
Int. J. Appl. Math. Comput. Sci., 2016, Vol. 26, No. 3, 693–706
DOI: 10.1515/amcs-2016-0048

SCHEDULING PREEMPTABLE JOBS ON IDENTICAL PROCESSORS UNDER
VARYING AVAILABILITY OF AN ADDITIONAL CONTINUOUS RESOURCE

RAFAŁ RÓŻYCKI a, GRZEGORZ WALIGÓRA a,∗, JAN WĘGLARZ a

aInstitute of Computing Science
Poznań University of Technology, Piotrowo 2, 60-965 Poznań, Poland

e-mail: {rafal.rozycki,grzegorz.waligora,jan.weglarz}@cs.put.poznan.pl

In this work we consider a problem of scheduling preemptable, independent jobs, characterized by the fact that their pro-
cessing speeds depend on the amounts of a continuous, renewable resource allocated to jobs at a time. Jobs are scheduled
on parallel, identical machines, with the criterion of minimization of the schedule length. Since two categories of resources
occur in the problem: discrete (set of machines) and continuous, it is generally called a discrete-continuous scheduling
problem. The model studied in this paper allows the total available amount of the continuous resource to vary over time,
which is a practically important generalization that has not been considered yet for discrete-continuous scheduling prob-
lems. For this model we give some properties of optimal schedules on a basis of which we propose a general methodology
for solving the considered class of problems. The methodology uses a two-phase approach in which, firstly, an assignment
of machines to jobs is defined and, secondly, for this assignment an optimal continuous resource allocation is found by
solving an appropriate mathematical programming problem. In the approach various cases are considered, following from
assumptions made on the form of the processing speed functions of jobs. For each case an iterative algorithm is designed,
leading to an optimal solution in a finite number of steps.

Keywords: machine scheduling, preemptable jobs, continuous resource, makespan, mathematical programming.

1. Introduction

In the classical scheduling problems it is assumed that
resources can be assigned to jobs in amounts from a
given finite set only (i.e., in discrete numbers of units).
Such resources are called discrete (or discretely divisible).
However, in many practical situations resources can
be allotted to jobs in arbitrary numbers from a given
interval (i.e., in real numbers). Such resources are
called continuous (or continuously divisible). Situations
of this type occur when, e.g., jobs are processed by
parallel processing units driven by a common (electric,
pneumatic, hydraulic) power source, like the frequently
supplied grinding or mixing machines, electrolytic tanks,
or refueling terminals. More recently, the so-called
power (or energy) aware scheduling problems have been
considered, where a set of processors is a discrete resource
and power (energy) is a continuous resource (see, e.g.,
Różycki and Węglarz, 2012).

In general, two job processing models appear in

∗Corresponding author

the literature. In the first model, the processing time
vs. resource amount, the job duration is a function of
the amount of a continuous resource allotted to this job.
This model is a straightforward generalization of the
well-known discrete time-resource tradeoff model. It is
implicitly assumed that the resource amount allocated to a
job does not change during its execution. In the second
model, the processing speed vs. resource amount, the
processing speed of a job is a function of the amount of
a continuous resource allotted to this job at a time. In
this case, the amount of the continuous resource allotted
to a job may change during its execution. From between
the two above-mentioned models, the processing speed vs.
resource amount model is more natural in the majority of
practical situations, since it reflects directly the temporary
nature of renewable resources. As examples, functions
like rotational speed vs. electric current, or progress speed
vs. the number of primary memory pages allotted to a
program can be given. Moreover, the processing speed
vs. resource amount model allows performing a deeper
analysis of the properties of optimal schedules, and can

{rafal.rozycki, grzegorz.waligora, jan.weglarz}@cs.put.poznan.pl

694 R. Różycki et al.

even lead to analytical results in some cases. Because of
that, it is sometimes reasonable to treat a discrete resource
as a continuous one in order to use this model. Such an
approach may be applied when there are sufficiently many
allotments of the discrete resource for processing a job,
e.g., in scalable or massively parallel processor systems.

Discrete-continuous scheduling problems arise when
jobs simultaneously require discrete and continuous
resources for their executions. Machine scheduling
problems of this type were considered, e.g., by Gorczyca
and Janiak (2010) or Janiak (1991), whereas project
scheduling problems were discussed by Kis (2005),
Leachman (1983), Leachman et al. (1990) or Waligóra
(2011; 2014). In this paper we consider a problem of
scheduling preemptable, independent jobs on parallel,
identical machines under an additional, continuous,
renewable resource to minimize the schedule length (or
the makespan). However, in all the previous works it was
assumed that the availability of the continuous resource
did not depend on time, i.e., the total amount of the
resource available at a time was constant. In this paper we
consider a generalization of those problems, and assume
that the total available amount of the continuous resource
periodically varies over time. The length of each resource
availability period, as well as the amount (nonnegative
and constant) of the resource available in the period, is
known in advance. Practical motivations for considering
such a problem can be very easily found in real life.
These are situations where, e.g., the continuous resource
is power, and the delivery of the power source varies over
time. For example, we can imagine a farm of multicore
processor systems driven by a power source supported
by an additional solar battery. During sunny periods the
delivery of such a power source will be much higher
than during cloudy hours. Furthermore, changes in the
amount of power taken by a single processor can be
forced for thermal reasons. In order to reduce the risk
of overheating a processor of the VSP (variable speed
processor) type, the frequency of its clock is periodically
changed, which results in a varying amount of power
taken by the processor. If such a processor is fully
loaded, the power changes necessary for thermal reasons
can be predicted and taken into account in algorithms
for scheduling computational tasks. Similar examples
concerning varying availability of a continuous resource
can be given from other areas as well. The defined
problem was first considered by Kis (2005), but only for
convex processing speed functions of activities.

