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This paper focuses on the problem of constraint control for a class of discrete-time nonlinear systems. Firstly, a new discrete
T–S fuzzy hyperbolic model is proposed to represent a class of discrete-time nonlinear systems. By means of the parallel
distributed compensation (PDC) method, a novel asymptotic stabilizing control law with the “soft” constraint property is
designed. The main advantage is that the proposed control method may achieve a small control amplitude. Secondly, for
an uncertain discrete T–S fuzzy hyperbolic system with external disturbances, by the proposed control method, the robust
stability and H∞ performance are developed by using a Lyapunov function, and some sufficient conditions are established
through seeking feasible solutions of some linear matrix inequalities (LMIs) to obtain several positive diagonally dominant
(PDD) matrices. Finally, the validity and feasibility of the proposed schemes are demonstrated by a numerical example and
a Van de Vusse one, and some comparisons of the discrete T–S fuzzy hyperbolic model with the discrete T–S fuzzy linear
one are also given to illustrate the advantage of our approach.
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1. Introduction

The Takagi–Sugeno (T–S) fuzzy model (Takagi and
Sugeno 1985) has been a popular choice in modeling
and designing a systematic control for nonlinear systems
containing uncertain information which cannot be
described accurately by mathematical tools. The T–S
fuzzy linear model adopts a linear dynamic model as the
consequent part of a fuzzy rule, which makes it possible
to apply the classical and mature linear systems theory
to nonlinear systems. Thus, it becomes one of the more
successful methods for studying nonlinear systems.

There have been many research results for it, such
as stability analysis, guaranteed-cost and observer-based
control designs (Tanaka and Sugeno, 1992; Jadbabaie et
al., 1998; Tanaka and Wang, 2001; Fuan and Chen, 2004;
Chen and Liu, 2005; Feng, 2006; Kim et al., 2008; Li
et al., 2009; Yan et al., 2010; Zhang et al., 2012; Zhao
et al., 2013; Tong et al., 2011; 2012; 2014; Siavash and
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Alireza 2014). Especially, considering the uncertainties of
the discrete T–S fuzzy linear model, numerous references
have proposed different methods, such as the robust
control strategy and the adaptive control approach (Cao
and Frank, 2000; Cao et al., 2000; Chen et al., 2000;
Tong et al., 2009; 2010; Du, 2012; Qi et al., 2012; Wang,
2014). A piecewise static-output-feedback controller and
a piecewise Lyapunov function were designed to make the
uncertain closed-loop fuzzy system stochastically stable
with guaranteed performance (Qiu et al., 2010). The
works of Su et al. (2013; 2014), Qiu et al. (2009) and Li et
al. (2011) discussed T–S fuzzy systems with time delay.
Although there have been many successful applications
for the discrete T–S fuzzy linear system, this model for
approximation of nonlinear systems still has its structural
limitations.

Considering the advantages of bilinear systems
(Mohler, 1973; Elliott, 1999) and T–S fuzzy control,
fuzzy control based on the T–S fuzzy bilinear model
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was firstly presented by Li and Tsai (2007), and stability
conditions of the system were given via LMIs. Li and
Tsai (2008) also presented robust fuzzy controllers for a
class of discrete-time T–S fuzzy bilinear systems, in which
the parallel distributed compensation method was utilized
to design a fuzzy controller to ensure robust asymptotic
stability of the closed-loop system and to guarantee an
H∞ norm-bound constraint on disturbance attenuation
for all admissible uncertainties. Non-fragile guaranteed
cost control was designed for the fuzzy bilinear
system (Zhang and Li, 2010; Li and Zhang, 2012).
Based on the piecewise quadratic Lyapunov function
(PQLF), piecewise fuzzy observer-based controllers were
designed for discrete T–S fuzzy bilinear systems with an
unavailable state (Li et al., 2013).

From the above discussions, it can be seen that the
existing literature has faced extensive discussions on the
T–S fuzzy model. However, notice that for practical
applications any controller for dynamic systems should
be designed such that it guarantees systems stability
requiring permissible magnitudes of control inputs (Park
et al., 2004). In general, the approaches of constrained
control include model predictive control (Bemporad et
al., 2003), control with saturation nonlinearity (Zhao and
Gao, 2012) and probabilistic control (Datta et al., 2012).
Unfortunately, for most real-life problems, these methods
often change the constraint control into very complex
optimization problems. To tackle this issue, based on the
fuzzy hyperbolic model (FHM) (Zhang and Quan, 2001;
Zhang, 2009) and the T–S fuzzy one, Chen and Li (2012)
established a new T–S model, namely, the T–S fuzzy
hyperbolic model for complex continuous-time nonlinear
systems. The consequent part of the proposed model is a
hyperbolic dynamic model. The advantage of the model
over its T–S fuzzy linear counterpart is that the control
amplitude is much smaller than for the T–S fuzzy linear
model.

