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In recent years, FCA has received significant attention from research communities of various fields. Further, the theory
of FCA is being extended into different frontiers and augmented with other knowledge representation frameworks. In this
backdrop, this paper aims to provide an understanding of the necessary mathematical background for each extension of
FCA like FCA with granular computing, a fuzzy setting, interval-valued, possibility theory, triadic, factor concepts and
handling incomplete data. Subsequently, the paper illustrates emerging trends for each extension with applications. To this
end, we summarize more than 350 recent (published after 2011) research papers indexed in Google Scholar, IEEE Xplore,
ScienceDirect, Scopus, SpringerLink, and a few authoritative fundamental papers.
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1. Introduction

Formal concept analysis (FCA) is a mathematical
framework based on lattice theory (Wille, 1982). FCA
starts data analysis from a given incidence matrix in
which each row corresponds to objects, each column
corresponds to attributes, and the matrix field value
denotes the relationship between them. One of the
major outputs of this model is the concept lattice,
reflecting generalization and specialization between the
derived formal concepts from the incidence matrix
(Davey and Priestley, 2002). Formal concepts are a
basic unit of thought and play-major role in knowledge
processing tasks containing distinct extents (sets of
objects) and intents (corresponding common attributes)
(Ganter and Wille, 1999). To handle the uncertainty and
vagueness in data, FCA has been successfully extended
with a fuzzy setting, an interval-valued fuzzy setting,
possibility theory, a rough setting and triadic concept
analysis. These extensions have independent background
mathematics, algorithms, and outputs. Several algorithms
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are available in the literature on FCA (Doerfel et al.,
2012; Poelmans et al., 2014), its notions (Kuznetsov
and Obiedkov, 2002; Poelmans et al., 2013b), theoretical
analysis (Aswani Kumar and Singh, 2014; Sarmah et al.,
2015), algorithms (Dias and Vieira, 2015; Kuznetsov and
Obiedkov, 2002; Kuznetsov and Poelmans, 2013) and
applications (Poelmans et al., 2013b; Yan et al., 2015).
The current paper is unique and different from the above
cited works mainly due to two aspects: first, it provides
the necessary mathematical background for each of the
new extensions of FCA that is discussed, and second,
it discusses applications for each extension. This paper
provides a summary of the trends and applications of
FCA after 2011. Further, the paper also provides pointers
to most authoritative literature on FCA. To achieve this,
we have collected 544 articles from prominent indexing
systems.

2. Survey methodology

This systematic study has been conducted with the help
of research papers published after 2011. The rationale
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behind is that the summary of FCA findings till 2011
was analyzed in a series of papers by Poelmans et al.
(2013a; 2013b; 2014). A total of 544 research papers
have been collected from the prominent indexing systems
such as Scopus, Google Scholar, leading scientific data
bases such as the ACM Digital Library, IEEE Xplore,
ScienceDirect, SpringerLink, etc. Also, we have referred
to the proceedings of prominent FCA conferences like
ICFCA, ICCS, CLA, etc.

The methodology we have used to extract the
articles is based on the following keywords: formal
concept analysis (FCA), formal concept, fuzzy formal
concept, concept lattice, fuzzy concept lattice and
Galois connection. From the 544 collected papers we
have shortlisted 352 works based on their innovative
content. From these papers the following research trends
identified: (a) FCA with granular computing, (b) FCA
with a fuzzy setting, (c) FCA with an interval-valued
fuzzy setting, (d) FCA with possibility theory, (e) FCA
with rough set theory, (f) triadic concept analysis in a
fuzzy setting, (g) factor concepts, and (h) concept lattices
of incomplete data.

3. Formal concept analysis

In this section we provide a brief background of FCA, its
tools and current research issues.

3.1. Background. FCA is a mathematical model for
knowledge processing tasks. It receives data, structured
in the form of objects, attributes and the relation between
them. This relation is represented as in the form of a
formal context −F = (X,Y,R) where X is a set of
objects, Y is a set of attributes and R is a binary relation
between them, of Table 1 (where a, b, c, . . . , o represent
the attributes y1, y2, . . . , y15, respectively). From the
given context, FCA derives a set of objects (A) and the set
of all attributes (B) that are in common for these objects.
Similarly, the dual operation on the set of attributes
(B) identifies the common objects objects (A) using the
concept forming operator.

Definition 1. (Concept forming operators) The operators
↑: 2X → 2Y and ↓: 2Y → 2X are defined for every
A ⊆ X and B ⊆ Y by:

A↑ = {y ∈ Y | ∀x ∈ A : (x, y) ∈ R} ,
B↓ = {x ∈ X | ∀y ∈ B : (x, y) ∈ R} ,

where A↑ is the set of all attributes shared by all objects
from A. Similarly, B↓ is the set of all objects sharing all
attributes from B. The formal concept is a pair (A,B) of
A ⊆ X and B ⊆ Y such that A↑ = B and B↓ = A. The
collection of all such pairs of concepts forms a concept
lattice under the closure operation.

Definition 2. (Concept lattice) The concept lattice
structure determines the hierarchy of formal concepts
which follows the partial ordering principle: (A1, B1) ≤
(A2, B2) iff A1 ≤ A2 ( B2 ≤ B1) and provides
generalization and specialization between the concepts,
i.e., (A1, B1) is more specific than (A2, B2) ((A2, B2)
is more general). The attributes of each formal concept
are inherited from the most general maximum node,
while the objects are inherited from the most specific
minimum node. Several algorithms have been proposed
for generating the concept lattice (Bartl et al., 2011;
Codocedo et al., 2011; Kuznetsov and Obiedkov, 2002;
Outrata and Vychodil, 2012) including parallel and
recursive algorithms (Fu and Mephu Nguifo, 2004; Krajca
et al., 2008; Langdon et al., 2011). The attribute
implications are represented in the form of A → B over
the set Y (Ganter and Wille, 1999). There are several
patents granted for the inventions that are based on FCA.
Table 2 summarizes some of such patents.

3.2. Tools and ssoftware in FCA. Several tools
and packages are developed to handle the FCA tasks
such as generating concepts, attribute implications, etc.
(http://www.upriss.org.uk/fca/fca.html).
Following is a summary of some of the available tools:

1. ToscanaJ: Provides a view for conceptual schemas
and optimized for a non-technical audience,
http://toscanaj.sourceforge.net/.

2. ConExp: Implements the basic functionality of FCA
with a crisp setting,
http://conexp.sourceforge.net/.

3. ConExp-NG: Is an extension of ConExp with
the focus on usability and maintainability,
https://github.com/fcatools/
conexp-ng.

4. Conexp-clj: Allows us to handle the formal context,
relational algebra with formal contexts, many-valued
contexts, attribute exploration, lattice layouts by
NextClosure or Iceberg Concepts and fuzzy FCA,
https://github.com/exot/conexp-clj/.

5. Galicia: Is an open environment and handles binary
and relational contexts,
http://www.iro.umontreal.ca/

˜galicia/.