The paper is organized as follows. In Section 2
we recall the most important results concerning the
problem of allocating a continuous, renewable resource
among independent jobs to minimize the makespan in the
absence of limited discrete resources. The section reports
the basic results for the continuous resource allocation
problem obtained for two classes of the processing

speed functions of jobs: convex and concave functions.
Section 3 contains the mathematical formulation of the
problem under consideration. In Section 4 we recall
the results for the case of constant continuous resource
amount, whereas in Section 5 we formulate the general
methodology underlying the approaches proposed in this
paper. Section 6 is devoted to the case of convex
processing speed functions. We show that in this case
the number of machines in the problem considered is
of no importance, and we give an exact polynomial
algorithm for finding optimal schedules. In Section 7
we focus on the case of concave processing speed
functions. Within this case we distinguish between
situations when the number of jobs is not greater than
that of machines (Section 7.1), and when there are more
jobs than machines (Section 7.2). In both cases we present
exact algorithms for finding optimal schedules, in which
nonlinear mathematical programming (NLP) problems
have to be solved. Some conclusions and directions for
future research are given in Section 8.

2. Continuous resource allocation

In this section we recall very briefly the main theoretical
results concerning the case when a continuous, renewable
resource is the only limited resource, and discrete
resources are unlimited.

We assume that n independent jobs with equal ready
times, each characterized by the processing speed vs.
resource amount function, are to be scheduled to minimize
the makespan. One continuous, renewable resource is
available. The availability of the resource over time is
constant and, without loss of generality, we assume that
its total available amount is equal to 1. The resource
can be allotted to jobs in (arbitrary) amounts from the
interval [0, 1]. The amount (unknown in advance) of the
continuous resource allotted to job i, i = 1, 2, . . . , n, at
time t is denoted by ui(t), and

∑n
i=1 ui(t) ≤ 1 for any

t. The resource amount ui(t) determines the processing
speed of job i, which is described by the following
equation:

ẋi(t) =
dxi(t)

dt
= fi[ui(t)], (1)

xi(0) = 0, xi(Ci) = wi,

where xi(t) is the state of job i at time t; fi is the
processing speed function of job i, continuous, increasing,
and such that fi(0) = 0; ui(t) is the continuous resource
amount allotted to job i at time t; Ci is the completion
time (unknown in advance) of job i; wi is the size (final
state) of job i.

State xi(t) of job i at time t is an objective measure
of work related to the processing of job i up to time t. It
may denote, e.g., the number of man-hours already spent
on processing job i, the volume (in cubic meters) of a

Scheduling preemptable jobs on identical processors under varying availability . . . 695

constructed building, the number of standard instructions
in processing computer program i, etc.

In this case, the problem is to find an allocation
of the continuous resource to jobs that minimizes the
makespan. The continuous resource allocation is defined
by a piecewise continuous, nonnegative vector function
u(t) = [u1(t), u2(t), . . . , un(t)]. Completion of job i
requires that

xi(Ci) =

∫ Ci

0

fi[ui(t)] dt = wi. (2)

For simplicity, Cmax = maxi=1,...,nCi will
be denoted by T throughout the remainder of the
paper. The following result, proved by Węglarz (1976),
is fundamental for the continuous resource allocation
problem.

Theorem 1. The minimum makespan T ∗ as a function of
sizes of jobs w = (w1, w2, . . . , wn) is given by

T ∗(w) = min {T > 0 : w/T ∈ coV } .
where coV is the convex hull of V , and set V is defined
as

V =
{
v : vi = fi(ui), ui ≥ 0,

i = 1, 2, . . . , n,

n∑

i=1

ui ≤ 1
}
,

where T ∗(w) is always a convex function.

Now, let us stress that, since the processing speed
functions of jobs are increasing, it is always profitable to
use the total available amount of the continuous resource
at any time in order to shorten the schedule. We will
formulate this property as follows.

Property 1. In the continuous resource allocation
problem, to minimize the makespan, the total available
amount of the continuous resource is used at any time in
an optimal schedule.

Two corollaries following directly from Theorem 1
use the above property (Węglarz, 1976).

Corollary 1. For convex processing speed functions of
jobs, the makespan is minimized by sequential processing
of all jobs, each of them using the total available amount
of the continuous resource.

Corollary 2. For concave functions fi, i = 1, 2, . . . , n,
the makespan is minimized by fully parallel processing of
all jobs using the following resource amounts:

u∗
i = f−1

i

(wi

T ∗
)
, i = 1, 2, . . . , n, (3)

where T ∗ is the unique positive root of the equation
n∑

i=1

f−1
i

(wi

T

)
= 1. (4)

Let us also formulate the following property as an
immediate consequence of Property 1.

Property 2. In the continuous resource allocation
problem, to minimize the makespan at least one job is
processed at any time in an optimal schedule.

Property 2 predicates that there are no idle times (i.e.,
moments when the continuous resource is not used by any
job) in an optimal schedule, unless different ready times of
jobs constrain the possible moments of starting the jobs.

Finally, the following property is a succession of
Corollary 2.

Property 3. In the continuous resource allocation
problem, to minimize the makespan with concave
processing rate functions of jobs, in an optimal schedule
all jobs are finished at the same time.

It is easy to see that the optimum makespan T ∗

calculated from Eqn. (4) is common for all jobs processed
in parallel, as it is used in (3) for calculating the optimal
continuous resource amounts. In other words, each job is
finished at the same moment T ∗.

Properties 1–3 will be used in the approaches
proposed further on in the paper.

Let us now comment briefly on Corollaries 1 and 2.
Firstly, Corollary 1 holds, in fact, for all functions

fulfilling the condition fi ≤ ciui, ci = fi(1), i =
1, 2, . . . , n, i.e., functions no greater than a linear one. In
the sequel, the results obtained for convex functions are
true for all functions fulfilling the above condition.

Secondly, Corollary 2 identifies very important cases
in which an optimal resource allocation can be found in
an efficient way. Generally speaking, these are the cases
when Eqn. (4) can be solved analytically. From among
them the ones in which Eqn. (4) is an algebraic equation of
order ≤ 4 are of special importance. This is, for example,
the case of power processing speed functions of the form

fi(ui) = ciu
1
αi

i ,

where αi ∈ {1, 2, 3, 4}, and i = 1, 2, . . . , n.

Using these functions, we can model job processing
speeds in a variety of practical problems.

It should also be noticed that in both of the above
corollaries preemptability of jobs is of no importance.
In Corollary 1 jobs are processed sequentially, each of
them using the total available amount of the continuous
resource. In Corollary 2 jobs are processed using constant
resource amounts (given by Eqn. (3)) from their start to
their completion. As a result, allowing job preemptions
does not affect optimal schedules. In the remainder
of the paper we deal with preemptable jobs; however,
nonpreemptable ones can be considered as well.