Recently, the problems of non-fragile guaranteed
cost constraint control for continuous-time T–S fuzzy
hyperbolic models have been discussed further (Chen
and Li, 2015). However, the control method has not
been mentioned in discrete-time control systems. As we
know, discrete-time systems have come to play a more
important role than their continuous-time counterparts
in the digital age, and discrete-time fuzzy-model-based
control systems have drawn an increasing research
interest. Motivated by the above concerns, we focus
on constraint control of discrete-time nonlinear systems.
Firstly, a novel discrete T–S fuzzy hyperbolic model for
discrete-time nonlinear systems is proposed. Secondly,
the PDC control is designed given the local control law
uj(t) = Hjtanh(Kx(t)). By fuzzy blending, the overall
fuzzy hyperbolic control law is obtained as u(t) =∑r

j=1 hj(s(t))Hjtanh(Kx(t)), where the range of each
component tanh(kjxj(t)), j = 1, 2, . . . , r, in vector

tanh(Kx(t)) belongs to (−1, 1). This design approach
can deal with the constraint problem via a soft constraint
approach. Finally, the robust H∞ constraint control
problem for an uncertain discrete T–S fuzzy hyperbolic
system with external disturbance is further investigated.

Section 2 presents a discrete T–S fuzzy hyperbolic
model and analyzes the stability of the closed-loop
discrete fuzzy system by utilizing the PDC method to
design a fuzzy controller. In Section 3, for the problem
of discrete nonlinear system with external disturbance,
a robust fuzzy controller is designed and a robust H∞
stability condition is given in terms of LMIs. Section
4 illustrates the effectiveness of the proposed schemes
via some simulations. Some conclusions are included in
Section 5.

Notation. The notation used throughout this paper is
fairly standard, A > 0 (A ≥ 0, A ≥ 0, A ≤
0, respectively) means that the matrix A is positive
definite (positive semi-definite, negative definite, negative
semi-definite, respectively). The identity matrix, which
is of appropriate dimensions, will be denoted by I .
The superscript “T ” stands for the matrix transpose,
Rn denotes the n-dimensional Euclidean space. The
symbol “*” in a square matrix stands for the transposed
elements in the symmetric positions. The shorthand
diag{k1, k2, . . . , kn} denotes a block diagonal matrix
with diagonal blocks being the matrices k1, k2, . . . , kn.
Matrices, if their dimensions are not explicitly stated, are
assumed to be compatible for algebraic operations.

2. Modeling and stability analysis of
a discrete T–S fuzzy hyperbolic model

2.1. Modeling of a discrete T–S fuzzy hyper-
bolic model. The continuous T–S fuzzy hyperbolic
model was firstly presented to represent continuous-time
nonlinear systems (Chen and Li, 2012). In this subsection,
a discrete T–S fuzzy hyperbolic model will be proposed
to represent discrete-time nonlinear systems. This novel
fuzzy model is still described by fuzzy “IF-THEN” rules,
which express local dynamics in a hyperbolic tangent
model. Finally, the overall fuzzy system is obtained by
fuzzy, smooth “blending” of the local hyperbolic tangent
model. The i-th rule of the discrete T–S fuzzy hyperbolic
model is described below:

Plant rule i: If s1(t) is Fi1 and . . . and sg(t) is Fig , then

x(t + 1) = Ai tanh(Kx(t)) +Biu(t),

i ∈ S = {1, 2, . . . , r}, (1)

where r is the number of fuzzy rules and Fij is the
fuzzy set, x(t) ∈ R

n stands for the state vector,
and u(t) ∈ R signifies the control input, s(t) =
[s1(t), s2(t), . . . , sg(t)] ∈ R

s are the known premise
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variables. It is assumed that the premise variables do
not depend on the control input u(t) or disturbances ω(t)
in this paper. Ai ∈ R

n×n, Bi ∈ R
n. tanh(Kx(t)) =

[tanh(k1x1(t)), . . . , tanh(knxn(t))] with

tanh(k1x1(t)) =
ekixi − e−kixi

ekixi + e−kixi

and ki is a specified constant.
By using the fuzzy inference method with a

singleton fuzzifier, product inference and a center average
defuzzifier, the overall discrete T–S fuzzy hyperbolic
system can be rewritten as

x(t+ 1) =

r∑

i=1

hi(s(t))(Ai tanh(Kx(t)) +Biu(t)), (2)

where

hi(s(t)) =
μi(s(t))
r∑

i=1

μi(s(t))

and

μi(s(t)) =

g∏

j=1

Fij(sj(t)), i ∈ S, Fij(sj(t))

is a membership degree of sj(t) in Fij . In this paper,
μi(s(t)) are assumed such that μi(s(t)) ≥ 0, i ∈ S,
and

