ
(z

d
,t
)
in

K

294

306

302

300

298

296

−0.2

304

−0.1

0.0

0.1

(a)

t in s

0 1500 3000
t in s

0 1500 3000

ϑ̂
5
,F
V
(t
)
in

K

u
(t
),
u
o
p
t(
t)

in
W

294

296

298

300

302

304

306

308

−10

−5

0

5

10

15

20

(b)

Fig. 6. Experimental validation of the optimal feedforward control extended by the PI output feedback with the output definition (42):
comparison of the desired and actual outputs yd(t) and ϑ(zd, t) (a), disturbance estimate ϑ̂5,FV(t) as well as control u(t)
(closed-loop, solid line) and uopt(t) (offline computed optimal control, dashed line) (b).
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Fig. 7. Simulation results for the estimation of the coefficients ΘM (t) and the disturbances ϑ2N−i+1,FV(t), i ∈ {1, . . . , 4}, using the
extended output definition (44): estimates for the coefficients θi,k,M of the Bernstein polynomial-based approximation of the
temperature profile in the metallic rod (a), estimates for the disturbances ϑ2N−i+1,FV (true values 296K) (b), estimation errors
for the coefficients θi,k,M (c), estimation errors for ϑ2N−i+1,FV (d).

4. Sensitivity-based predictive control
synthesis

In all simulations and experiments that have been
presented so far, it has been assumed that the approxima-

ting system model is linear. However, the system has a
strong non-linearity at its input if ṁ �= 0 holds and if ṁ is
treated as the control variable.

Hence, the previous linearity assumption is removed
in the following while solving the second control task
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defined in Section 2.

4.1. Formulation of the sensitivity-based control
procedure. To cope with the non-linear behavior, a
sensitivity-based predictive control approach is derived
in this subsection that consists of a piecewise constant
system input ṁ (tk) with the fixed step size tk − tk−1.
As described by Rauh et al. (2012c), the control is defined
by the expression

ṁ (tk) = ṁ (tk−1) + Δṁ (tk) (47)

with

Δṁ (tk) = −α

(
∂Jp
∂Δṁ

)−1

Jp

and a positive step size control factor α. Alternative
approaches for a predictive control design can be found
in the work of Prodan et al. (2013) and the references
therein.

In (47), the variable Jp denotes the value of
a performance criterion which is evaluated over the
prediction horizon of the length Tp = Np · (tk − tk−1)
according to

Jp =

k+Np∑
i=k

Jp,i ,

Jp,i =

{
(ϑmax,i − w)

2 for ϑmax,i > w,

(ṁ (tk−1) + βp ·Δṁ (tk))
2 otherwise, (48)

where

ϑmax,i := max
z∈[0,l]

{
ϑ̃

(
z, tk +

(i − k) · Tp

Np

)}
(49)

is the predicted maximum rod temperature at the point of
time

ti = tk +
(i− k) · Tp

Np

and βp > 0 is a scaling factor.
The criterion (48) is evaluated online during the state

prediction by using an explicit Euler discretization of the
ODEs for ΘM (t), t ∈ [tk, tk+Np ], resulting from the
MIDR approach with ṁ = ṁ (tk), Δṁ (tk) = 0, and
the mass flow-dependent parameters p1(ṁ), . . . , p5(ṁ),
which are given by fixed-order polynomials. During
this online evaluation of the state equations for the
system model depicted in Fig. 3, the ODEs for ΘM ,
summarized in the state vector x, are coupled with
the ODEs for ϑ5,FV, . . . , ϑ8,FV. The latter ODEs are
defined in (2) in such a way that all ϑ5,FV(t) ≈
ϑ5,AC(z, t), . . . , ϑ8,FV(t) ≈ ϑ8,AC(z, t) are piecewise
homogeneous in the expressions for Θ̇M for each finite

element [zi−1, zi], i ∈ {1, . . . , 4}. Additionally, Eqns. (2)
for ϑ̇5,FV, . . . , ϑ̇8,FV are evaluated for the temperatures

ϑi,FV(t) ≈ ϑi,FE(z̄i, t), z̄i :=
1

2
(zi−1 + zi) ,

at the respective segment midpoints.
During this prediction, the heat flows Q̇Hi, i ∈

{1, . . . , 4}, of the Peltier elements are replaced by
estimates that are determined by an extended observer.
This observer is similar to the one in the previous section,
where ΘM (tk) and the air canal temperatures were
determined simultaneously; see Section 4.2.