696 R. Różycki et al.

3. Problem formulation

We consider a discrete-continuous scheduling problem
of n preemptable, independent jobs with equal ready
times on m parallel, identical machines to minimize the
makespan. Each job from set J , |J | = n, simultaneously
requires for its processing a machine from set M , |M | =
m, (the discrete resource) and an amount (unknown in
advance) ui(t) of an additional continuous, renewable
resource. The processing speed of job i is described
by Eqn. (1). However, the important difference to the
model presented in Section 2 is that now the assumption∑n

i=1 ui(t) ≤ 1 for any t is no longer valid. Instead, a
number Hc of cyclically repeating periods is given, and
each of them will be called a resource availability period
(RAP).

Definition 1. A resource availability period (RAP) is a
period in which the continuous resource amount remains
constant.

The h-th RAP, h = 1, 2, . . . , Hc, will be denoted
by RAPh, and for each RAPh its length Δh and the
amount Uh > 0 of the continuous resource available and
constant within this RAP are known. Without loss of
generality we assume that Uh−1 �= Uh, h = 2, 3, . . . , Hc,
otherwise it is always possible to merge the RAPs not
fulfilling this condition. The problem is to find a sequence
of jobs on machines and, simultaneously, a continuous
resource allocation that minimize the makespan T =
maxi=1,...,n Ci. Solving the problem, we simultaneously
find a minimal number H of RAPs in which all jobs from
set J can be completed. Notice that either all n jobs can
be executed within the first cycle, or it may be necessary
to execute some jobs in more than Hc RAPs.

Notation used for the problem considered is
presented in Table 1.

4. Methodology for a constant resource
amount

Before we pass on to the case of the problem formulated in
Section 3, we will first present the methodology developed
for the problem of scheduling n preemptable, independent
jobs on m parallel, identical machines to minimize the
makespan under a constant amount of the continuous
resource, i.e.,

∑n
i=1 ui(t) = 1 for any t. The fundamental

difference in comparison with the results presented in
Section 2 is, obviously, that now an additional discrete
resource appears, which is a set of identical machines. As
mentioned in Section 1, simultaneous presence of discrete
and continuous resources leads to discrete-continuous
scheduling problems.

In the methodology for solving discrete-continuous
scheduling problems the two-phase approach has been
widely used. It consists in (i) defining an assignment
of machines to jobs in the first phase and (ii) finding an

optimal continuous resource allocation among jobs under
the assignment made in (i). Let us first comment how the
assignment (i) is defined.

Notice that each schedule may be divided into
intervals in which the continuous resource allocation
remains constant. Each change in the resource allocation
starts a new interval. Then it is possible to define
combinations of jobs processed in parallel in consecutive
intervals. A sequence of such combinations defines the
assignment corresponding to the schedule considered.
Feasibility of the sequence requires that (a) each job
appear in at least one combination, and (b) the number
of jobs in a combination do not exceed m (the number of
machines).

Next, if we allocate optimally the continuous
resource for a given sequence constructed in the first
phase, we will obtain a minimal-length schedule for this
particular sequence in the second phase. In consequence,
the problem is to find a sequence leading to a globally
optimal schedule. We will call it the base sequence.

Definition 2. A base sequence is a finite sequence of
combinations of jobs that leads to an optimal schedule
under an optimal continuous resource allocation.

Thus, in order to solve optimally the problem considered,
we have to, firstly, define the form of the base
sequence and, secondly, determine the way of allocating
the continuous resource optimally among jobs in the
sequence. Let us first comment on the form of the
base sequence. Notice that since we have preemptable
jobs, in general it is sufficient to consider a maximal
base sequence Smax composed of s =

(
n
m

)
m-element

Table 1. Notation.
Symbol Meaning

J set of jobs
M set of machines
i index of a job
j index of a machine
n number of jobs
m number of machines
wi size of job i
Ci completion time of job i

xi(t) state of job i at time t
ui(t) amount of the continuous resource allotted

to job i at time t
fi(ui) processing speed function of job i
pi processing time of job i
Hc number of cyclically repeating RAPs

RAPh h-th RAP
Δh length of RAPh

Uh amount of the continuous resource available
in RAPh

H number of RAPs where jobs are executed
T schedule length (Cmax)

Scheduling preemptable jobs on identical processors under varying availability . . . 697

(a) (b)

Fig. 1. Base sequence Sn = [{1}, {2}, {3}, {4}] for n = 4, and two sample optimal schedules for different problem instances.

combinations of jobs. Such a sequence exhausts all
possible assignments of m (identical) machines to n jobs,
and therefore guarantees finding an optimal assignment.
Each feasible schedule can be generated by using the
maximal sequence.

Definition 3. A maximal sequence Smax is a sequence
composed of all s =

(
n
m

)
m-element combinations

without repetitions from among n jobs.

We will represent sequences of combinations in a
form of vectors since, in a general case, the position of
a combination in a sequence is important. For instance,
the maximal sequence Smax for a sample problem with
n = 4 and m = 3 can be represented as

Smax = [{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}].

However, in the problem considered, since
preemptable jobs are scheduled on identical machines,
the order of combinations in the sequence, as well as the
order of jobs in a particular combination, does not matter.

Now, for the maximal sequence Smax, an optimal
continuous resource allocation can be found. It requires,
in general, a solution of a mathematical programming
(MP) problem. However, we will show in the next two
subsections that both the form of the maximal sequence
and the optimal continuous resource allocation may be
simplified in some special cases.

4.1. Convex processing speed functions. Based on
Corollary 1, it is easy to see that in this case the makespan
is minimized by sequential processing of all jobs on one
machine, where each job uses the total available amount
of the continuous resource. As a consequence, m − 1
machines remain idle. Obviously, the jobs may or may
not be preempted—this will not affect the schedule length
unless there are idle times on the assigned machine.
However, since preemptions cannot improve the schedule,
it is reasonable not to take them into account. As a result,
a special sequence, being a simplification of the maximal
sequence Smax, will be used to represent an assignment
of one machine to n jobs. It is simply a sequence of n
one-element combinations, and will be denoted by Sn

(see Fig. 1). Such a structure will be a base sequence in
the case of convex processing speed functions.

