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Inverse three-dimensional heat conduction problems devoted to heating source localization are ill posed. Identification can
be performed using an iterative regularization method based on the conjugate gradient algorithm. Such a method is usually
implemented off-line, taking into account observations (temperature measurements, for example). However, in a practical
context, if the source has to be located as fast as possible (e.g., for diagnosis), the observation horizon has to be reduced.
To this end, several configurations are detailed and effects of noisy observations are investigated.
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1. Introduction

In numerous engineering contexts, parameter
identification is a crucial requirement when unknown
parameters have to be determined in order to better
understand or to control the occurring phenomena. As
an illustration, let us mention, e.g., the identification of
a thermal characteristic of a plasma in a nuclear fusion
reactor (Mechhoud et al., 2013), the identification of
boundary conditions (a temperature dependent heat
transfer coefficient) in a plasma assisted chemical
vapor deposition process (Rouquette et al., 2007a),
the localization of weak heat sources in electronic
devices (Rakotoniaina et al., 2002) or the electron beam
welding process (Rouquette et al., 2007b). Among
industrial applications, several usual objectives can be
mentioned: predictive model validation, identification of
systems dynamic behavior, estimation of thermo-physical
properties, or diagnosis of processes or materials.
In this paper, the proposed study is devoted to the
localization of one or several stationary heating sources
in a reduced time for a three-dimensional geometry.
This non-linear problem can be formulated as an
inverse heat conduction problem (IHCP) where the
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system thermal state is described by a set of partial
differential equations (PDEs). Such inverse problems
are ill posed in the sense of Hadamard (Alifanov
et al., 1995; Isakov, 1998; Morozov, 1994). In
numerous references, parameter estimation for heat
flux identification is achieved considering numerical
solution of inverse problems (Park et al., 1999; Zhou
et al., 2010; Mohammadiun et al., 2011; Hasanov and
Pektas, 2013). Implementation of an extended Kalman
filter for online identification purposes related to the IHCP
was proposed by Daouas and Radhouani (2004; 2007).

Such a technique, well known in signal processing,
induces a time-lag on identified parameters and can be
difficult to tune without a priori information (related to the
noise distribution, for example). Configurations studied in
both previous references are related to boundary heat flux
identification considering a 1D mathematical model. In
the works of Kolodziej et al. (2010) or Mierzwiczak and
Kolodziej (2010; 2011; 2012), the method of fundamental
solutions was successfully implemented for an IHCP. This
meshless method is relatively new and is an attractive
alternative to the finite or boundary element methods.
In the work of Egger et al. (2009), recent investigations
in a 3D domain were performed in order to identify a
surface heat flux using 36 microthermocouples located
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quite closely underneath the investigated surface. A
conjugate gradient method is employed for iterative
criterion minimization and a weak formulation is based on
the Galerkin finite-dimensional technique. A multilevel
approach is mentioned in order to consider sequential
identification for the acceleration of minimizing the
Tikhonov functional (but there are no details related to
numerical implementation or tests).

In the last decades, several methods have been
successfully implemented in order to determine the
location of a single point heating source or line heating
sources in one or two-dimension geometry. For example,
in the work of Silva Neto and Ozisik (1993), both a depth
and heat flux of a single heating source were identified
in a one-dimension geometry using the conjugate gradient
algorithm. Then, in the work of Khachfe and Jarny (2000),
heat fluxes and locations of two pointwise sources in a
two-dimensional domain were identified.

Le Niliot and Lefèvre (2001) investigated
identification of multiple steady line heat sources in
a diffusive system and proposed its application in a
2D experimental configuration. Always focused on
2D geometry, Lefèvre and Le Niliot (2002) estimated
the location and strength of line heat sources using an
identification procedure based on a boundary integral
formulation with transient fundamental solutions. In the
work of Yi and Murio (2002), a source term identification
in a 1D-IHCP is performed using a regularization
procedure, based on the mollification method and a
marching scheme for the solution of the stabilized
problem.