In (47), the partial derivative of Jp with respect
to a variation in the control input is required. This
derivative is determined by means of algorithmic
differentiation (Griewank and Walther, 2008) in a
C++ implementation of the state equations. For
that purpose, the state equations are evaluated after
overloading the control increment Δṁ (tk) by the
forward differentiation operator that is provided by
FADBAD++ (Bendsten and Stauning, 2007). As shown
by Rauh et al. (2012a), this procedure can also be
generalized to the control of multi-input multi-output
systems as well as to state and parameter estimation.
Compared with a symbolic computation of the required
partial derivatives, algorithmic differentiation leads
to implementations with an improved computational
efficiency (Röbenack, 2002) and makes the approach
also applicable to higher-dimensional non-linear systems
with long prediction horizons Np. To make this control
approach robust and stable, the discretization step size
tk − tk−1, the prediction horizon Tp, and the parameter α
in (47) are chosen thoroughly after simulations of
the closed-loop controller under consideration of
measurement noise and parameter uncertainty.

4.2. State and disturbance observer design. To make
the observer presented in Section 3.3 applicable to the
extended non-linear system model, it is assumed that
ϑ6,FV ≡ ϑ7,FV holds. With this assumption, the ODEs
obtained from the projection approach of the MIDR are
appended by independent integrator disturbance models6

for the heat flows according to d
dt Q̇Hi = 0, i ∈

{1, . . . , 4}, and by the disturbance models ϑ̇5,FV = 0,
ϑ̇6,FV ≡ ϑ̇7,FV = 0, and ϑ̇8,FV = 0 for the air canal
temperatures.

It can be shown that this extended system is
observable due to the simplifying assumption ϑ6,FV ≡
ϑ7,FV for each mass flow ṁ if at least the rod
temperatures ϑ1,FE(l/8, t) and ϑ4,FE(7l/8, t), the air
canal temperatures ϑ5,FV and ϑ8,VE, as well as

6The integrator disturbance model is reasonable if no a-priori know-
ledge about the disturbances is available and if the corresponding quan-
tities are constant or slowly varying.
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expressions representing the adiabatic insulation of the
rod edges according to

ϑ′
1,FE(0, t) :=

∂ϑ1,FE(z, t)

∂z

∣∣∣∣
z=0

= 0

and

ϑ′
4,FE(l, t) :=

∂ϑ4,FE(z, t)

∂z

∣∣∣∣
z=l

= 0

(50)

are used as (virtually) measured data given by

y =
[
ϑ1,FE(

l
8 , t) , ϑ4,FE(

7l
8 , t) , ϑ

′
1,FE(0, t) , ϑ

′
4,FE(l, t) ,

ϑ5,FV , ϑ8,FV ,

4∑
i=1

Q̇Hi

]T
= C3

[
ΘM

z

]
,

C := C3 ,

z :=
[
ϑ5,FV , ϑ6,FV , ϑ8,FV , Q̇H1 , Q̇H2 , Q̇H3 , Q̇H4

]T

(51)

with

C3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bT1,M
(
l
8

)
0T
M+1 0T

M+1 0T
M+1 0T

3 0T
4

0T
M+1 0T

M+1 0T
M+1 bT4,M

(
7l
8

)
0T
3 0T

4

b′ T1,M (0) 0T
M+1 0T

M+1 0T
M+1 0T

3 0T
4

0T
M+1 0T

M+1 0T
M+1 b′ T4,M (l) 0T

3 0T
4

0T
M+1 0T

M+1 0T
M+1 0T

M+1 [1 0 0] 0T
4

0T
M+1 0T

M+1 0T
M+1 0T

M+1 [0 0 1] 0T
4

0T
M+1 0T

M+1 0T
M+1 0T

M+1 0T
3 1T

4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(52)
14 :=

[
1 1 1 1

]T
.

In (51), it is necessary to include the sum of all
heat flows

∑4
i=1 Q̇Hi without, however, any knowledge

about the spatial distribution.7 To improve the robustness
of the observer, further temperature measurements
ϑ2,FE(3l/8, t) and ϑ3,FE(5l/8, t) could be included as
before in the combined state and disturbance observer

˙̃̂
x(t) = f̂

(
ˆ̃x(t), ṁ(t)

)
+L (y(t)− ŷ(t)) (53)

with

f̂
(
ˆ̃x, ṁ

)

:=

⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝
A(ṁ)x̂+B

⎡
⎢⎢⎢⎢⎣

ˆ̇QH1

ˆ̇QH2

ˆ̇QH3

ˆ̇QH4

⎤
⎥⎥⎥⎥⎦
+E(ṁ)

⎡
⎢⎢⎣
ϑ5,FV

ϑ6,FV

ϑ6,FV

ϑ8,FV

⎤
⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

T

0T
7

⎤
⎥⎥⎥⎥⎦

T

.