Now, let us notice that, if the continuous resource
amount allotted to job i does not change over the whole
time of its execution, i.e., ui(t) = ui for every t, we can
write Eqn. (1) at the moment of completion of job i as

xi(Ci)

pi
= fi(ui), (5)

where pi is the processing time of job i, and, in
consequence

pi =
wi

fi(ui)
. (6)

Since in the case considered ui = 1 for each job i, i =
1, 2, . . . , n, Eqn. (6) can be rewritten as

pi =
wi

fi(1)
, (7)

and the length of the optimal schedule can easily be
calculated as

T ∗ =

n∑

i=1

wi

fi(1)
. (8)

Thus, for convex processing speed functions of jobs the
problem is trivial since any schedule in which jobs are
processed one after another in an arbitrary order, each of
them using the total amount of the continuous resource, is
optimal. The optimum makespan can be easily calculated
from Eqn. (8).

It is also easy to see that in this case the number
of machines is of no importance. The same sequential
schedule leads to an optimum makespan in the absence
(Corollary 1) or in the presence of any number of
machines.

4.2. Concave processing speed functions. Based on
Corollary 2, it is known that in this case parallel execution
of jobs leads to optimal schedules. However, since a
parallel assignment of machines to jobs can be restricted
by the number of machines, we have to distinguish two
cases: n ≤ m and n > m. In the first case the number
of jobs does not exceed that of machines, and therefore all

698 R. Różycki et al.

(a) (b)
Fig. 2. Base sequence S1 = [{1, 2, 3, 4}] for n = 4, m ≥ 4, and two sample optimal schedules for different problem instances.

jobs can be performed in parallel. It is not possible in the
second case, where only m out of n jobs can be scheduled
in the first step, and n −m jobs have to initially wait for
machines. Since these two cases result in two completely
different methodologies, we will discuss them in separate
sections.

4.2.1. Case of n ≤ m. As mentioned above, in
this case all jobs can be performed in parallel, and the
set of machines does not constitute any restriction. In
consequence, the result presented in Corollary 2 can be
implicitly applied, as if discrete resources were unlimited.
Obviously, analogically as in Section 4.1, preemptions
cannot improve the schedule and will not be taken into
account. Consequently, the base sequence for this case is
another special sequence being a simplification of Smax.
It is simply one combination containing all jobs, denoted
further by S1 (see Fig. 2). The optimum makespan can be
calculated directly from Eqn. (4).

4.2.2. Case of n > m. In this case the number of
machines restricts parallel assignments of machines to
jobs, and a special methodology has to be developed. The
base sequence in this case is the maximal sequence Smax
defined in Section 4. For this maximal sequence we look
for a division of the sizes of jobs among combinations
of the sequence that leads to optimum. More precisely,
size wi of each job i, i = 1, 2, . . . , n, has to be divided
into parts wik ≥ 0 (unknown in advance) corresponding
to particular time intervals (combinations), i.e., wik is
part of job i processed in the interval associated with
combination Zk, k = 1, 2, . . . , s. Such a division of
sizes of jobs among successive intervals (combinations) is
called a size division (see Fig. 3). The number of such
divisions is, in general, infinite. Note that approaches
based on searching for an optimal division of sizes (or
processing times) of jobs in a schedule are often used
to solve classical problems of scheduling preemptable
jobs (Błażewicz et al., 2007).

Now, an NLP problem can be formulated finding an
optimal size division for the maximal sequence Smax,
i.e., a division that leads to a schedule of the minimal
length from among all schedules generated by Smax.
In the problem the sum of the minimum-length intervals
generated by consecutive combinations in Smax, as
functions of the vector wk = {wik}i∈Zk

, is minimized
subject to the constraints that each activity has to be
completed. Let T ∗

k (wk) be the minimal length of the
part of the schedule generated by Zk ∈ Smax, and let
Ki be the set of all indices of Zk’s such that i ∈ Zk.
The following NLP problem finds an optimal size division
(and, in consequence, an optimal continuous resource
allocation) for the maximal sequence Smax.

Problem PP. Mimimize

T =

s∑

k=1

T ∗
k (wk) (9)

subject to

∑

k∈Ki

wik = wi, i = 1, 2, . . . , n, (10)

wik ≥ 0, i = 1, 2, . . . , n, k ∈ Ki, (11)

where s =
(
n
m

)
and T ∗

k (wk) is the unique positive root of
the equation

∑

i∈Zk

f−1
i

(
wik

Tk

)

= 1 (12)

if ∀i∈Zk
wik > 0 or is equal to 0 otherwise.

The makespan T is calculated in (9) as the sum
of the lengths of all the intervals of the schedule. The
constraints (10) correspond to the condition of executing
each job in its full size, whereas constraints (11) ensure
that the wik’s are nonnegative. The condition (12)
allows calculating the minimal length of the k-th interval
following from an optimal continuous resource allocation.

Scheduling preemptable jobs on identical processors under varying availability . . . 699

(a) (b)
Fig. 3. Base sequence Smax = [{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}] for n = 4 and m = 3, and two sample optimal schedules for

different problem instances.

The equation in (12) is an adaptation of Eqn. (4) to a single
combination Zk. It can be solved analytically for some
important cases, as discussed in Section 2. Notice that
this equation may be applied only if at least one wik is
positive; otherwise, no part of any job is being executed in
the k-th interval and the length of the interval is equal to
zero.

Concluding, for concave processing speed functions
of jobs and n > m, the approach consists of two steps:

• generating the maximal sequence Smax, and

• solving Problem PP for sequence Smax.

Let us finally stress that the relatively simple approaches
presented in Section 4.1 and 4.2 can only be applied
for the case with a constant amount of the continuous
resource. When the resource amount varies over time,
as described in Section 3, a new methodology has to be
developed, which will be discussed in the next section.

5. Approach for a varying continuous
resource amount

As mentioned in Section 4, a new methodology has to
be proposed for the case when the available continuous
resource amount varies over time. Developing the
methodology is the main goal and contribution of this
paper. However, the results presented in Section 4
for the constant continuous resource amount will be
the foundation of the analyses carried out through the
remainder of the paper.