Based on an earlier reference (Beck and Arnold,
1977) and using the boundary element method, parameter
identification was successfully investigated (Le Niliot and
Lefèvre, 2004) in order to solve an inverse problem
of pointwise heat source identification. Recently, a
two-step regularized inverse solution for two-dimensional
heat source reconstruction was developed by Renault
et al. (2008). Moreover, the authors proposed a spectral
method for the estimation of a thermo-mechanical heat
source (this method is based on the analytical solution
of the direct problem in the Laplace–Fourier domain and
applied to a two-dimensional problem of heat conduction)
(Renault et al., 2010). Girault et al. (2010) implemented
the modal identification method for the identification of
both the location and the heat flux of a heating source in a
two-dimensional heat diffusion problem.

In the following, the method proposed by Silva Neto
and Ozisik (1993) as well as Khachfe and Jarny (2000)
is extended to a three-dimensional geometry. The IHCP
is solved in order to determine the locations of one or
several stationary heating sources while assuming that
heat fluxes are known. It is important to notice that
the spatial distribution of heat sources is not pointwise
and has to be taken into account in a small area of

the domain surface. Source locations are determined
given temperature evolutions observed by a few pointwise
sensors. In this context and among various methods
available to solve the IHCP, the iterative conjugate
gradient method (CGM) has been implemented for the
minimization of the quadratic cost function describing the
error between the numerical model outputs and the sensor
measurements (Hager and Zhang, 2006; Prudhomme and
Nguyen, 1998). It is well known that for such iterative
minimization the solution of three well posed problems
(always in the sense of Hadamard) is required. The
direct problem describing evolution of the system state
(temperature) is solved in order to evaluate the quadratic
cost function. The gradient of the cost function is
obtained once the adjoint problem is solved. Then the
sensitivity problem is considered for the determination
of the step-length in a descent direction. As for noisy
measurements, it is shown by Alifanov (1994) that
the conjugate gradient method acts as a regularization
method. In fact, a stop ping criterion (for the minimization
algorithm) which takes into account noise standard
deviation can be considered a regularization parameter.
In the proposed study, localization in a reduced time
is investigated in order to put in evidence the relation
between noise levels, the number of unknown parameters
and the duration of measurements.

This paper is organized as follows. In the next
section, the investigated thermal system is exposed (the
notation and the PDE system). In Section 3, the IHCP
is formulated and a brief description of the conjugate
gradient algorithm is proposed. In order to locate the
heating sources, both the sensitivity and adjoint problems
are presented. In Section 4, several numerical examples
are provided for different situations: one, two, and three
sources. A reduced time solution is investigated and
the effect of noisy measurements is presented. Finally,
conclusion and outlooks are briefly drawn up at the end of
this paper.

2. Direct problem

This section is devoted to the description of thermal
heating phenomena modeled by a set of partial differential
equations. Let us consider a titanium square plate Ω ⊂ R

3

(length L = 5 · 10−2 m, thickness e = 10−3 m); the
domain boundary is denoted by ∂Ω ⊂ R

2 (see Fig. 1).
The space variable is

(x, y, z) ∈
]
−L
2
,
L

2

[
×
]
−e
2
,
e

2

[
×
]
−L
2
,
L

2

[

and the time variable is t ∈ T = [0; tf ] in
seconds. The plate is heated on its lower face Γheated =
{(x,−e/2, z) ∈ ∂Ω} by one or several heating sources
Sj (j = 1, . . . , Ns, where Ns is the number of heating
sources). For each source, the heat flux is denoted by φj
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Fig. 1. Studied plate geometry.

and is not time dependent. Moreover, the heat flux φj
is assumed to be uniform on the disk Dj ∈ Γheated. Each
disk (source) center is denoted by Ij = (xj ,−e/2, zj) and
the disk radius is r = 0.002 m. From a practical point of
view, these circular heating flux spatial distributions could
be obtained using a proper optical homogenizer. Such an
optical device (also called the kaleidoscope) is commonly
used to obtain a uniform flux (Chen et al., 1963) on a
heated surface. Museux et al. (2012) used such equipment
in order to obtain a uniform flux on a square for evaluation
of burns. However, specific kaleidoscopes can be easily
designed in order to obtain a circular distribution of a
radiative heating flux on a plane target. Let us consider
the following model for heating flux density in W · m−2:

Φ(x, z) =

Ns∑
j=1

φjFj (x, z),

where

Fj (·) = 1

π

(
−atan (μ (σj(x, z)− r)) + π

2

)
,

with μ ∈ R
+ and

σj(x, z) =

√
(x− xj)2 + (z − zj)2.