6. FcaStone: Is a command-line utility that
converts between the file formats of com-
monly used FCA tools (such as ToscanaJ,
ConExp and Galicia) or FCA formats to
other graphics formats (dot, fig, svg, . . . ),
http://fcastone.sourceforge.net/.

http://www.upriss.org.uk/fca/fca.html
http://toscanaj.sourceforge.net/.
http://conexp.sourceforge.net/.
https://github.com/fcatools/
conexp-ng
https://github.com/exot/conexp-clj/
http://www.iro.umontreal.ca/
~galicia/
http://fcastone.sourceforge.net/
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Table 1. Binary formal context.
a b c d e f g h i j k l m n o

x1 x x x x x x
x2 x x x x x x
x3 x x x x x x
x4 x x x x x x x
x5 x x x x x x x
x6 x x x x x x
x7 x x x x x x
x8 x x x x

Fig. 1. Formal concept lattice for the context shown in Table 1.

7. Lattice Navigator: Provides three applications of
FCA using a single setup file: Lattice Navigator,
Context Editor, Lattice Visualizer,
http://www.fca.radvansky.net/
news.php.

8. Colibri-concepts: Permits to explore only part of a
concept lattice which is most useful when working
with huge lattices,
http://code.google.com/p/colibri
-concepts/.

3.3. Issues in FCA. Hierarchical order visualization
of formal concepts in the concept lattice structure is
an important concern for practical applications of FCA
(Aswani Kumar, 2011a). In this process, one of the major
issues is the size of the concept lattice constructed from
“a large formal context” (Codocedo et al., 2011; Aswani
Kumar et al., 2015a; Aswani Kumar and Srinivas, 2010;

Singh and Gani, 2015). The concept lattice constructed
from the large context becomes complex and impractical.
Hence, handling a large formal context and reducing the
size of the concept lattice are addressed as real issues
in practical applications of FCA (Dias and Vieira, 2015;
Singh et al., 2015a; 2015b).

The issue includes a number of formal concepts,
and implications generated from a large context can
be exponential while counting them is P -complete and
P -hard (Babin and Kuznetsov, 2013; Bartl et al., 2011;
Bazhanov and Obiedkov, 2014; Obiedkov, 2012; Slezak,
2012). This problem also merges with a fuzzy formal
context (Denniston et al., 2013; Ma and Zhang, 2013),
a decision formal context (Li et al., 2012a; 2012b)
multi adjoint concept lattices (Medina and Ojeda-Aciego,
2012; Medina, 2012a; 2012b), and granular computing
(Tadrat et al., 2012; Yang et al., 2011a). Subsequently,
some metrics are proposed to measure the stability

http://www.fca.radvansky.net/
news.php.
http://code.google.com/p/colibri
-concepts/.
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and importance of obtained concepts (Kuznetsov, 2013;
Martin et al., 2013; Pei et al., 2013). In the next section
we illustrate the mathematics behind each of the above
categorized research trends in FCA with an illustrative
example.

4. Current research trends in FCA

In this section we describe trends of FCA such as granular
computing, FCA with a fuzzy setting, an interval-valued
fuzzy setting, possibility theory, a rough setting, a triadic
setting, factor concepts and the incomplete context.

4.1. FCA with granular computing. In this section
we discuss a method for reducing the concepts at a
chosen granulation of their (computed) weight (Butka
et al., 2012; Lei and Tian, 2012; Ma and Zhang, 2013).

Table 2. Some important patents on FCA and their inventions.
Patent information Invention

US patent (May 19,2005) Attribute
US2005/0108252A1 implications

US patent (May 25,2006) Information
US2006/0112108A1 retrieval

US patent (Sep 21,2006) Organizing
US2006/0212470A1 the information

International patent(April 5,2007) Processing
WO2007/038375A2 patient records

US patent (Jul 7,2007) Mapping of
US2005/0149510A1 context

US patent (Jun 10,2010) Identifying
US2010/0153092A1 similar word

China patent (April 6,2011) Dynamic
CN2017885100 mining system

China patent (Aug 24,2011) Remote
CN101699444B sensing

US patent (Jan 5,2012) To structure
US2012/0005210A1 a database

International patent (Feb 2,2012) Electronic
WO2012014938A1 repository

China patent (Jun 20,2012) FCA based
CN102508767A software maintenance

US patent(Feb 26,2013) Conceptual
US8386489B2 similarity

China patent (May 29,2013) Software
CN103123607A maintenance

China patent (Jun 26,2013) Software
CN103176902A error locations

US patent (Jul 25, 2013) Sentiments
US20130191735A1 analysis

US patent(Aug 1,2013) Resume
US2013/0198195A1 classification

European patent (Oct 2,2013) Reducing
EP2645274A1 the lattice

International patent WO 2014 Traffic
013327A1 (Jan23,2014) measurement

The reason is that the number of concepts increases
exponentially in the worst case. In this case, granular
computing provides a path to process the large context
into less time based on the requirement when dealing
with numeric processing (Pedrycz, 2013). An information
granule is the basic notion of granular computing, which
can be defined broadly as a collection of information.
This notion has been recently introduced into the concept
lattice as an attempt to decrease the computation time
(Belohlavek et al., 2013; Wu et al., 2009; 2012; Li et
al., 2015; Xu and Li, 2015). In general, the information
granule regarded as a collection of elements drawn
together by their closeness (resemblance, proximity,
functionality, etc.) articulated in terms of some useful
spatial (Ciobanu and Vaideanu, 2014; Singh and Gani,
2015; Singh and Aswani Kumar, 2015a; Aswani Kumar
et al., 2015a), bidrectional (Aswani Kumar et al., 2015b),
temporal (Belohlavek and Trnecka, 2013; Dias et al.,
2013; Dias and Vieira, 2013), or functional relationships
(Singh and Aswani Kumar, 2012b; Vityaev et al., 2012;
Zhang et al., 2012). Selecting the level to find some
important concepts in the large context is based on user
requirements.

Definition 3. (Granular concept) Information granularity
has been engaged in one way or another in quantifying the
lack of numeric precision computed by different methods.
The computed weight (w) of any given concepts indicates
the importance of attributes (Y ) where 0 ≤ w ≤ 1. This
process gives the priority to the concepts whose weight is
more than the chosen threshold θ (0 ≤ θ ≤ 1) (Belohlavek
and Macko, 2011; Babin and Kuznetsov, 2012).

Example 1. For illustration of the granular based concept
lattice, a context shown in Table 1 has been considered
(Junli et al., 2013). Let us analyse any object xj ∈ X
of a given context and compute its probability P (yj/xi)
for possessing the corresponding attribute yi. Then the
average information weight E(yi), of xi to provide the
attribute yi ∈ Y can be computed as follows (and shown
in Tables 3 and 4) (Junli et al., 2013):

E(yi) = −
m∑

i=1

P (yi/xj) log2(P (yi/xj)), (1)

where m represents the total number of attributes

wi =
E(yi)

m∑
i=1

E(yi)
(2)

Weight(B) =

∑
(wi)

m
, (3)

where B is the intent.
The removal of formal concepts at a chosen

granulation is shown in Table 5. Subsequently, it can
be applied to FCA with fuzzy attributes as well (Singh
et al., 2015a; Xu and Li, 2015). �
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4.2. FCA with a fuzzy setting. FCA has been
extended with a fuzzy setting for handling vagueness and
uncertainty in data using the following definitions.

Definition 4. (Fuzzy formal context) It is a triplet K =
(X,Y, R̃), where X is a set of objects, Y is a set of
attributes and R̃ is an L-relation: X × Y → L.