∑r
i=1 μi(s(t)) > 0 for all t. From the definition of

hi(s((t)), we can see that hi(s((t)) ≥ 0, i ∈ S, and∑r
i=1 hi(s(t)) = 1. We write hi(s(t)) as hi for a brief

description.
Before presenting the main results of this paper, we

introduce some lemmas, which will be used in the sequel.

Lemma 1. (Margaliot and Langholz, 2003) If a square
matrix P is positive diagonally dominant (PDD), then for
all x �= 0 the following result holds:

tanhT (x(t))P tanh(x(t)) ≤ xT (t)Px(t).

Lemma 2. (Zhang and Li, 2010) Given any matrices
M,N , and a symmetric matrix P > 0 with appropriate
dimensions, for any real scalar ε > 0, the following in-
equality holds:

MTPN +NTPM ≤ εMTPM + ε−1NTPN.

2.2. Fuzzy controller design and stability anal-
ysis. Based on the parallel distributed compensation
(PDC) method (Tanaka and Wang, 2001), the j-th fuzzy
controller of the discrete T–S fuzzy hyperbolic system (2)

is designed as follows:
Control rule j: If s1(t) is Fj1 and . . . and sg(t) is Fjg , then

uj(t) = −Hj tanh(Kx(t)),

j ∈ S = {1, 2, . . . , r}, (3)

where Hj ∈ R
1×n is the controller gain matrix to

be determined, K = diag(k1, k2, . . . , kn), ki is a
positive constant, which has been obtained by system
identification.

By using the fuzzy inference method, the overall
fuzzy control law is represented by

u(t) = −
r∑

j=1

hj(s(t))Hj tanh(Kx(t)). (4)

Remark 1. In (4), each component in vector
tanh(Kx(t)) is bounded whose range of is (−1, 1), so it
is obvious that the fuzzy hyperbolic controller (4) is also
bounded. It can be seen intuitively that when the variation
range of the x value is very big, the controller (4) has
a constraint control property of compressibility, and can
achieve a small control amplitude when Hj is a limited
value. This advantage will be illustrated by simulation
results.

Substituting (4) into (2), the overall closed-loop
system can be rewritten as

x(t+ 1) =
r∑

i=1

r∑

j=1

hihj(Ai −BiHj) tanh(Kx(t)). (5)

2.2.1. Main results.

Theorem 1. Assume that there exist matrixes P >
0, Z = ZT and some constant matrixes Mi,Mj , such that
the following LMIs are satisfied:

[ −Y ∗
AiY −BiMi −K−1Y K−T

]

< 0,

1 ≤ i ≤ r, (6)

[ −Y ∗
AiY+AjY−BiMj−BjMi

2 −K−1Y K−T

]

< 0,

1 ≤ i < j ≤ r (7)

zij ≥ 0, ∀i �= j, (8)

yij + zij ≥ 0, ∀i �= j, (9)

yii −
∑

i�=j

(yij + 2zij) ≥ 0, ∀i. (10)

where Y = P−1, Hi = MiY
−1, Hj = MjY

−1, i, j =
1, 2, . . . , r. Then the closed-loop system (5) is globally
asymptotically stable,
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Proof. Choose the following Lyapunov function candi-
date for the system (5):

V (t) = xT (t)KTPKx(t),

where K is defined in (5), P > 0.
Along the trajectories of the system (5), the

corresponding time difference of V (t) is given by

ΔV

= V (t+ 1)− V (t)

= xT (t+ 1)KTPKx(t+ 1)− xT (t)KTPKx(t)

=
{ r∑

i=1

r∑

j=1

hihj(Ai −BiHj) tanh(Kx)
}T

KTPK

×
{ r∑

n=1

r∑

l=1

hnhl(An −BnHl) tanh(Kx)
}

− xTKTPKx

≤
r∑

i=1

r∑

j=1

r∑

n=1

r∑

l=1

hihjhnhltanh
T (Kx)(Ai −BiHj)

T

×KTPK(An −BnHl) tanh(Kx)− tanhT (Kx)