Let us say again that, if it is known how to find
an optimal schedule for a given base sequence, the
problem boils down to looking for such a sequence that
leads to a globally optimal solution. Base sequences of
defined lengths guaranteeing finding optimal schedules

are known a priori for some cases of discrete-continuous
scheduling problems under a fixed (constant in time)
continuous resource amount, as discussed in Section 4.
Unfortunately, for the problem considered in this paper
base sequences of finite length are not known in advance;
however, they can be generated by some iterative
procedures proposed in the following sections. The
presented iterative approach to solving the problem is
a general one; some differences in implementing the
approach for particular special cases of the problem
follow from a proper adjustment of the form of the base
sequence and the formulation of the relevant MP problem.
A common feature of the presented algorithms is the
property that the total number of iterations, as well as the
final length of the base sequence, depend on the problem
instance.

The general idea underlying each of the proposed
algorithms is similar. At the start (in the first iteration)
an algorithm attempts to find an optimal schedule for a
given base sequence and the amount U1 of the continuous
resource defined in RAP1. If the length of the schedule
found is not longer than the length Δ1 of RAP1, it may be
considered optimal and the procedure stops. Otherwise,
one of the following two situations occurs:

• the obtained schedule is infeasible since at a time
the amount of the continuous resource used is greater
than its total available amount (Fig. 4), or

• the obtained schedule is feasible but not optimal
since at a time some amount of the continuous
resource remains unused (Fig. 5).

If one of the above situations occurs, it is necessary
to solve an MP problem in which it is assumed that the
schedule is processed in two RAPs (RAP1 and RAP2).
In the formulation of the problem one has to take into

700 R. Różycki et al.

total amount of the continuous resource
used in the schedule

Fig. 4. Infeasible schedule due to excessive use of the resource
in RAP2.

account that the processing of particular jobs may be now
divided into two RAPs. Consequently, one has to consider
a longer sequence of combinations, in this particular case
a sequence being a concatenation of two base sequences.
Generally, such a sequence, being a concatenation of a
finite number of base sequences, will be called a multi-
sequence.

Definition 4. A multi-sequence is a concatenation of a
finite number of base sequences.

Such a multi-sequence will be represented as a vector
of base sequences, i.e., in a general case, as a vector of
vectors of combinations (see Section 4). For example, a
multi-sequence being a concatenation of three maximal
sequences Smax for n = 3 and m = 2 will take the form

S = [[{1, 2}, {1, 3}, {2, 3}], [{1, 2}, {1, 3}, {2, 3}],
[{1, 2}, {1, 3}, {2, 3}]].

In order to generate multi-sequences of the desired form,
we will use a concatenation operator ⊕. For example, the
above sequence S can be obtained as

S = [[{1, 2}, {1, 3}, {2, 3}], [{1, 2}, {1, 3}, {2, 3}]]
⊕ [{1, 2}, {1, 3}, {2, 3}].

Now, if the solution of the formulated MP problem
generates a schedule no longer than the sum of the lengths
of the two RAPs considered (i.e. Δ1 +Δ2), the schedule
is optimal. Otherwise, one has to consider the possibility
of realizing the schedule in three RAPs, etc. It is easy to
show that the discussed procedure always ends in a finite
number of iterations; however, in each iteration both the
number of variables and the number of constraints in the
formulated MP problem grow.

6. Convex processing speed functions

As discussed in Section 4.1, for convex processing
speed functions (already considered by Kis (2005))

total amount of the continuous resource
used in the schedule

Fig. 5. Suboptimal schedule due to the unused amount of the
available resource in RAP2.

in a makespan-optimal schedule jobs are processed
sequentially, each of them using the total available
amount of the continuous resource. Since in the problem
considered a schedule is divided into parts according to
the RAPs, the following issues should be stressed:

• parts of jobs in consecutive RAPs are processed
sequentially with no idle times (see Property 2),

• each part of a job uses the total amount of the
continuous resource available in the RAP it is
executed in (Property 1),

• the order of processing parts of jobs in a RAP is
arbitrary (jobs are independent).

It is known from Section 4.1 that the base sequence for
this case is a sequence of n one-element combinations of
jobs, i.e., sequence Sn. As a result, the multi-sequence
considered here will be a concatenation of such base
sequences.

Before presenting the algorithm, let us yet briefly
discuss the notation used. In Section 4 variable wik

was introduced, as part of job i processed in the interval
associated with combinationZk. However, in that case the
amount of the continuous resource was constant over the
entire schedule. Now, we have to distinguish parts of jobs
processed in successive RAPs, since the amount of the
continuous resource changes from one RAP to another.

Consequently, we introduce a variable wih which
denotes a part of job i processed in RAPh. Additionally,
Th, h = 1, 2, . . . , H , denotes the length of the schedule
within RAPh. Notice that, if the schedule cannot be
completed in RAPh, then Th is simply equal to Δh.
In consequence, the objective in the MP problem of
Algorithm 1 presented below is the minimization of TH ,
since the length of the schedule within the first H − 1
RAPs is known in advance as

∑H−1
h=1 Δh. It is easy to see

that in this case the formulated MP problem is a linear

Scheduling preemptable jobs on identical processors under varying availability . . . 701

programming (LP) one, and therefore it is denoted by
LP1.

Let us now present the algorithm for the case
considered.

Algorithm 1.
Step 1. H := 0;S := [];

Step 2. H := H + 1;S := S ⊕ Sn;

Step 3. IF H = 1
THEN:

Calculate T ∗
H as

T ∗
H =

n∑

i=1

wi

fi(U1)
, (13)

OTHERWISE:
Calculate T ∗

H as an optimal objective function value of
Problem LP1 for multi-sequence S.