Definition 5. (Residuated lattice) A residuated lattice
L = (L,∧,∨,⊗,→, 0, 1) is the basic structure of truth
degrees, and it is complete iff (i) (L,∧,∨, 0, 1) is a
complete lattice, (ii) (L,⊗, 1) is commutative monoid,
(iii) ⊗ and → are adjoint operators, i.e., a ⊗ b ≤ c iff

Table 3. Computed weight for each attributes of Table 1.
yi P(yi) E(yi) wi

a 0.875 0.169 0.026
b 0.125 0.375 0.057
c 0.500 0.500 0.076
d 0.500 0.500 0.076
e 0.375 0.531 0.081
f 0.500 0.500 0.076
g 0.125 0.375 0.057
h 0.875 0.169 0.026
i 0.125 0.375 0.057
j 0.375 0.531 0.081
k 0.250 0.500 0.076
l 0.250 0.500 0.076
m 0.250 0.500 0.076
n 0.375 0.531 0.081
o 0.500 0.500 0.076

Table 4. Computed weight and deviation for each concepts of
Fig. 1.

Node Intent Average W (B) D(y)

c0 � 1 1 0
c1 a 0.026 0.026 0
c2 d 0.76 0.076 0
c3 h 0.026 0.026 0
c4 ae 0.054 0.054 0.055
c5 ah 0.026 0.026 0
c6 ad 0.051 0.051 0.0326
c7 ach 0.043 0.043 0.029
c8 adn 0.061 0.061 0.031
c9 dhn 0.061 0.061 0.031
c10 acfho 0.056 0.056 0.028
c11 adfho 0.056 0.056 0.028
c12 adein 0.064 0.064 0.024
c13 bdghn 0.059 0.059 0.022
c14 acfhjo 0.060 0.060 0.027
c15 adfhjo 0.060 0.060 0.027
c16 acfhko 0.059 0.059 0.026
c17 adfhno 0.060 0.060 0.027
c18 acehjlm 0.063 0.063 0.026
c19 acehklm 0.063 0.063 0.025
c20 abcdefghijklmno 1 1 0

a ≤ b → c, ∀a, b, c ∈ L and defined distinctly (Davey and
Priestley, 2002; Macko, 2013).

Definition 6. (Fuzzy Galois connection) For any L-set
A ∈ LX of objects, and B ∈ LY of attributes we can
define an L-set of A↑ ∈ LY attributes and L-set B↓ ∈
LX of objects as follows (Belohlavek and Vychodil, 2012;
Pocs, 2012):

1. A↑(y) =
∧

x∈X

(A(x) → R̃(x, y)),

2. B↓(x) =
∧

y∈Y

(B(y) → R̃(x, y)).

Definition 7. (Fuzzy formal concept) It is a pair of
(A,B) ∈ LX × LY satisfying A↑ = B and B↓ = A,
where A is called the (fuzzy) extent and B is called the
(fuzzy) intent.

Example 2. For illustration, we have considered a fuzzy
context shown in Table 6. For concept generation and
lattice structure, the interested readers can refer to the
works of Belohlavek and Vychodil (2005), Kaiser and
Schmidt (2013), Kang et al. (2012a), Martin and Majidian
(2013) or Martin et al. (2013). �

Definition 8. (Implication) Implication over a attribute
set Y is an expression A ⇒ B, where A,B ⊆ LY .
It represents “if it is (very) true that an object has all
attributes from A, then it has also all attributes from B
(Massanet et al., 2013; Glodeanu, 2012). The notions

Table 5. Removed concepts at chosen granulation.
W (B) θ Removed concepts

1 0.076 < θ ≤ 1 c1,c2,c3,c4,c5,c6, c7
c8,c9,c10, c11, c12,

c13, c14,c15,c17,c18,c19
0.076 0.064 < θ ≤ 0.076 c1,c3,c4,c5,c6,c7,

c8,c9,c10,c11, c12,c13,
c14, c15,c17,c18,c19

0.64 0.063 < θ ≤ 0.064 c1,c3,c4,c5,c6,c7,
c8,c9,c10, c11,c13,c14,

c15,c17,c18,c19
0.063 0.061 < θ ≤ 0.063 c1,c3,c4,c5,c6,

c7,c8,c9, c10,c11,
c13,c14,c15,c17

0.061 0.060 < θ ≤ 0.061 c1,c3,c4,c5,c6,c7,c10,
c11,c13,c14,c15,c17

0.06 0.059 < θ ≤ 0.06 c1,c3,c4,c5,c6,
c7,c10,c11,c13

0.059 0.056 < θ ≤ 0.059 c1,c3,c4,c5,c6,
c7,c10,c11

0.056 0.054 < θ ≤ 0.056 c1,c3,c4,c5,c6,c7
0.054 0.051 < θ ≤ 0.054 c1,c3,c5,c6,c7
0.051 0.043 < θ ≤ 0.051 c1,c3,c5,c7
0.043 0.026 < θ ≤ 0.043 c1,c3,c5
0.026 0 < θ ≤ 0.026 �
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“being very true”, “to have an attribute” and logical
connective “if-then” are determined by the chosen L
(Belohlavek et al., 2013b; Zhai et al., 2012; 2013;
Massanet, 2013).

Example 3. Table 6 generate following implications (i)
(s, 0.5/l, f) → (s, l, f, n), (ii) (0.5/s, 0.5/n) → (s, n),
(iii) (l, f) → (l, f, 0.5/n), (iv) (0.5/l) → (0.5/l, f), (v)
(f, 0.5/n) → (l, f, 0.5/n) (vi) (n) → (s, n). These six
attribute implications are sufficient to determine all the
fuzzy formal concepts generated from Table 6. �

Recently many researchers focused on the analysis
of a fuzzy context having similar attributes set (Alcalde et
al., 2012a; 2012b; 2015; Li and Mi, 2013).

Example 4. For illustration, two fuzzy contexts having
a similar attribute set are shown in Tables 7 and 8, with
CS: Computer science, AC: Accounting, ME: Mechanical,
CK: Cooking, and C1, . . . , C5 representing candidates.
The context shown in Table 7 and 8 can be connected
using the composition R̃1 ∗ R̃2 = R̃3 as shown in Table 9.
For the employment of Waiter most of the candidates are
eligible, where C2 is more suitable having membership
value 1 (Singh and Aswani Kumar, 2015b; Tho et al.,
2006; Wang and Xu, 2011). �

Table 6. Fuzzy formal context.
Size Distance

small (s) large (l) far (f) near(n)

Mercury(Me) 1 0 0 1
Venus(Ve) 1 0 0 1
Earth(Ea) 1 0 0 1
Mars(Ma) 1 0 0.5 1
Jupiter(Ju) 0 1 1 0.5
Saturn(Sa) 0 1 1 0.5
Uranus(Ur) 0.5 0.5 1 0
Neptune(Ne) 0.5 0.5 1 0
Pluto(Pl) 1 0 1 0

Table 7. Requirements of knowledge for employment in a com-
pany: R̃1.

CS AC ME CK

Domestichelper 0.1 0.3 0.1 1.0
Waiter 0.0 0.4 0.0 0.7

Accountant 0.9 1.0 0.0 0.0
Carsalesman 0.5 0.7 0.9 0.0

Table 8. Knowledge of candidate for employment: R̃2.
CS AC ME CK

C1 0.5 0.8 0.3 0.6
C2 0.2 0.5 0.1 1.0
C3 0.0 0.2 0.0 0.3
C4 0.9 0.4 0.1 0.5
C5 0.7 0.5 0.2 0.1

4.3. FCA with an interval valued fuzzy setting.
For adequate analysis of fuzzy attributes, FCA has been
extended to an interval-valued fuzzy setting as described
below (Singh and Aswani Kumar, 2012a).