× P tanh(Kx)

=
1

4

r∑

i=1

r∑

j=1

r∑

n=1

r∑

l=1

hihjhnhltanh
T (Kx)(Gij +Gji)

T

×KTPK(Gnl +Gln) tanh(Kx)

− tanhT (Kx)

× P tanh(Kx)

≤
r∑

i=1

r∑

j=1

hihj{tanhT (Kx)
(Gij +Gji

2

)T

KTPK

×
(Gij +Gji

2

)
tanh(Kx)

− tanhT (Kx)P tanh(Kx)

=

r∑

i=1

h2
i tanh

T (Kx)(GT
iiK

TPKGii) tanh(Kx)

+ 2

r∑

i=1

r∑

i<j

hihjtanh
T (Kx)

(Gij +Gji

2

)T

KTPK

×
(Gij +Gji

2

)
tanh(Kx)− tanhT (Kx)P tanh(Kx),

where Gij = Ai −BiHj , Hij = Gij +Gji.
If

GT
iiK

TPKGii − P < 0, (11)

(Gij +Gji

2

)T

KTPK
(Gij +Gji

2

)
− P < 0, (12)

we can obtain V (t + 1) − V (t) < 0, which implies
that the closed-loop system (5) is asymptotically stable
at the equilibrium point x = 0. Pre-multiplying and
post-multiplying (11) and (12) by Y , and applying the
Schur complement (Li et al., 2009), we obtain (6) and (7).
Moreover, since

yii ≥
∑

j �=i

(yij + 2zij) =
∑

j �=i

(|yij + zij |+ |−zij |)

≥
∑

j �=i

|yij |,

the matrix Y is positive diagonally dominant. This
completes the proof. �

3. Robust H∞ control of the discrete T–S
fuzzy hyperbolic model

3.1. Problem formulation and preliminaries. In this
section, we will deal with the robust stability and H∞
control problem of discrete T–S fuzzy hyperbolic systems
with external disturbance. The i-th rule of the uncertain
discrete T–S fuzzy hyperbolic system is designed as
follows:

If s1(t) is Fi1 and . . . and sg(t) is Fig , then

x(t + 1) = Ai tanh(Kx(t)) +Biu(t) +Niω(t)

i ∈ S = {1, 2, . . . , r}, (13)

where ω(t) ∈ R
m stands for the external disturbance

inputs which are assumed to belong to L∞[0,∞), Ai ∈
R

n×n, Bi ∈ R
n, Ni ∈ R

n.
By using the fuzzy inference method, the overall

uncertain T–S fuzzy hyperbolic system is represented by

x(t + 1) =

r∑

i=1

hi(s(t))[Ai tanh(Kx(t))

+Biu(t) +Niω(t)]

(14)

Next, a fuzzy state-feedback controller with a small
amplitude will be designed to robustly asymptotically
stabilize the discrete T–S fuzzy hyperbolic system
(14) and to make this fuzzy system satisfy the H∞
performance index

J =

∞∑

t=0

tanhT (x(t)) tanh(x(t)) < x(0)TPx(0)

+ γ2
∞∑

t=0

ωT (t)ω(t),

(15)

where x(0) is the initial value of the state vector, γ
represents a prescribed disturbance attenuation constant,
P > 0 is positive diagonally dominant (PDD) .
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Then, substituting (4) into (14), the overall
closed-loop system can be rewritten as

x(t+ 1) =

r∑

i=1

r∑

j=1

hihj [(Ai −BiHj) tanh(Kx(t)

+Niω(t)].

(16)

3.2. Main results.

Theorem 2. Given some scalars ε, ς and γ > 0 , as-
sume that there exist some matrixes P > 0, Z = ZT and
constant matrices Mi,Mj , such that

Φij < 0, 1 ≤ i, j ≤ r, (17)

zij ≥ 0, ∀i �= j, (18)

yij + zij ≥ 0, ∀i �= j, (19)

yii −
∑

i�=j

(yij + 2zij) ≥ 0, ∀i, (20)

where

Φij =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−Y + I 0 ∗
0 −γ2I ∗
Ξ1 0 −K−1Y K−T

AiY −BiMj 0 0
Y 0 0
0 Ni 0
0 Nj 0

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

−ε−1K−1Y K−T ∗ ∗ ∗
0 −I ∗ ∗
0 0 Ξ2 ∗
0 0 0 − ς

2K
−1Y K−T

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Ξ1 =
AiY −BiMj +AjY −BjMi

2
,

Ξ2 = −
( ς

2
+ ε−1

)−1

K−1Y K−T ,

where Hi = MiY
−1, Hj = MjY

−1, Y = P−1, i, j =
1, 2, . . . , r. Then the uncertain discrete closed-loop sys-
tem (16) is robust asymptotically stable and satisfies H∞
performance index for all ω(t) ∈ L2[0,∞).