The parameter μ is chosen in order to describe the
discontinuity in the neighborhood of the disk boundary.
For the proposed configuration, μ = 105 is reasonable
(image analysis is easily performed). It is important to
notice that the parametrized function leads to a description
of heat fluxes in a continuous and differentiable way.

Moreover, a natural convection phenomenon is
considered on all plate boundaries ∂Ω: the convection
coefficient is h in W·m−2·K−1. The 3D geometry
considered is presented in Fig. 1. A more complex
heat transfer and semi-transparent media are examined
for predictive purposes in (Lormel et al., 2004). The
temperature evolution is described by the following
equations:

Direct problem Pdir: Assuming a uniform
initial temperature θ0 (equal to the ambient

temperature) and the set of known parameters
P = {λ, ρc, h,Φ, L, e}, determine the
temperature θ(x, y, z; t) as the solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀(x, y, z; t) ∈ Ω× T,
λ

(
∂2θ

∂x2
+
∂2θ

∂y2
+
∂2θ

∂z2

)
= ρc

∂θ

∂t
,

∀(x, y, z) ∈ Ω, θ(x, y, z; 0) = θ0,

∀(x, y, z; t) ∈ ∂Ω× T,
−λ

(
∂θ

∂	n

)
= h (θ − θ0)− Φ,

(1)

where 	n is the outward normal unit vector.

Model input parameters are presented in Table 1. If
all model inputs parameters are fixed, the previous direct
problem described by (1) can be numerically solved using
the finite element method (implemented, for example,
in the Comsol-Multiphysics software interfaced with
Matlab). In the following, the temperature θ(x, y, z; t)
numerically predicted at given spatial locations will be
considered as the measured temperature for a set of
sensors (see Section 3). In the proposed setting, the sensor
spatial location is chosen as follows. It is crucial to select
enough measurements points. It is obvious that a single
sensor will be unable to find more than a single source (if
heating fluxes are constant). The proposed configuration
with three sensors is enough to allow triangulation. Since
the heating source locations are unknown, in order to
investigate the sample surface without a favored area,
an equilateral triangle centered on the upper plate is
meaningful. This is not a systematic procedure based on
theoretical hypothesis about the investigated system a but
experimental reasoning. If a large number of sensors is
available, an optimal selection can be implemented based
on the methodology developed by Perez and Vergnaud
(2016). In the next section, the conjugate gradient method
(CGM) is implemented to solve inverse problems in order
to identify source locations Ij in a reduced time.

3. Inverse problem

3.1. Formulation of the inverse heat conduction prob-
lem (IHCP). Assume that the coordinates of the source

Table 1. Notation and parameter definitions.
Square length L = 5 · 10−2 m
Plate thickness e = 2 · 10−3 m
Initial temperature θ0 = 293 K
Heat flux φj = 105 W·m−2

Thermal conductivity λ = 21.9 W·m−1· K−1

Volume heat ρc = 2.35 106 J·m−3·K−1

Natural convection coefficient h = 20 W·m−2·K−1
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Fig. 2. Sensor location.

centers

I�j

(
x�j ,
−e
2
, z�j

)
j=1,...,Ns

are unknown. In the proposed setting, the aim of IHCP
solution is to identify the source coordinates

(
x�j , z

�
j

)
on

the lower face given temperatures obtained from three
sensors located on the opposite face y = +e/2. This
IHCP can be formulated as a classic optimization problem
where a quadratic criterion denoted by J (I) has to
be minimized. Let us denote by θ̂(t) the temperature
measured at three sensors located on the upper face:

C1

(
0,

+e

2
, 0.006

)
,

C2

(
−0.0052, +e

2
,−0.003

)
,

C3

(
0.0052,

+e

2
,−0.003

)

(see Fig. 2). In the framework of optimal sensor
location, several thermal situations encountered for high
temperature processes are presented by Autrique et al.
(2000; 2002). The quadratic criterion J (I) is formulated
as

J (I) =
1

2

∫ tf

0

3∑
i=1

(
θ (Ci; t; I)− θ̂i(t)

)2

dt, (2)

where θ (Ci; t; I) is the temperature predicted for sensor i
(given the source location I) while θ̂i(t) is the temperature
measured at sensor i. The cost function is discretized
using sampled measurements with a time step Δt (Nt

measurements are available for each sensor):

Jd (I) =
Δt

2

Nt∑
n=1

3∑
i=1

(
θ (Ci; tn; I)− θ̂i(tn)

)2

.