Definition 9. (Interval number) It is an D− [a−, b+] with
0 ≤ a− ≤ b+ ≤ 1. For interval numbers D1 = [a−1 , b

+
1 ]

and D2 = [a−2 , b
+
2 ], we can define (D[0, 1],≤,∨,∧) is a

complete lattice with [0, 0] as the least element and [1, 1]
as the greatest element.

Definition 10. (Interval-valued fuzzy set) An inter-
val-valued fuzzy set I in V is defined as

I =
{
(v, [μ−

I (v), μ
+
I (v)]) : v ∈ V

}
,

where μ−
I (v) and μ+

I (v) are fuzzy subsets of V such that
μ−
I (v) ≤ μ+

I (v) for all v ∈ V . For interval-valued fuzzy
sets I = [μ−

I (v), μ
+
I (v)] and J = [μ−

J (v), μ
+
J (v)] in V

we can define

• I ∪ J = (v,max(μ−
I (v)), μ−

J (v)),max(μ+
I (v),

μ+
J (v))), where, v ∈ V ;

• I ∩ J = (v,min(μ−
I (v)), μ−

J (v)), min(μ+
I (v),

μ+
J (v))), where v ∈ V .

Definition 11. (Fuzzy graph) A fuzzy graph G =
(V, μ, ρ) is a non-empty set V together with a pair of
functions μ : V → [0, 1] and ρ : V × V → [0, 1], such
that, for all v1, v2 in V , ρ(v1, v2)≤ μ(v1) ∧ μ(v2) , where
μ is said to be the fuzzy vertex set and ρ is the fuzzy edges
set of G.

Definition 12. (Interval-valued fuzzy graph) An
interval-valued fuzzy graph of a graph G, is a pair (I, J)
where I = [μ−

I , μ
+
I ] is an interval-valued fuzzy set on V

and J = [μ−
J , μ

+
J ] is an interval valued fuzzy relation on

the set E such that

μ−
J (pq) ≤ min(μ−

I (p), μ
−
I (q)),

μ+
J (pq) ≤ min(μ+

I (p), μ
+
I (q))

for all pq ∈ E.

Example 5. Suppose that V = {p, q, r} and E =
{pq, qr, rp}. Let I be an interval-valued fuzzy set of V
and J be an interval-valued fuzzy set of E ⊆ V × V
defined by

I = {(p/0.2, q/0.3, r/0.4), (p/0.4, q/0.5, r/0.6)} ,

Table 9. Composition of fuzzy contexts: R̃3 = R̃1 ∗ R̃2.
C1 C2 C3 C4 C5

Domestichelper 0.6 1.0 0.3 0.5 0.1
Waiter 0.9 1.0 0.6 0.8 0.4

Accountant 0.6 0.3 0.1 0.4 0.5
Carsalesman 0.4 0.2 0.5 0.2 0.3
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J =
{
(pq/0.1, qr/0.2, rp/0.1),

(pq/0.3, qr/0.4, rp/0.4)
}
.

Then it can be presented in an interval-valued fuzzy
graph as shown in Fig. 2 (Akram and Dudek, 2011). �
Definition 13. (Complete graph) An interval-valued
fuzzy graph G is complete if

μ−
J (pq) = min(μ−

I (p), μ
−
I (q))

and
μ+
J (pq) = min(μ+

I (p), μ
+
I (q)),

for all pq ∈ E.

Example 6. Consider graph G = (V,E) such that V =
(p, q, r), E = (pq, qr, rp) and I, J are defined as follows:

I = ((p/0.2, q/0.3, r/0.4), (p/0.4, q/0.5, r/0.5));

J = ((pq/0.2, qr/0.3, rp/0.2),

(pq/0.4, qr/0.5, rp/0.4)).

Then G = (I, J) is an interval-valued fuzzy complete
graph. �
Definition 14. The composition, join, and product of
two interval-valued fuzzy graphs G1 and G2 are again an
interval-valued fuzzy graph.

Example 7. (Interval-valued fuzzy context) It is a
triplet (X,Y, I) where X represents objects, Y represents
attributes and I represents interval-valued fuzzy relation:

I =
{
((x, y), [μ−

Ĩ
(x, y), μ+

Ĩ
(x, y)]) : (x, y) ∈ X × Y

}

(cf. Alcalde et al., 2011). As an example we have
considered a context shown in Table 10 (Djouadi and
Prade, 2009). �
Definition 15. (Interval-valued fuzzy con-
cept) (Singh et al., 2015b) It is a pair ((xi,
[μ−

R̃
(x), μ+

R̃
(x)]), (yj ,[μ−

R̃
(y), μ+

R̃
(y)])), which

satisfies (xi, [μ
−
R̃
(x), μ+

R̃
(x)]) = (subb(y))↓ and

(yj , [μ
−
R̃
(y), μ+

R̃
(y)]) = (subb(x))↑, where subb is used

for subset (Djouadi, 2011). For example, the following
interval-valued fuzzy formal concepts can be generated
from Table 10 (Singh and Aswani Kumar, 2014):

Fig. 2. Interval-valued fuzzy graph for Example 5.

1. {�, [1.0, 1.0]/y1 + [1.0, 1.0]/y2 + [1.0, 1.0]/y3},

2. {[0.9, 1.0]/x1 + [0.8, 1.0]/x2 + [0.3, 0.6]/x3 +
[0.2, 0.4]/x4, [1.0, 1.0]/y1},

3. {[0.5, 0.7]/x1 + [0.0, 1.0]/x2 + [1.0, 1.0]/x3 +
[0.6, 1.0]/x4, [1.0, 1.0]/y2},

4. {[0.0, 0.2]/x1 + [0.5, 0.5]/x2 + [0.8, 0.8]/x3 +
[0.0, 0.1]/x4, [1.0, 1.0]/y3},

5. {[0.5, 1.0]/x1 + [0.0, 1.0]/x2 + [0.3, 1.0]/x3 +
[0.2, 1.0]/x4, [1.0, 1.0]/y1 + [1.0, 1.0]/y2},

6. {[0.0, 1.0]/x1 + [0.5, 1.0]/x2 + [0.3, 0.8]/x3 +
[0.0, 0.4]/x4, [1.0, 1.0]/y1 + [1.0, 1.0]/y3},

7. {[0.0, 0.2]/x1 + [0.0, 1.0]/x2 + [0.8, 1.0]/x3 +
[0.0, 1.0]/x4, [1.0, 1.0]/y2 + [1.0, 1.0]/y3},

8. {[1.0, 1.0]/x1 + [1.0, 1.0]/x2 + [1.0, 1.0]/x3 +
[1.0, 1.0]/x4,�}.

The interval-valued fuzzy concept lattice for the
above generated concepts is shown in Fig. 3. This
extension has been successfully applied in information
retrieval and the rule mining tasks (Zerarga and Djouadi,
2013; Zhai et al., 2012).