Problem LP1. Minimize

TH

subject to

Th = Δh, h = 1, 2, . . . , H − 1, (14)

H∑

n=1

wih = wi, i = 1, 2, . . . , n, (15)

wih ≥ 0, i = 1, 2, . . . , n, h = 1, 2, . . . , H, (16)

where Th, h = 1, 2, . . . , H , is calculated as

Th =
n∑

i=1

wih

fi(Uh)
; (17)

Step 4. IF

T ∗
H ≤ ΔH (18)

THEN:

T ∗ =

H−1∑

h=1

Δh + T ∗
H (19)

and STOP;
OTHERWISE:

GOTO 2;

The idea of the presented Algorithm 1 is illustrated in
Fig. 6. In each iteration (denoted by the value of parameter
H) an optimal schedule is attempted to be constructed in a
given number of RAPs. The algorithm starts with trying to
schedule all jobs in RAP1 (H = 1). The multi-sequence

S is now equal to sequence Sn. Equation (13) in Step 3
is a modification of Eqn. (8), and allows finding the
optimal length T ∗

1 of the schedule under the amount U1

of the continuous resource available within RAP1. This
equation is only solved once (for H = 1). Then in
Step 4 it is determined if the obtained schedule length
T ∗
1 is not greater than Δ1 (condition (18)). If this is

the case, it means that all n jobs can be executed within
RAP1. In consequence, the optimal makespan is equal to
the one calculated by Eqn. (13), and the algorithm stops.
Otherwise, an optimal schedule requires more than one
RAP to be processed. Thus, the algorithm goes back
to Step 2, where the number of RAPs is increased by
one, and now H = 2. The multi-sequence S becomes
a concatenation of two sequences Sn since it is assumed
that each job (or its part) may be processed in both
RAP1 and RAP2. Consequently, a linear programming
problem LP1 is solved which finds an optimal division of
sizes of jobs among both the RAPs. It is natural that in
RAP1, . . . ,RAPH−1 there is no idle time (Property 2),
and therefore the conditions (14) are formulated in the
form of equalities. The equalities (15) ensure that all the
jobs are completed in the schedule built on the basis of
the solution of Problem LP1, whereas the conditions (16)
assure that all job parts are nonnegative. Equation (17) is
an adaptation of Eqn. (13) to a single RAPh. The schedule
is feasible (and also optimal) if the length of its last part
(related to RAPH) is not longer than ΔH . It is checked
in Step 4 (condition (18)). If the obtained schedule is
feasible, its optimal length is calculated by Eqn. (19), and
the algorithm stops. Otherwise, the number of RAPs is
incremented by one, and the procedure is repeated.

Let us emphasize that variables wih are unknowns
in Problem LP1, while variables Th are only auxiliary
and can be calculated knowing the values of wih’s.
Thus, Problem LP1 finds an optimal size division of jobs
among all RAPs, i.e., a division leading to an optimal
schedule, and, as a result, a minimal schedule length.
The complexity of Algorithm 1 is polynomial since an
LP problem is solved in Step 3 (Karmarkar, 1984). The
number of variables in the formulated Problem LP1 is
equal to H · n and grows linearly with each iteration of
the algorithm.

7. Concave processing speed functions

As discussed in Section 4.2, for concave processing
speed functions jobs should be executed in parallel, and
therefore two cases n ≤ m and n > m, have to be
analyzed separately.

7.1. Case of n ≤ m. In contrast to the results
presented in Section 4.2.1, now a schedule is divided into
parts according to the RAPs. Consequently, the following

702 R. Różycki et al.

Fig. 6. Example of a potentially optimal schedule for convex processing speed functions and S = [[{1}, {2}, . . . , {n}], [{1}, {2}, . . . ,
{n}], . . . , [{1}, {2}, . . . , {n}]].

issues should be addressed:

• parts of all jobs in consecutive RAPs are processed
in parallel on n machines (m − n machines remain
idle) with no idle times (see Property 2),

• the job parts in any RAP start and finish at the same
moment (Property 3),

• all job parts processed in parallel at any moment use
the total amount of the continuous resource available
in the RAP they are executed (in Property 1).

It is known from Section 4.2.1 that the base sequence
for this case is just one combination containing all jobs,
i.e., sequence S1. As a result, the multi-sequence
considered here will be a concatenation of such base
sequences. Figure 7 presents the idea of Algorithm 2
for the case considered, which is quite similar to the
idea underlying Algorithm 1 discussed in Section 6. The
substantial differences are the form of the base sequence
which, in this case, is sequence S1, and the form of the
equation finding an optimal length of a parallel (rather
than sequential) schedule. In Algorithm 2 we use the same
notation as in Algorithm 1.

Algorithm 2 operates similarly to Algorithm 1.
However, Eqn. (20) differs from Eqn. (13) since it allows
calculating an optimal length of a parallel schedule, and
therefore it is a modification of Eqn. (4). Then, the
objective function, as well as the constraints (21)–(23),
in Problem NLP1 are identical as in Problem LP1. The
condition (24) is different from Eqn. (17) since, as
previously, it concerns calculating an optimal length of
a parallel schedule, and therefore it is an adaptation of
condition (12) to a single RAPh. Notice that, since the
equation in the condition (24) is nonlinear, the formulated
MP problem is not linear anymore. The conditions (25)
and (26) are, again, identical as in Algorithm 1.

The complexity of Algorithm 2 cannot be established
in terms of combinatorial optimization since an NLP
problem has to be solved in Step 3. Nevertheless, it is
worth noting that the number of variables equal to H ·n, as
well as the number of constraints equal to (H ·n+H+n),
in Problem NLP1 grow linearly with each iteration of
Algorithm 2.

7.2. Case of n > m. As already known from
Sect. 4.2.2, this case is computationally the most difficult
one from among the cases considered in this paper.
Although it allows applying an iterative approach similar
to the previous ones, now an assignment of machines to
jobs is defined by a multi-sequence composed of a number
(nonzero and unknown in advance) of maximal sequences,
each of them containing s =

(
n
m

)
combinations of jobs.

Such an extended multi-sequence requires generalized
notation in order to properly define parameters of a
schedule. Below we present the notation generalizing the
one used in Sections 6 and 7.1:

Zhk : k-th combination of the h-th maximal sequence
Smax (corresponding to RAPh) in multi-sequence S,

Kih : set of indices of combinations of the h-th maximal
sequence (corresponding to RAPh) in multi-sequence S
that contain job i,

wihk : part of job i to be executed in the interval
corresponding to combination Zhk,

Thk : length of interval corresponding to combination
Zhk (known only after allocation of the continuous
resource).