(54)
7This heat flow measurement as well as the information about two

air canal temperatures is necessary to distinguish between changes in the
air canal temperature and variations in the Peltier element heat flows in
a model-based way. If fewer measurements were available, only a joint
heat flow to the ambience could be estimated for each of the rod seg-
ments. A distinction between heat convection between the rod and the
air canal and the Peltier element heat flows would become impossible
without measuring the sum of all Peltier element heat flows.

Here, the rod temperature is described by the finite
element version of the MIDR and the air canal by the finite
volume model. As before, the gain matrix L = L(ṁ)
is calculated by minimizing an error measure which is
defined in analogy to Eqn. (39). The computation of the
observer gain L(ṁ) has been performed offline for ten
equally spaced grid points covering the complete range of
the air mass flow ṁ. During the online evaluation of the
observer, the corresponding gain values are interpolated
linearly at each point of time tk by using the actual control
signal ṁ(tk).

4.3. Experimental results for sensitivity-based pre-
dictive control. In this subsection, experimental results
are presented for the control of the heating system by
means of variations of the mass flow in the air canal.
The prerequisite for its implementation is the information
about the spatial distribution of the heat flows Q̇Hi and
the online reconstruction of the rod temperature at all
points of time. The observer introduced in Section 4.2 is
a promising approach to solve these tasks. Furthermore,
it helps one to detect the generally time-varying rod
position z∗(t) at which the maximum temperature can
be expected. For that purpose, the coefficients of the
temperature distribution are reconstructed first. Then, the
first-order derivative of ϑ̃(z, t) with respect to the position
coordinate z is determined and afterwards set to zero. The
corresponding positions as well as the edges of each rod
segment are candidates for the location with the maximum
temperature. Alternatively, a conservative bound for
the maximum rod temperature can be determined as
max{ΘM (t)} and used by the predictive controller.

Figure 8 visualizes that the predictive control
procedure leads to rod temperatures which do not show
any noticeable overshoot over the time-varying limit value
w(t) if Tp = 8 s, Np = 40, α = 10−3, βp = 0.1
and a control sampling time of 1 s are used. Moreover, a
safety bound of 0.6K has been added to the temperatures
that are estimated for each of the rod segments by means
of the state observer. This safety bound accounts for
estimation errors during the swing-in phase for the heat
flows Q̇Hi. The value of this safety bound has been
determined from an offline simulation to account for
state reconstruction errors during transient phases. The
current work aims at extensions of the presented controller
towards a learning-type approach that can be used for
tracking temperature profiles which are periodic with
respect to time.

5. Conclusions and outlook on future work

In this paper, modeling procedures and control algorithms
with real-time capable state and disturbance observers
have been derived for both robust trajectory tracking
and optimal control of distributed heating systems. These
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Fig. 8. Measured temperatures and control input for the predictive control (top), estimates for ϑ(z, t) and the location z∗ of the
maximum rod temperature (bottom).

approaches have been extended by a sensitivity-based
predictive controller which allows temperature control
of a metallic rod despite non-linearities caused by an
adjustable air stream on its top.

All control strategies are based on the MIDR, a
projection approach, and a novel control-oriented finite
element technique. This finite element approach makes
use of a parameterization of the temperature distribution
on the basis of Bernstein polynomials. This type of
approximation simplifies the definition of boundary and
inter-element conditions as well as the computation of
worst-case bounds of the temperature profile in both
space and time. Furthermore, it can be generalized in
a straightforward manner to spatially higher-dimensional
problems (see Rauh et al., 2013b; Kersten et al., 2014).

The experimental validation of all presented
controllers has shown accurate trajectory tracking as well
as the capability of reliable estimation of non-measurable
system states and disturbances. Moreover, the MIDR
provides explicit estimates for both the local and integral
quality of the mathematical description of the temperature
distribution. These estimates help us to systematically
improve the approximation quality by adapting the
number of finite elements and the polynomial orders.

In future work, the presented control procedures will
be validated further in experiments for suitable test rigs of
the above-mentioned higher-dimensional heating systems
that are available at the Chair of Mechatronics at the
University of Rostock. There, order reduction techniques
such as the ones mentioned by Janiszowski (2014) may

become relevant to guarantee real-time applicability of
control and state estimation procedures.
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