4.4. FCA with possibility theory. FCA is augmented
with possibility theory for handling uncertainty in data.
In this section, we provide a summary of the four basic
set-functions of possibility theory in terms of FCA. The
possibility distribution π, defined on a universe U , is
equated to the characteristic (membership) function of a
fuzzy set H in U and the two set-functions (S, T ) are
associated with π as follows (Dubois and Prade, 2012).

Definition 16. (Potential possibility) A possibility
measure is π : π(S) = maxs∈S π(s). It estimates to
what extent event S is consistent with the information
represented by π and characterized by π(S ∪ T ) =

Table 10. Interval-valued fuzzy formal context.
y1 y2 y3

x1 [0.9, 1.0] [0.5, 0.1] [0.0, 0.2]
x2 [0.8, 1.0] [0.0, 1.0] [0.5, 0.5]
x3 [0.3, 0.6] [1.0, 1.0] [0.8, 0.8]
x4 [0.2, 0.4] [0.6, 1.0] [0.0, 0.1]
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max(π(S), π(T )), where as π(�) = 0 if π(s) is
normalized (i.e., there exists π(U) = 1). However, in
the Boolean case (the set H is non empty and crisp),
π(S) = 1 iff S ∩H �= �, otherwise 0.

Definition 17. (Actual necessity) It expresses the
necessity (certainty) an event is true as the opposite
event is more impossible as follows: N(S) = 1 −
π(S−) = 1 − maxs/∈S π(s), where /∈ S = U/S.
N(S) estimates to what extent event S is implied by
the information H represented by π and characterized by
decomposition property N(S ∩ T ) = min(N(S), N(T ))
whereas N(�) = 0 if N is normalized (i.e., there exists
N(U) = 1). However, in the Boolean case N(A) = 1 iff
� �= H ⊆ A, otherwise 0.

Definition 18. (Actual possibility) A measure of “actual
(or guaranteed) possibility” Δ(S) = maxs∈S π(s). It
estimates to what extent all elements in S are possible and
characterized by Δ(S ∪ T ) =min(Δ(S),Δ(T )), whereas
Δ(�) = 1 by convention (hence Δ ≤ π and Δ(U) = 0 if
π is anti-normalized (i.e., there exists u such that π(u) =
0). However, in the Boolean case, Δ(A)=1 iff S ⊂ H (if
H �= U ), otherwise 0.

Definition 19. (Potential necessity) A dual measure of
“potential necessity or certainty” ∇(S) = 1 − ∇(S−) =
1 − maxs/∈S π(s), which estimates to what extent there
exists at least one value in the complement of S that has
a zero (or more generally a low) degree of possibility
and is characterized by ∇(S ∪ T ) = max(∇(S),∇(T ))
whereas ∇(�) = 1 if π is anti-normalized and ∇(U) = 0.
However, in the Boolean case, ∇(S) = 1 iff S ∩H �= U ,
otherwise 0.

The above operators can be combined with each
other in a meaningful way in a formal context K =
(X,Y,R) as follows:

1. Xπ is the set of objects that satisfy at least one
attributes in Y .

Xπ = {x ∈ X |Y ∩R(x) �= �}
= {x ∈ X |∃y ∈ Y : xRy �= �} .

Fig. 3. Interval-valued fuzzy concept lattice of Table 10.

2. XN is the set of objects such that any objects
satisfied by one of them is necessarily in Y :

XN = {x ∈ X |R(x) ⊂ Y }
= {x ∈ X |∀y ∈ Y : (xRy ⇒ y �= Y )} .

3. XΔ is the set of objects that satisfy all attributes in
Y :

XΔ = {x ∈ X |∀y ∈ Y (y ∈ y ⇒ xRy}
= {x ∈ X |Y ⊂ R(x)} .

4. X∇ is the set of objects that do not satisfy at least
one attributes in Y −.

X∇ = {x ∈ X |Y ∪R(x) �= X}
=

{
x ∈ X |∃y ∈ Y − : xR−y

}
.

Definition 20. (Derivational operator) The derivational
operators are defined in an L-context for the fuzzy set Ỹ
∈ LY (X̃ ∈ LX):

(i) X̃δ(x)=∧x∈X (X̃(x) → R(x, y)),

(ii) X̃π(x)=∨x∈X (X̃(x) ∗R(x, y)),

(iii) X̃N (x)=∧x∈X (R(x, y) → (̃X)(x)),

(iv) X̃∇(x)=∨x∈X (−X̃(x) ∗ −R(x, y)),

where → denotes a fuzzy implication and ∗ denotes a
fuzzy conjunction.

Definition 21. (Formal concept with possibility theory)
It is a pair (X̃, Ỹ ) such that X̃Δ = Ỹ and Ỹ Δ = X̃
(similarly for other operators), and it follows the infimum
and supremum property given by

∧

j∈J

(Xj , Yj) = (
⋂

j∈J

Xj , (
⋃

j∈J

Yj)
ΔΔ),

∧

j∈J

(Xj , Yj) = ((
⋃

j∈J

Xj)
ΔΔ,

⋂

j∈J

Yj).

4.5. FCA with rough set theory. Rough set theory
(RST) deals with uncertainty and imperfect knowledge.
It was introduced in FCA by Yao (2004) and Yao et al.
(2012).

Definition 22. (Approximation operator) The dual
approximation operators ◦ and Δ:2X → 2Y can be
defined as below:

X◦ = {y ∈ Y | ∀x ∈ X(xIY ⇒ x ∈ X)}
= {y ∈ Y | Iy ⊆ X)} .
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XΔ = {y ∈ Y | ∃x ∈ X(xIY ∧ x ∈ X)}
= {y ∈ Y | Iy ∩X �= �)} =

⋃

x∈X

xI.

Similarly, other pairs of approximation operators ◦

and Δ:2Y → 2X can be defined as below:

Y ◦ = {x ∈ X | ∀y ∈ Y (xIY ⇒ y ∈ Y )}
= {y ∈ Y | xI ⊆ Y )} .

Y Δ = {x ∈ X | ∃y ∈ Y (xIY ∧ y ∈ Y )}
= {x ∈ X | xI ∩ Y �= �)} =

⋃

y∈Y

Iy.

Based on the above notions, two new concept lattices
in rough set theory can be introduced as follows.

Definition 23. (Object and attribute oriented concept) A
pair (A,B), A ⊆ X , B ⊆ Y is called an object oriented
concept if X = Y Δ and Y = X◦. The set of all object
oriented formal concepts forms a lattice. Specifically, the
meet ∧ and join ∨ are defined by

(x1, y1) ∧ (x2, y2) = ((y1 ∩ y2)
Δ, y1 ∩ y2),

(x1, y1) ∨ (x2, y2) = (x1 ∪ x2, (x1 ∪ x2)
◦).

Similarly, a pair (A,B), A ⊆ X , B ⊆ Y is called
an attribute oriented concept if X = Y ◦ and Y = XΔ.
All the generated property oriented formal concepts form
a lattice. Specifically, the meet ∧ and join ∨ are defined
by

(x1, y1) ∧ (x2, y2) = ((x1 ∩ x2, x1 ∩ x2)
Δ),

(x1, y1) ∨ (x2, y2) = ((y1 ∪ y2)
◦, (y1 ∪ y2)).