The above qualities are illustrated in Fig. 8.
Algorithm 3 presented below is based on the same

idea underlying Algorithms 1 and 2. In this case, however,
the algorithm starts from a solution of Problem PP

Scheduling preemptable jobs on identical processors under varying availability . . . 703

Fig. 7. Example of a potentially optimal schedule for concave processing speed functions and S = [[{1, 2, . . . , n}], [{1, 2, . . . , n}],
. . . , [{1, 2, . . . , n}]].

formulated in Section 4.2.2, with the only modification
that the actual amount of the continuous resource (equal
to U1) available in RAP1 has to be used in Eqn. (12)
instead of the amount equal to 1, as assumed earlier. If
the length of the obtained schedule is not longer than
Δ1, the schedule is optimal and the algorithm stops.
Otherwise, another maximal sequence Smax is added
(by the concatenation operator ⊕) to the recent form of
multi-sequence S, and the next iteration (H := H + 1)
is performed. In this step Problem NLP2 is solved for the
new form of multi-sequence S. The algorithm terminates
when the schedule constructed in its successive iteration
is not longer than Δ1 +Δ2 + · · ·+ΔH .

As was the case for Algorithm 2, also the complexity
of Algorithm 3 cannot be established in terms of
combinatorial optimization because of the presence of
Problem NLP2 solved in Step 3. However, it can be
stated that the number of variables in NLP2 is equal to
H · n · (n

m

)
, whereas the number of constraints is equal to

(H · n · (nm
)
+H + n). Both these numbers grow linearly

with each iteration of Algorithm 3.

8. Conclusions

In this paper a problem of scheduling preemptable,
independent jobs on parallel, identical machines under

an additional continuous, renewable resource to minimize
the schedule length has been considered. Such problems
where jobs simultaneously require for their execution
discrete and continuous resources are generally called
discrete-continuous scheduling problems. In all previous
works in that field it was assumed that the total amount of
the continuous resource available at a time was constant.
In this paper we have relaxed this assumption, and allowed
the total available amount of the continuous resource to
periodically vary over time. The lengths of the resource
availability periods, as well as the amounts (nonnegative
and constant) of the resource in each period, are known
in advance. It is an important generalization from the
practical point of view.

For the problem considered we have presented
three exact iterative algorithms based on the general
methodology developed for the problem and discussed
in the paper. The first one, named Algorithm 1, has
been designed for convex processing speed functions
of jobs. In Algorithm 1 an LP problem has to be
solved, and therefore the complexity of the algorithm
is polynomial. The second algorithm (Algorithm 2)
has been constructed for the case of concave processing
speed functions and the number of jobs not greater than
that of machines. In Algorithm 2 an NLP problem
is to be solved in each iteration. The third and most

704 R. Różycki et al.

Fig. 8. Example of a potentially optimal schedule for concave processing speed functions and n = 3, m = 2 and
S = [[Z11, Z12, Z13], [Z21, Z22, Z23], . . . , [ZH1, ZH2, ZH3]] = [[{1, 2}, {1, 3}, {2, 3}], [{1, 2}, {1, 3}, {2, 3}], . . . ,
[{1, 2}, {1, 3}, {2, 3}]].

complex algorithm (Algorithm 3) has also been designed
for concave processing speed functions, but for the case
when there are more jobs than machines. This is the
most general case, and therefore the NLP problem solved
in Algorithm 3 is computationally most difficult. The
number of variables, as well as that of constraints, in
Problem NLP2 grows exponentially with the number of
jobs.

In the future we plan to carry out the research
in a few directions. The first one will be focused
on searching for special cases for which optimal
solutions can be found easier than by using the general
approaches presented in this paper. In particular,
taking into account some regularities in changes in
the continuous resource availability seems interesting.
The second direction that naturally comes to mind is
constructing heuristic algorithms for those cases where
solving complex mathematical programming problems is
especially computationally demanding. In such cases
it seems reasonable and justified to use an alternative
two-phase approach in which, firstly, the continuous
resource is allocated to jobs, and, secondly, jobs (with
already known processing times) are scheduled on
machines. Another interesting direction seems to be an
approach using an upper bound on the minimal value
of H (the number of resource availability periods in
which all jobs are completed). Slight reformulations

of the proposed NLP problems could allow finding the
appropriate value of H by, e.g., the binary search method.
In this method the initial bottom and top ranges of the
search interval would be set, respectively, at 1 and the
upper bound on minimum H . Such an approach could
appear to be more efficient than the iterative algorithms
proposed in the paper. However, what impact on the
efficiency of the approach the accuracy of the evaluation
of the upper bound on minimum H has remains now an
open question.

Acknowledgment

This research is a part of the project no.
2013/08/A/ST6/00296 funded by the Polish National
Science Centre.

References

Błażewicz, J., Ecker, K., Schmidt, G., Pesch, E. and Węglarz, J.
(2007). Handbook of Scheduling: From Theory to Appli-
cations, Springer, Berlin.

Gorczyca, M. and Janiak, A. (2010). Resource level
minimization in the discrete-continuous scheduling, Euro-
pean Journal of Operational Research 203(1): 32–41.

Janiak, A. (1991). Single machine scheduling problem
with a common deadline and resource dependent

Scheduling preemptable jobs on identical processors under varying availability . . . 705

Algorithm 2.
Step 1. H := 0;S := [];

Step 2. H := H + 1;S := S ⊕ S1;

Step 3. IF H = 1
THEN:

Calculate T ∗
H as the only positive root of the equation

n∑

i=1

f−1

(
wi

TH

)

= U1, (20)

OTHERWISE:
Calculate T ∗

H as an optimal objective function value of
Problem NLP1 for multi-sequence S.

Problem NLP1. Minimize

TH

subject to

Th = Δh, h = 1, 2, . . . , H − 1, (21)

H∑

n=1

wih = wi, i = 1, 2, . . . , n, (22)

wih ≥ 0, i = 1, 2, . . . , n, h = 1, 2, . . . , H, (23)

where Th, h = 1, 2, . . . , H , is the unique positive root of
the equation

n∑

i=1

f−1
i

(
wih

Th

)

= Uh (24)

if ∀iwih > 0 or is equal to 0 otherwise;

Step 4. IF
T ∗
H ≤ ΔH (25)

THEN:

T ∗ =

H−1∑

h=1

Δh + T ∗
H (26)

and STOP;
OTHERWISE:

GOTO 2;

release dates, European Journal of Operational Research
53(3): 317–325.