Proof. Choose the following Lyapunov function candi-
date for the system (16):

V (t) = xT (t)KTPKx(t), (21)

where K is defined in (14), P > 0.

Along the trajectories of the system (16), the
corresponding time difference of V (t) is given by

ΔV

= V (t+ 1)− V (t)

= xT (t+ 1)KTPKx(t+ 1)− xT (t)KTPKx(t)

=
{ r∑

i=1

r∑

j=1

hihj [(Ai −BiHj) tanh(Kx) +Niω(t)]
}T

×KTPK
{ r∑

n=1

r∑

l=1

hnhl[(An −BnHl) tanh(Kx)

+Nnω(t)]
}
− xTKTPKx

≤
r∑

i=1

r∑

j=1

r∑

n=1

r∑

l=1

hihjhnhl[tanh
T (Kx)(Ai −BiHj)

T

+ ω(t)TNi
T
]KTPK[(An −BnHl) tanh(Kx)

+Nnω(t)]− tanhT (Kx)P tanh(Kx)

≤
r∑

i=1

r∑

j=1

r∑

n=1

r∑

l=1

hihjhnhl

{
tanhT (Kx)(Ai −BiHj)

T

×KTPK(An −BnHl) tanh(Kx)

+ tanhT (Kx)

×(Ai −BiHj)
TKTPKNnω(t) + (Niω(t))

T

×KTPK(An −BnHl) tanh(Kx) + (Niω(t))
T

×KTPKNnω(t)
}
− tanhT (Kx)P tanh(Kx)

=

r∑

i=1

r∑

j=1

r∑

n=1

r∑

l=1

hihjhnhl

{
tanhT (Kx)(Ai −BiHj)

T

×KTPK(An −BnHl) tanh(Kx)
}

+

r∑

i=1

r∑

j=1

r∑

n=1

r∑

l=1

hihjhnhltanh
T (Kx)(Ai −BiHj)

T

×KTPKNnω(t)

+

r∑

i=1

r∑

j=1

r∑

n=1

r∑

l=1

hihjhnhl(Nnω(t))
T
KTPK(Ai

−BiHj) tanh(Kx)

+

r∑

i=1

r∑

j=1

r∑

n=1

r∑

l=1

hihjhnhl(Niω(t))
T
KTPKNnω(t)

−tanhT (Kx)P tanh(Kx)

=
1

4

r∑

i=1

r∑

j=1

r∑

n=1

r∑

l=1

hihjhnhltanh
T (Kx)(Gij +Gji)

T

×KTPK(Gnl +Gln) tanh(Kx)

+

r∑

i=1

r∑

j=1

r∑

n=1

r∑

l=1

hihjhnhl[εtanh
T (Kx)(Ai
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− BiHj)
TKTPK(Ai −BiHj) tanh(Kx)

+ ε−1(Nnω(t))
T
KTPKNnω(t)]

+

r∑

i=1

r∑

j=1

r∑

n=1

r∑

l=1

hihjhnhl(Niω(t))
T
KTPKNnω(t)

−tanhT (Kx)P tanh(Kx)

≤
r∑

i=1

r∑

j=1

hihj

{
tanhT (Kx)

(Gij +Gji

2

)T

KTPK

×
(Gij +Gji

2

)
tanh(Kx) + εtanhT (Kx)

×(Ai −BiHj)
T
KTPK(Ai −BiHj) tanh(Kx)

+ε−1(Niω(t))
T
KTPKNiω(t) +

ς

2
(Niω(t))

T

×KTPKNiω(t) +
ς

2

−1
(Njω(t))

T

KTPKNjω(t)

−tanhT (Kx)P tanh(Kx) + tanhT (Kx) tanh(Kx)

− γ2ωT (t)ω(t) − tanhT (Kx) tanh(Kx)

+ γ2ωT (t)ω(t)

=
r∑

i=1

r∑

j=1

hihjη
TΩη − tanhT (Kx) tanh(Kx)

+γ2ωT (t)ω(t),

where

ηT =
[
tanhT (Kx)ωT (t)

]
,

Gij = Ai −BiHj , Hij = Gij +Gji,

Ω =

[
Ω11 0
0 Ω22

]

,

Ω11 =
(Gij +Gji

2

)T

KTPK
(Gij +Gji

2

)

+ ε(Ai −BiHj)
TKTPK(Ai −BiHj)− P + I,

Ω22 =
( ς

2
+ ε−1

)
Ni

TKTPKNi +
ς

2

−1
Nj

TKTPKNj

− γ2I.