Example 8. For illustration, we have considered a formal
context shown in Table 11. The object oriented concepts

Table 11. Formal context.
y1 y2 y3 y4 y5

x1 × × × ×
x2 × ×
x3 × ×
x4 × ×
x5 ×
x6 × × ×

generated from Table 11 are

1. {(x1, x2, x3, x4, x5, x6), (y1, y2, y3, y4, y5)},

2. {(x1, x2, x5, x6), (y1, y3, y4)},

3. {(x1, x2, x3, x6), (y2, y3, y4, y5)},

4. {(x1, x2), (y3, y4)},

5. {(x1, x3, x4, x6), (y2, y4, y5)},

6. {(x1), (y4)},

7. {(x3, x4, x5), (y2)},

8. {�,�}.

Similarly, the attribute oriented formal concepts generated
from Table 11 are

1. {(x1, x2, x3, x4, x5, x6), (y1, y2, y3, y4, y5)},

2. {(x2, x3, x4, x5, x6), (y1, y2, y3, y5)},

3. {(x1, x2, x5), (y1, y3, y4, y5)},

4. {(x3, x4, x5, x6), (y1, y2, y5)},

5. {(x2, x5), (y1, y3)},

6. {(x3, x4), (y2, y5)},

7. {x5, y1},

8. {�,�},

where � represents the null set.
The object and attribute oriented concept lattices are

shown in Figs. 4 and 5, respectively. These two concept
lattices differ in representations of the involved subsets
of objects and their attributes. Recently, this extension
has been applied in several research domains (Ganter and
Meschke, 2011; Yang et al., 2011b; Kang et al., 2012b;
Slezak, 2012; Wang and Li, 2012; Yang, 2011; Zhao and
Liu, 2011) as well as for concept approximation (Chen
et al., 2015; Saquer and Deogun, 2001). �

4.6. Triadic concept analysis in a fuzzy setting.
Extension to a triadic context handles more attributes or
conditional attributes in a crisp as well as a fuzzy setting.

Fig. 4. Object oriented concept lattice of Table 11.
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Definition 24. (Triadic context) It is defined as a
quadruple K = (X,Y, Z, Ĩ), where X represents a set of
objects, Y represents a set of attributes and Z represents
a set of conditions, i.e, if (x, y, z) ∈ Ĩ means object x
has attribute y under condition z, whereas in the case of
fuzzy attributes I represents the relationship among them
using fuzzy membership-value. From a triadic context,
the number of dyadic contexts can be derived as follows
(Ignatov et al., 2015): Given a fuzzy set Ck ∈ LXk ,
K induces a dyadic fuzzy context Kij

Ck
= (Xi, Yj , Ĩ

ij
Ck

),

where IijCk
is defined by (Belohlavek and Osicka, 2012a).

ĨijCk
(xi, yj) =

∧

zk∈Zk

Ck(xk) → Ĩ(xi, yj, zk).

The pair (xi, yj) ∈ ĨijCk
iff for each xk ∈ Xk implies

(xi, yj , zk) ∈ Ĩ . The concept forming operator can be
induced by a dyadic context Kij

Ck
, i.e., for a fuzzy set

Ci ∈ LXi we can define a fuzzy set Ci,j
Ck

∈ LYj =

∧xi∈XiCi(xi) → ĨijCk
(xi, yj).

Definition 25. (Triadic fuzzy concepts) It is a triplet
(A1, A2, A3) consisting of fuzzy sets A1 ∈ LX , A2 ∈
LY , A3 ∈ LZ such that Ai = Ai,j,Ak

j , Aj = Aj,k,Ai

k , and

Ak = A
k,i,Aj

i and can be shown in the concept trilattice.

Example 9. For illustration, a triadic context shown
in Table 12 is considered, where objects (Beef Steak,
Cheese Salad, Vegetable Plate and Fried Chicken Wings)
represent dishes; attributes (Taste: T, Aroma: A, Look: L,
and Price: P) represent features of the dishes; customers
(Fry, Bender, Leela, Zoidberg) represent evaluation of the
dishes (Belohlavek and Osicka, 2012b). The degree 0
stands for bad, 1/2 for neutral and 1 for excellent. Table
13 depicts five triadic fuzzy concepts generated from the
context shown in Table 12, which provide the following
information: Concept No. 1 represents customers who
evaluate taste and aroma of beaf steak and fried chicken

Fig. 5. Property oriented concept lattice of Table 11.

wings as excellent whereas their look is evaluated as
neutral. Concept No. 2 represents that customers who
like salad for its excellent taste, aroma and look, whereas
its price evaluates as neutral. Concept No. 3 represents
customers having no preferences in food. Concept No. 4
represents customers who like beef steak and partly fried
chicken wings for their excellent taste and look and at
least neutral aroma. Concept No. 5 shows that there
is no customer who finds all properties of given dishes
excellent.

�

4.7. Factor concepts. In this section, data analysis
using factor concepts is described (Belohlavek, 2012;
Ganter and Glodeanu, 2012; Glodeanu and Ganter, 2012;
Glodeanu, 2011).

Definition 26. (Factor concepts) A subset of formal
concepts F generated from the given formal context F
such that

⋃
(A,B)∈F (A×B) = R is called factorization. If

F is minimal with respect to its cardinality, then it is called

Table 12. Triadic fuzzy formal context.
Steak Salad Veg Wings

Fry

Taste 1 0.5 0 1
Aroma 1 0 0 1
Look 1 0.5 0.5 0.5
Price 0 0.5 1 0.5

Bender

Taste 1 0 0 1
Aroma 1 0 0 1
Look 1 0.5 0 0.5
Price 0.5 0 0 1

Leela

Taste 0.5 1 0.5 0
Aroma 0 1 0 0
Look 0.5 1 0.5 0
Price 0 1 0 0.5

Zoidberg

Taste 1 1 1 1
Aroma 1 1 1 1
Look 1 1 1 1
Price 0 0.5 0 0.5

Table 13. Five triadic fuzzy concepts generated from Table 12.
1 2 3 4 5

Steak 1 0 1 1 1
Salad 0 1 1 0 1

Vegetable 0 0 1 0 1
Wings 1 0 1 0.5 1
Taste 1 1 1 1 1

Aroma 1 1 1 0.5 1
Look 0.5 1 1 1 1
Price 0 0.5 0 0 1
Fry 1 0 0 1 0

Bender 1 0 0 1 0
Leila 0 1 0 0 0

Zoidberg 1 1 1 1 0
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an optimal factorization. The elements of F are called
(optimal) factors. Then O(X,Y,R) ∩ A(X,Y,R) ⊆
F are called mandatory factors, where O(X,Y,R) and
A(X,Y,R) are the sets of object and attribute concepts,
respectively.

The idea of finding factor concepts is based on the
set covering problem.

Example 10. Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},
V = {2, 4, 6, 8, 10}, P = ({1, 2}, {2, 3}, {4, 5},
{6, 7, 8}, {9, 10} , {1, 3, 5}, {2, 4}, {4, 6}, {8, 9, 10}).

• C = {{1, 2} , {8, 9, 10}} is not a covering of V
because

⋃
C �= V .

• C = {{1, 2} , {2, 3} , {4, 5} , {6, 7, 8} , {9, 10}} is a
covering of V because

⋃
C = V . But C is not

minimal because there exist coverings of V which
contain smaller number of sets.

• C = {{2, 4} , {6, 7, 8} , {9, 10}} is a minimal
covering of V because

⋃
C = V and no other

covering has smaller numbers of sets than 3.