Karmarkar, N.K. (1984). A new polynomial time algorithm for
linear programming, Combinatorica 4(4): 373–395.

Kis, T. (2005). A branch-and-cut algorithm for scheduling
of projects with variable-intensity activities, Mathematical
Programming 103(3): 515–139.

Leachman, R.C. (1983). Multiple resource leveling in
construction systems through variation of activity
intensities, Naval Research Logistics Quarterly
30(3): 187–198.

Algorithm 3.
Step 1. H := 0;S := [];

Step 2. H := H + 1;S := S ⊕ Smax;

Step 3. IF H = 1
THEN:

Calculate T ∗
H , an optimal objective function value of

Problem PP (in which the value of 1 is replaced by U1

in Eqn. (12) for multi-sequence S
OTHERWISE:

Calculate T ∗
H as an optimal objective function value of

Problem NLP2 for multi-sequence S.

Problem NLP2. Minimize

TH =

s∑

k=1

THk

subject to

s∑

k=1

Thk = Δh, h = 1, 2, . . . , H − 1, (27)

H∑

h=1

∑

k∈Kih

wihk = wi, i = 1, 2, . . . , n, (28)

wihk ≥ 0, i = 1, 2, . . . , n,

h = 1, 2, . . . , H,

k = 1, 2, . . . , s,

(29)

where Thk, h = 1, 2, . . . , H and k = 1, 2, . . . , s, is the
unique positive root of the equation

∑

i∈Zhk

f−1
i

(
wihk

Thk

)

= Uh (30)

if ∀i∈Zhk
wihk > 0 or is equal to 0 otherwise;

Step 4. IF
T ∗
H ≤ ΔH (31)

THEN:

T ∗ =

H−1∑

h=1

Δh + T ∗
H (32)

and STOP;
OTHERWISE:

GOTO 2;

Leachman, R.C., Dincerler, A. and Kim, S. (1990).
Resource-constrained scheduling of projects with
variable-intensity activities, IIE Transactions
22(1): 31–39.

706 R. Różycki et al.

Różycki, R. and Węglarz, J. (2012). Power-aware scheduling
of preemptable jobs on identical parallel processors to
meet deadlines, European Journal of Operational Re-
search 218(1): 68–75.

Waligóra, G. (2011). Heuristic approaches to
discrete-continuous project scheduling problems to
minimize the makespan, Computational Optimization and
Applications 48(2): 399–421.

Waligóra, G. (2014). Discrete-continuous project scheduling
with discounted cash inflows and various payment
models—a review of recent results, Annals of Operations
Research 213(1): 319–340.

Węglarz, J. (1976). Time-optimal control of resource allocation
in a complex of operations framework, IEEE Transactions
on Systems, Man and Cybernetics 6(11): 783–788.

Rafał Różycki, Ph.D., D.Sc., graduated from the Poznań University
of Technology in computing science in 1994. Since 1994 he has been
working there at the Institute of Computing Science (Laboratory of Op-
erational Research and Artificial Intelligence), currently as an assistant
professor. In 2000 he received a Ph.D. degree in computing science from
the Poznań University of Technology, and published his postdoctoral the-
sis on scheduling computational jobs in 2014. His main areas of interest
are power-aware scheduling, discrete-continuous scheduling, combina-
torial optimization and metaheuristic algorithms. He is the author or
a co-author of over 70 scientific publications in international journals,
monographs and conference proceedings, and has presented his results
at 50 international and domestic scientific conferences and workshops.

Grzegorz Waligóra, Ph.D., D.Sc., graduated from the Poznań Uni-
versity of Technology in computing science in 1994. Since 1994 he
has been working there at the Institute of Computing Science (Labo-
ratory of Operational Research and Artificial Intelligence), currently as
an assistant professor. In 2000 he received a Ph.D. degree in computing
science from the Poznań University of Technology, and published his
postdoctoral thesis on discrete-continuous project scheduling in 2009.
His main areas of interest are project and machine scheduling, discrete-
continuous scheduling, combinatorial optimization, metaheuristic algo-
rithms, resource management and scheduling in computational grids. He
is the author or a co-author of over 80 scientific publications in interna-
tional journals, monographs and conference proceedings and presented
his results at 45 international and domestic scientific conferences and
workshops. He is a laureate of the Foundation for Polish Science Award
for Young Researches (1999) and of the Prime Minister of Poland Award
for a Ph.D. dissertation (2000).

Jan Węglarz, academician, professor (Ph.D. in 1974, D.Sc. in 1977),
in the years 1978–83 an associate professor and then a professor in the
Institute of Computing Science at the Poznań University of Technology,
a member of the Polish Academy of Sciences (PAS), the director of the
Institute of Computing Science of the Poznań University of Technology
and its predecessors since 1987, the director of the Poznań Supercom-
puting and Networking Center. A member of several editorial boards, a
representative of Poland in the Board of Representatives of IFORS and
in the EURO Council (president of EURO in 1997–1998). A member
of several professional and scientific societies, including the American
Mathematical Society and the Operations Research Society of Amer-
ica. The author or a co-author of 11 monographs, 3 textbooks (3 editions
each), and over 200 papers in major professional journals and conference
proceedings. A frequent visitor in major research centers in Europe and
the USA. A co-laureate of the State Award (1988) and the EURO Gold
Medal (1991), a laureate of the Foundation for Polish Science Award
(2000).

Received: 7 September 2015
Revised: 1 February 2016
Re-revised: 10 March 2016
Accepted: 18 May 2016

	Introduction
	Continuous resource allocation
	Problem formulation
	Methodology for a constant resource amount
	Convex processing speed functions
	Concave processing speed functions
	Case of n ≤ m
	Case of n > m

	Approach for a varying continuous resource amount
	Convex processing speed functions
	Concave processing speed functions
	Case of n ≤ m
	Case of n > m

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