If Ω < 0 , we can obtain

V (t+ 1)− V (t) < −tanhT (Kx) tanh(Kx)

+ γ2ωT (t)ω(t). (22)

Based on the accumulated result of (22) from t = 0
to t = ∞ , we have the following inequality:

V (x(∞)) − V (x(0)) < −
∞∑

t=0

tanhT (Kx) tanh(Kx)

+ γ2
∞∑

t=0

ωT (t)ω(t).

That is to say,

∞∑

t=0

tanhT (Kx) tanh(Kx)

< V (x(0)) + γ2
∞∑

t=0

ωT (t)ω(t). (23)

Thus, the H∞ performance index is satisfied.
Let Y = P−1 and Mi = HiY,Mj = HjY . Pre- and

post-multiplying both the sides of Ω by diag{Y, I}, using
the Schur complements (Li et al., 2009), we will obtain
the LMI (17). Finally, since

yii ≥
∑

j �=i

(yij + 2zij)

=
∑

j �=i

(|yij + zij |+ |−zij|) ≥
∑

j �=i

|yij |,

the matrix Y is positive diagonally dominant. This
completes the proof. �

4. Simulation examples

In this section, a discretization of the Van de Vusse
system and a mathematical constructive example will be
presented to illustrate the effectiveness of the proposed
method. Some comparisons with the results in recent
publications are given to clarify the superiority of our
approach.

Example 1. Consider the dynamics of an isothermal
continuous stirred-tank reactor (CSTR) for the Van de
Vusse example (Li et al., 2008) of the following form:

ẋ1 = F1(x1, x2, u)

= −k1x1 − k3x
2
1 + u(CA0 − x1), (24)

ẋ2 = F2(x1, x2, u)

= k1x1 − k2x2 + u(−x2) (25)

y = x2, (26)

where the state x1 [mol/L] represents the concentration of
the reactant inside the reactor, the state x2[mol/L] is the
concentration of the product in the output stream of the
CSTR, the output y = x2 determines the grade of the final
product, the input-feed stream to the CSTR consists of a
reactant with concentration CA0 and the controlled input
is the dilution rate u = F/V [h−1], F the input flow rate
to the reactor [L/h] and V is the constant volume of the
CSTR in liters.

In the following, in the system (23)–(25), the
parameters are chosen as k1 = 5h−1, k2 = 1h−1, k3 =
1 [L/(mol h)], CA0 = 5 [mol/L], and V = 1 [L].
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For the study of a discrete T–S fuzzy hyperbolic
system, based on the work of (Li et al., 2013), we can
obtain the following discrete Van de Vusse model:

x1(t+ 1) = x1(t) + T (−k1x1(t)− k3x
2
1(t))

+ T (u(t)(CA0 − x1(t))),
(27)

x2(t+ 1) = x2(t) + T (k1x1(t)− k2x2(t))

+ T (u(t)(−x2(t))),
(28)

y(t) = x2(t), (29)

where T = 0.05 ms is the sampling time. Then, some
equilibrium points of (26)–(28) are tabulated in Table 1.
Under these equilibrium points [ xe ue ], which are
also chosen as the desired operating points [ xd ud ],
we can use the T–S fuzzy-model-based modeling method
of Hsiao et al. (2010) to construct all system matrices
when we represent the system (26)–(28) by using the T–S
fuzzy linear model (Tanaka and Wang, 2001).

Based on the modeling method by Hsiao et al.
(2010), we can obtain

f1(x) = T (−k1x1(t)− k3x
2
1(t)),

g1(x) = T (u(t)(CA0 − x1(t))),

f2(x) = T (k1x1(t)− k2x2(t)),

g2(x) = T (u(t)(−x2(t))).

Applying the results of Hsiao et al. (2010) to the
system (26)–(28) at operating points, the system matrices
Ai, Bi, i = 1, 2, 3, 4 can be obtained. These matrices
are the same as those in the T–S fuzzy linear model
when we represent the system (26)–(28) by utilizing T–S
fuzzy hyperbolic model. Accordingly, we can obtain the
following discrete fuzzy hyperbolic control laws:

R1: If x1 is about 0.6835, then

xδ(t+ 1) = A1 tanh(Kxδ(t)) +B1uδ(t),

uδ(t) = H1 tanh(Kxδ(t)).