• C = {{2, 4} , {4, 6} , {8, 9, 10}}.

�

Example 11. As an example, a context shown in Table 14
can be considered, with the following abbreviations: g
(gas and dust), y (young stars), o (old stars), s (spiral
arms), b (bulge), m (minimal star formation). The formal
concepts generated from Table 14 are shown in Table 15.
The matrix shown in Table 14 can be decomposed into a
Boolean matrix

⋃
(A,B)∈F (A×B = I such that |F | ≤ |Y |.

�

Definition 27. (Mandatory concepts) These are
object and attribute concepts, investigated as follows:
O(X,Y,R) = ({c1, c2, c3, c4} and A(X,Y,R) =
({c1, c2, c4, c5, c6}.

The object concepts in Table 15 are O(X,Y,R) ∩
O(X,Y,R) = {c1, c2, c4}. The object concepts are those
formal concepts which we are looking for the analysis.
We can observe that these concepts {c1, c2, c4} do not

Table 14. Formal context of Galaxy types and their properties.
Galaxies g y o s b m

1. Milky Way × × × × ×
2. Virgo A × ×

3. M 82 × × ×
4. M 83 ×
5. M 85 × × × × ×

6. M 102 × ×
7. M 105 × ×

cover the incidence induced by the objects 5 and 6.
These objects can be covered by c3, c5 and c6, as shown
in Table 15. However, the obtained set of concepts
with c5 and c6 would not be a minimal subset with
respect to cardinality. Finally, optimal factor F includes
({c1, c2, c3, c4}, which decompose the matrices (7×6)
shown in Table 13 into two 7×4 and 4×7 matrices to
be analyzed in a 4-dimensional space of factors instead
of describing the galaxies in a 7-dimensional space.
Recently, some applications of factor concepts have been
shown in FCA with a fuzzy setting also (Belohlavek et al.,
2013a; 2011b; Bartl et al., 2011; Ignatov et al., 2015; Yao
et al., 2012) as well as in graph theory (Helmi et al., 2014).

4.8. FCA with incomplete data. In this section,
we provide a discussion on handling incomplete data
(Simiński, 2012).

Definition 28. (Incomplete context) (Krajca et al., 2012;
Li et al., 2013a; Simiński, 2012) An incomplete L-context
is a triplet = (X,Y,R), where X and Y are sets and R:
X × Y → L such that R ⊆ U ∪ {0, 1}. An ordinary
context is the completion of a given relation.

Example 12. For illustration, we have considered an
incomplete context shown in Table 16, where u1 and u2

represent the unknown values, and u1 ≤ u2. Three
possible contexts are shown in Tables 17–19. Their
corresponding lattices are shown in Figs. 6–8. �

Definition 29. (Incomplete fuzzy context) Let U =
{u1, u2, . . . , uk} be the set of variables and V (⊆ 2U ) a set
of assignments representing known dependencies between
the variables. Then we can find the minimal residuated
lattice K (U ∪L) for the set of admissible assignments V .
An incomplete L-context with variables {u1, u2, . . . , uk}

Table 15. Formal concepts generated from the context shown in
Table 14.

Ci Concept Descriptions

C0 (�, Y ) empty concept
C1 ({1, 4} , {g, y, o, s, b}) spiral galaxy
C2 ({2, 7} , {o,m}) elliptic galaxy
C3 ({1, 4, 5, 6} , {o, b}) lenticular galaxy
C4 ({1, 3, 4} , {g, y, b}) irregular galaxy
C5 ({1, 2, 4, 5, 6, 7} , {o}) galaxy with old stars
C6 ({1, 3, 4, 5, 6} , {b}) galaxy with bulge
C7 (X,�) universal concept

Table 16. Incomplete formal context.
y1 y2 y3 y4 y5

x1 × ×
x2 u1 × u2 ×
x3 × × ×
x4 ×
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is a formal context (X , Y , R̃), where R̃ can take values

Table 17. Possible complete formal context for Table 16.
y1 y2 y3 y4 y5

x1 × ×
x2 × ×
x3 × × ×
x4 ×

Table 18. Second possible complete formal context for Table
16.

y1 y2 y3 y4 y5

x1 × ×
x2 × × ×
x3 × × ×
x4 ×

Table 19. Third possible complete formal context for Table 16.
y1 y2 y3 y4 y5

x1 × ×
x2 × × × ×
x3 × × ×
x4 ×

Fig. 6. Concept lattice for Table 17.

Fig. 7. Concept lattice for Table 18.

Table 20. Incomplete fuzzy formal context.
y1 y2 y3

x1 0.5 0.0 0.5
x2 u1 1.0 0.0
x3 0.0 u2 0.5
x4 0.0 1.0 1.0

from L and U : R̃(X × Y ) ⊆ U ∪ L. This means that
the formal context contains only elements of L and the
variables. Hence, for this purpose we can define a map for
v: U → L, where L is a residuated lattice.

Example 13. For illustration, an incomplete context
shown in Table 20 is considered containing values from
an L context = {0.0, 0.5, 1.0}, and the set of variables u1,
u2 varies between 0.0, 0.5 and 1.0. Hence, the context can
take values from {0.0, 0.5, 1.0} and represent them as a
complete fuzzy context. �

5. Applications of FCA

This section summarizes the applications of FCA reported
in the literature after 2011. Tables 21–24 provide
this summary. From these tables we can conclude
that FCA has attracted applications in several domains
due to its potential of knowledge discovery (Aswani
Kumar, 2011a; 2011b; Aswani Kumar and Singh, 2014),
representation (Iordache, 2011; Poelmans et al., 2013a;
2014), reasoning (Rainer and Ganapati, 2011; Ruairi,
2013; Sebastien et al., 2013) and the decision context
(Li et al., 2011a; 2011b; Shao et al., 2014) which
contains another tuple called a set of decision attributes
(Yang et al., 2011a). Ontology engineering is an
another research direction regarding relations between
individuals and classes. FCA has been applied to identify
important groups of individuals that responded similarly
to peer-identified experts (Alqadah and Bhatnagar, 2012;
Codocedo et al., 2012; Chen et al., 2011; Formica,
2012; Fowler, 2013; Junli et al., 2013; Senatore and
Pasi, 2013; Tadrat et al., 2012; Tho et al., 2006). Recently,
several researchers have shown the application of formal
concepts in description logic for improving the knowledge
representation task (Atif et al., 2014; Borgwardt and
Penaloza, 2014; Distel, 2012; Denniston et al., 2013; Pei
et al., 2013; Wu et al., 2012). Description logic discounts
the structural representation of knowledge consisting of

Fig. 8. Concept lattice for Table 19.
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the terminological part (TBox) and the assertional part
(ABox). Subsequently, hierarchical order visualization
between the entity and its relations in a conceptual graph
using FCA has been discussed (Croitorua et al., 2012;
Li and Guo, 2013; Nguyen et al., 2011; Nguyen and
Yamamoto, 2012; Yu et al., 2013; Annapurna and Aswani
Kumar, 2013).

FCA has been used for handling relational structures
in the source code and dependency between software parts
in several aspects including RBAC (Priss, 2011; 2012;
Priss et al., 2012; 2013). Role based access control
(RBAC) provides the role of a user in the IT systems with
specific permissions like read or write. Designing RBAC
using FCA has been discussed by Aswani Kumar (2013).
The technique to identify unexpected and potential effects
caused by software changes and their impact analysis
using FCA is developed by Korei (2013) and Li et al.
(2013c).