The inverse problem is as follows:

Inverse problem Pinv.: Find unknown source
locations I�j=1,...,Ns

such that the quadratic
functional J (I) is minimum:

I� = arg min
R2Ns

J (I) , (3)

subject to the constraint θ (x, y, z; t; I) being a
solution of the direct problem Pdir (1).

In order to solve the previous ill-posed problem,
the CGM algorithm is implemented (see, e.g., Alifanov,
1994; Silva Neto and Ozisik, 1993; Tarantola, 2005). It
is important to note that the descent direction is reset to(
βk = 0

)
every 2Ns iterations. Such a restart procedure

for conjugate directions is discussed by Powell (1977).
The direct problem (1) is discussed in Section 2. The
following sections are concerned with the presentation
of the sensitivity and adjoint problems related to Steps 3
and 4 of the CGM algorithm (see Algorithm 1).

3.2. Sensitivity problem. The formulation of this
problem is helpful for the statement of the adjoint problem
and for the estimation of the step-length in the descent
direction. Let δθ (x, y, z; t) be the temperature variation
induced by a variation in the unknown parameters δI =
{δxj , δyj}j=1,...,Ns

. Applications of variational calculus
are presented by Weinstock (1952). For the PDE satisfied
by the temperature θ (x, y, z; t) + εδθ (x, y, z; t) (see the
direct problem (1) with source locations I + εδI), as
ε → 0, the sensitivity problem (Khachfe and Jarny, 2000;
2001) becomes

Sensitivity problem Psens: Given the set of
parameters P = {λ, ρc, h, δΦ, L, e}, determine
δθ(x, y, z; t) as the solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀(x, y, z; t) ∈ Ω× T,
λ

(
∂2δθ

∂x2
+
∂2δθ

∂y2
+
∂2δθ

∂z2

)
= ρc

∂δθ

∂t
,

∀(x, y, z) ∈ Ω, δθ(x, y, z; 0) = 0,

∀(x, y, z; t) ∈ ∂Ω× T,
−λ

(
∂δθ
∂	n

)
= hδθ − δΦ.

(4)

Here we have

δΦ(x, z) =

Ns∑
j=1

φj

(
1|D+

j \Dj
− 1|Dj\D+

j

)

where

1|A\B(x, z) =
{

1 if (x, z) ∈ A and (x, z) /∈ B,
0 otherwise,
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and D+
j is the disk with radius r and heating source

center Ij + εδIj . This heating flux variation can be also
formulated considering

δΦ(x, z) =

Ns∑
j=1

φjδFj(x, z)

with

δFj(x, z) =
1

π

−μ (δxj(xj − x) + δzj(zj − z))
σj(x, z)

(
1 + (μ(σj(x, z)− r))2

)

= Aj(x, z)δxj +Bj(x, z)δzj ,

where

Aj(x, z) =
1

π

−μ(xj − x)
σj(x, z)

(
1 + (μ(σj(x, z)− r))2

) ,

Bj(x, z) =
1

π

−μ(zj − z)
σj(x, z)

(
1 + (μ(σj(x, z)− r))2

) .

Finally, the heating flux variation is expressed as

δΦ(x, z) =

Ns∑
j=1

φj (Aj(·)δxj +Bj(·)δzj) . (5)

3.3. Adjoint problem. This problem consists in
determining the gradient of the cost function

−−→
∇Jk =

(
∂J

∂xj
,
∂J

∂zj

)(
xkj , z

k
j

)
j=1,...,Ns

at each iteration k of the CGM by introducing an adjoint
function ψ(x, y, z; t) . Other applications are presented
by Jarny et al. (1991), Silva Neto and Ozisik (1993),
Huang and Chen (1999), Khachfe and Jarny (2000; 2001),
Rouquette et al. (2007a) and Perez et al. (2007).