R2: If x1 is about 1.1343, then

xδ(t+ 1) = A2 tanh(Kxδ(t)) +B2uδ(t),

uδ(t) = H2 tanh(Kxδ(t)).

Table 1. Data for equilibrium points.
xe1 xe2 ue

0.6835 1.7987 0.9
1.1343 2.0256 1.8
1.2949 2.0233 2.2
2.0711 1.7259 5

R3: If x3 is about 1.2949, then

xδ(t+ 1) = A3 tanh(Kxδ(t)) +B3uδ(t),

uδ(t) = H3 tanh(Kxδ(t)).

R4: If x4 is about 2.0711, then

xδ(t+ 1) = A4 tanh(Kxδ(t)) +B4uδ(t),

uδ(t) = H4 tanh(Kxδ(t)),

where

A1 =

[
0.2509 −1.0151
0.2649 0.9443

]

,

A2 =

[ −0.0673 −1.0963
0.2841 0.9208

]

,

A3 =

[ −0.2296 −1.1564
0.2999 0.9180

]

,

A4 =

[ −1.5134 −1.5052
0.3730 0.8025

]

,

B1 =

[
0.2158
−0.0899

]

, B2 =

[
0.1933
−0.1013

]

,

B3 =

[
0.1853
−0.1012

]

, B4 =

[
0.1464
−0.0863

]

,

xδ(t) = x(t)− xd, uδ(t) = u(t)− ud.

By solving the LMIs (6)–(10), the positive diagonally
dominant matrix can be calculated as

P =

[
0.6741 0

0 0.6114

]

,

Z =

[
0 0.0100

0.0100 0

]

,

M1 =
[
0.9716 −8.4223

]
,

M2 =
[
2.2301 −9.2796

]
,

M3 =
[ −2.5465 −10.7967

]
,

M4 =
[ −11.0728 −14.7438

]
,

and the following controller gain matrices are obtained:

H1 =
[
0.6550 −5.1495

]
,

H2 =
[
1.5034 −5.6737

]
,

H3 =
[ −1.7116 −6.6013

]
,
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H4 =
[ −7.4644 −9.0146

]
.

Based on the stable fuzzy controller design approach
for a discrete T–S fuzzy linear system (Tanaka and Wang,
2001), we can figure out the positive symmetric matrix

P =

[
0.0512 0.0034
0.0034 0.0509

]

and controller gain matrices:

F1 =
[
0.5169 −5.5961

]
,

F2 =
[ −0.2418 −6.2432

]
,

F3 =
[ −1.7310 −6.8761

]
,

F4 =
[ −6.8668 −9.3380

]
.

The membership function of state x1 is shown in
Fig. 1, and

tanh(Kx) =
[
tanh(0.5x1) tanh(0.7x2)

]T
.

Thus, the whole discrete fuzzy hyperbolic control
law is

u = (h1H1 + h2H2 + h3H3 + h4H4)

× tanh(Kxδ)ud, (30)

where h1, h2 and h3 satisfy h1 + h2 + h3 = 1.
To illustrate the advantage of the proposed control,

here, the system response curves under the conditions of
different initial values are studied. Figures 2–5 denote
respectively the simulation results of applying the discrete
fuzzy hyperbolic controller (29) and the discrete fuzzy
linear controller (Tanaka and Wang, 2001) to the discrete
Van de Vusse model (26)–(28), with the operating point
xT
d = [ 1.2949 2.0233 ] and ud = 2.2000 under

the initial conditions x(0) = [ 1 0.55 ]T and x(0) =
[ 15 −2.5 ]T .

From these simulations, we can find that the state
of the discrete nonlinear system (26)–(28) under the
discrete fuzzy hyperbolic controller (29) can converge to
the operating point faster than that under the discrete fuzzy
linear controller (Tanaka and Wang, 2004). Furthermore,
the amplitude of the fuzzy hyperbolic controller is also
smaller than that of the fuzzy linear controller.

�

Example 2. An uncertain discrete T–S fuzzy hyperbolic
model is given as

Ri: If xi is Li, i = 1, 2, 3 , then

x(t+ 1) = Ai tanh(Kx(t)) +Biu(t) +Niω(t),

u = −Hi tanh(Kx(t)),

where

A1 =

[
0.09 −0.19
0.07 −0.24

]

,
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Fig. 1. Membership functions of x1.
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Fig. 2. State response curves and comparisons under the initial
condition x(0) = [1 0.55]. (DTSFLS: T–S fuzzy linear
system, DTSFHS: T–S fuzzy hyperbolic system).