A gene expression dataset is a many-valued context
in which each row corresponds to a gene and each
column to a sample, and the attribute (expression) values
indicate the abundance of mRNA in a sample (Muszyński
and Osowski, 2013), http://indianalgae.co.in.
Hence the patterns of gene data have been studied after the
scaled context using FCA by Kaytoue et al. (2011a). FCA
has been applied for mining the common hypermethylated
genes between breast cancer subtypes by Amin et al.
(2012) and Bouaud et al. (2013). Endres et al. (2012) have
applied FCA to read the semantic information obtained
from fMRI Bold responses using FCA. The ingredients
of FCA with mathematical morphology and description
logics have been combined for image processing tasks by
Atif et al. (2014). We observe that some of the researchers
have tried to analyze the sentiments of people using
FCA (emotions, love, preference) (Li and Tsai, 2013;
Antoni et al., 2014). The word opinion or preference
shows two sides: one is acceptation and another is
non-acceptation, which may mold the concept lattice
for bipolar information visualization (Singh and Aswani
Kumar, 2014).

“Big data” and their analysis attracted the attention of
some researchers using FCA to find the pattern structure
and its visualization (Biao et al., 2012; Kuznetsov,
2013; Radvansky et al., 2013). Subsequently, in cloud
computing, allocating resources to users using FCA has
been discussed by Sarnovsky et al. (2012).

6. Conclusions

In this paper we aimed at analyzing the current research
trends in FCA based on innovations reported in more
than 350 papers published after 2011. We can
observe that FCA has received significant attention of
researchers for knowledge discovery and representation
tasks. Subsequently, FCA is extended into different

Table 21. Some important applications of FCA in the KDD pro-
cess and ontology engineering.
KDD process Research goal

Alcalde et al., 2012c Finding temporal patterns
Alqadah and Bhatnagar, 2012 Mining similar concepts

Aswani Kumar, 2011b Knowledge discovery
Aswani Kumar, 2012 Rule mining

Belohlavek et al., 2011a IPAQ questionnaires
Belohlavek et al., 2013b Background knowledge

Dau, 2013 Analyzing a triple store
Fowler, 2013 Order in taxonomy

Galitsky et al., 2013 Pattern on parse thickets
Macko, 2013 Fuzzy FCA

Missaoui and Kwuida, 2011 Triadic rules
Nguyen et al., 2011 Mathematical search

Nguyen and Yamamoto, 2012 Learning from graph
Li et al., 2011b Symbolic data analysis
Pavlovic, 2012 Quantitative data analysis

Rouane et al., 2013 Multi relational data
Li and Tsai, 2013 Sentiments analysis

Trabelsi et al., 2012 Analyzing folksonomies
Vityaev et al., 2012 Probabilistic concepts
Watmough, 2014 ERP analysis
Yang et al., 2011b Decision-making

Zhao and Liu, 2011 Complex systems
Zhang et al., 2012 Frequent concepts
Tang et al., 2015 Chemical structure

Ontology engineering Research goal

Alqadah and Bhatnagar, 2012 Mining similar concepts
Chen et al., 2011 Merging domain ontology

Dau, 2013 Analyzing triple store
Formica, 2012 Semantic web search
Formica, 2013 Similarity reasoning
Fowler, 2013 Ontology investigation

Ilvovsky and Klimushki, 2013 Duplicate ontology
Junli et al., 2013 Merging ontology

Macko, 2013 Friendly ontology
De Maio et al., 2012b E-learning
De Maio et al., 2014 Ontological structure
Tadrat et al., 2012 Case based reasoning
Tho et al., 2006 Fuzzy ontology

applications of data analysis. In this paper we have
analyzed some of these extensions and augmentation of
FCA with illustrative examples. The first categorized
domain is granular based computing of formal concepts
to describe their importance. Other domains discuss
the mathematics behind FCA with a fuzzy setting, an
interval-valued fuzzy setting, possibility theory, a rough
setting, a triadic, factor and incomplete context to apply
these extensions in the appropriate context for knowledge
processing tasks.

http://indianalgae.co.in
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Table 22. Some important applications of FCA in text mining,
information retrieval and linguistics.

Text mining Research goal

Belohlavek and Macko, 2011 Selecting
some concepts

Ferjani et al., 2012 Feature
extractions

Formica, 2012 Semantic web
Galitsky et al., 2013 Finding patterns

on parse thickets
Hamrouni et al., 2013 Finding some

frequent itemset
Li and Guo, 2013 Investigating

formal query
De Maio et al., 2014 Text mining

Muangprathub et al., 2013 Classification
Li and Tsai, 2013 Text mining

Information retrieval Research goal

Aswani Kumar et al., 2012 Information retrieval
Alqadah and Bhatnagar, 2012 Similar concepts

Bloch, 2011 Bipolar information
Eklund et al., 2012 Similar concepts
Chen et al., 2011 Domain ontology

Codocedo et al., 2012 Finding cousins
Neznanov and Kuznetsov, 2013 FCART tool

Poshyvanyk et al., 2012 Concept location
Priss, 2006 Application in

information sciences
Senatore and Pasi, 2013 Finding correlations

Li and Tsai, 2013 Opinion classification
Zerarga and Djouadi, 2013 Information retrieval

Linguistics Research goal

Alcalde et al., 2011 Linguistic proposition
Bloch, 2011 Linguistics

representation
Chen et al., 2011 Wordnet system

Croitorua et al., 2012 Linguistics
analysis

Muangprathub et al., 2013 Classification
Priss, 2005 Linguistics

application
Yu et al., 2013 Analyzing verbs
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Table 23. Some important applications of FCA in security anal-
ysis, web services, social network analysis and soft-
ware engineering.
Security analysis Research goal

Aswani Kumar, 2013 Role based
access control

Aufaure and Grand, 2013 Social network
analysis

Cook and Coombs, 2004 Military intelligence
Du and Hai, 2013 Mining web page

Elzinga et al., 2010 Terrorist threat
assessment

Poelmans et al., 2013c Criminal trajectories
Priss, 2011 Unix system

monitoring
Romanov et al., 2012 Detect anomalies

Web services Research goal

Qin et al., 2013 Impact analysis
De Maio et al., 2012a E-learning

Priss et al., 2013 Software assessment
Rouane et al., 2013 Mining from multi

relational data
Watmough, 2014 ERP analysis
Tho et al., 2006 Web retrieval

Zhang et al., 2013a; 2013b Extracting data
from web database

Social network analysis Research goal

Aufaure and Grand, 2013 FCA in social
network analysis

Cook and Coombs, 2004 Network analysis
using FCA

Elzinga et al., 2010 Terrorist threat
assessment by FCA

Li et al., 2013c Call graph
for network

Poelmans et al., 2013c Criminal trajectory
network analysis

Wang et al., 2012 Wireless sensor
network

Software engineering Research goal

Helen et al., 2013 Energy saving
model using FCA

Priss et al., 2012 Learning process
Rouane et al., 2013 Relational concept

analysis
Sarnovsky et al., 2012 Distributed

S/W analysis
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study of fuzzy context sequences, International Journal of
Computational Intelligence Systems 6(3): 518–529.

Alcalde, C., Burusco, A. and Fuentes-González, R. (2015). The
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