0 10 20 30 40 50 60 70
0

5

10

15

time(s)

u(
t)

 

 
Discrete T−S fuzzy linear system
Discrete T−S fuzzy hyperbolic system

Fig. 3. Control curves and comparisons under the initial condi-
tion x(0) = [1 0.55].
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A2 =

[ −0.07 0.28
−0.18 0.15

]

,

A3 =

[
0.17 −0.05
0.6 −0.06

]

,

B1 =

[
0.01
0.03

]

, B2 =

[
0.02
0.01

]

,

B3 =

[
0.01
0.03

]

, N1 =

[
0.02
0.04

]

,

N2 =

[
0.03
0.05

]

, N3 =

[
0.01
0.02

]

.

Let γ=2, ε=0.25, ς=4. By solving the LMI (17) in
Theorem 2, the positive diagonally dominant matrix and
controller gain matrices are obtained as

P =

[
94.4987 −0.0622
−0.0622 391.1528

]

,

Z =

[
0 0.001

0.001 0

]

,

M1 =
[
0.0487 −0.0169

]
,

M2 =
[
0.0100 0.0115

]
,

M3 =
[
0.1632 −0.0045

]
,

and the controller gain matrices are

H1 =
[
4.6030 −6.6193

]
,

H2 =
[
0.9440 4.4871

]
,

H3 =
[
15.4247 −1.7716

]
.

Let tanh(Kx) =
[
tanh(0.1x1) tanh(0.2x2)

]
,

and choose membership functions and external
disturbance as follows:

μL1 =
1

15(1 + 5exp2(−x1))
,
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Fig. 4. State response curves and comparisons under the initial
condition x(0) = [15 − 2.5].
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Fig. 5. Control curves and comparisons under the initial condi-
tion x(0) = [15 − 2.5].

μL2 =
1

15(1 + 2exp2(−x1))
,

μL3 = 1− μL1 − μL2.

and ω(t) = 2 sin(10t) exp(−0.5t). In order to get
a better comparative result, here, let the two systems
have the same Ai, Bi, Ni, i = 1, 2, 3, initial conditions,
membership functions and external disturbances. Two
different the initial values are used to illustrate the
advantage of the proposed control; the initial conditions
are respectively

x(0) =
[
4 −1

]T

and
x(0) =

[ −3 10
]T

.

For different initial conditions, the simulation results
of the comparisons between the discrete T–S fuzzy
hyperbolic system and the discrete T–S fuzzy linear
system are shown respectively in Figs. 6–9.

The simulation results show that the uncertain
discrete closed-loop T–S fuzzy hyperbolic system (16)
is robust asymptotically stable and satisfies the H∞
performance index (15). Moreover, the uncertain discrete
T–S fuzzy hyperbolic system has a smaller control
amplitude than the uncertain discrete T–S fuzzy linear
system. �

Remark 2. For different initial conditions, many
comparisons are done. From Figs. 3–9, it is clearly seen
that the controller design approach to the fuzzy hyperbolic
controller based on a T–S fuzzy hyperbolic model needs
a much smaller control amplitude than a T–S fuzzy linear
model. This illustrated effectively the advantages of the
proposed method.
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Fig. 6. State response curves and comparisons under the initial
condition x(0) = [4 − 1].
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Fig. 7. Control curves and comparisons under the initial condi-
tion x(0) = [4 − 1].
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Fig. 8. State response curves and comparisons under the initial
condition x(0) = [−3 10].
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Fig. 9. Control curves and comparisons under the initial condi-
tion x(0) = [−3 10].

5. Conclusion

In this paper, a discrete T–S fuzzy hyperbolic model for
a class of discrete nonlinear systems was proposed. The
parallel distributed compensation method was utilized to
design a fuzzy hyperbolic controller. Sufficient conditions
for the asymptotic stability of the closed-loop system
were formulated by LMIs. In addition, for the discrete
T–S fuzzy hyperbolic system with external disturbance,
the global robust stability and H∞ performance were
developed by designing a robust H∞ constraint controller.
Finally, we presented some simulation examples to
illustrate the validity and feasibility of the proposed
schemes. From these simulation results, the control
input requirements of the discrete T–S fuzzy hyperbolic
system are much lower than for the discrete T–S fuzzy
linear system, while the state stabilization time of
the two systems is almost the same. In a future
work, based on fuzzy piecewise Lyapunov functions, the
proposed hyperbolic controller can be employed to control
discrete-time nonlinear systems with time delays.
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