Let us introduce the Lagrangian L(θ, I, ψ)
associated with the direct problem (1):

L(θ, I, ψ)
= J(θ(·))

+

∫ tf

0

∫
Ω

(
ρc
∂θ(·)
∂t
− λΔθ(·)

)
ψ(·) dt dΩ.

(6)

Let us consider

δL(θ, I, ψ) = ∂L
∂θ
δθ +

∂L
∂I

δI +
∂L
∂ψ

δψ

with
∂L
∂I

δI =

Ns∑
j=1

(
∂L
∂xj

δxj +
∂L
∂zj

δzj

)
.

Algorithm 1. CGM algorithm.

Step 1. Initialization k = 0 : I0j
(
x0j , z

0
j

)
j=1,...,Ns

is the
initial unknown source center.

Step 2. Direct problem solution in order to calculate the
temperature and the cost function J

(
Ik

)
.

• If J
(
Ik
) ≤ Jstop (admissible threshold Jstop will

be discussed further), the minimization procedure is
stopped and the current values Ikj

(
xkj , z

k
j

)
j=1,...,Ns

are considered adequate estimates for source
coordinates I�j ;

• otherwise, the iterative procedure is continued.

Step 3. Adjoint problem solution in order to compute the
functional gradient

−−→
∇Jk =

(
∂J

∂xj
,
∂J

∂zj

)(
xkj , z

k
j

)

for j = 1, . . . , Ns, and the next descent direction

−−→
dk+1 = −

−−→
∇Jk + βk

−→
dk,

where

βk =
‖−−→∇Jk‖2
‖−−−−→∇Jk−1‖2

(‖·‖ is the Euclidean norm and β0 = 0).

Step 4. Sensitivity problem solution in order to estimate
the step-length in the descent direction:

γk+1 = argmin
γ∈R

(Ik − γ
−−→
dk+1)

Step 5. Estimation of the new coordinates
Ik+1
j (xk+1

j , zk+1
j ) using the following formulas:

xk+1
j = xkj − γk+1

(−−→
dk+1
j

)
1

and

zk+1
j = zkj − γk+1

(−−→
dk+1
j

)
2

,

where ((−−→
dk+1
j

)
1
,
(−−→
dk+1
j

)
2

)

corresponds to the descent direction related to heat source
j and coordinates (x, z).

Step 6. k ← k + 1 and go to Step 2.
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If θ is a solution to (1), then L(θ, I, ψ) = J(I) and
δL(θ, I, ψ) = δJ(θ, I). If ψ is fixed, then

∂L
∂ψ

δψ = 0

and δL(θ, I, ψ) becomes

δL(θ, I, ψ) = ∂L
∂θ
δθ +

Ns∑
j=1

(
∂L
∂xj

δxj +
∂L
∂zj

δzj

)
.

Then the choice of the fixed Lagrange multiplier
ψ(x, y, z; t) is performed in order to satisfy the following
equation:

∂L
∂θ
δθ = 0. (7)

In order to determineψ(x, y, z; t) which satisfies (7),
while taking account of the previous equation (6), let us
formulate δL(θ, I, ψ) as follows:

δL(θ, I, ψ) =
∫ tf

0

∫
Ω

Eδθ dt dΩ

+

∫ tf

0

∫
Ω

(
ρc
∂δθ

∂t
− λΔδθ

)
ψ dt dΩ,

where

E(x, y, z; t)

=
3∑

i=1

(
θ(x, y, z; t)− θ̂i(t)

)
δd(x, y, z;Ci)

and δd(x, y, z;Ci) is the Dirac distribution which is
considered at the sensor location Ci. After several
integrations by parts (versus space and time), while taking
account of the sensitivity equations (4), Eqn. (7) is
satisfied if the Lagrange multiplier ψ is a solution to the
following problem:

Adjoint problem Padj: Assuming the set of
parameters P = {λ, ρc, h, L, e, E}, determine
ψ(x, y, z; t) as a solution to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀(x, y, z; t) ∈ Ω× T,
λ

(
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2

)
= E − ρc∂ψ

∂t
,

∀(x, y, z) ∈ Ω, ψ(x, y, z; tf ) = 0,

∀(x, y, z; t) ∈ ∂Ω× T, −λ
(
∂ψ
∂	n

)
= hψ.

(8)

The corresponding derivation is presented in
Appendix. If ψ is a solution to the adjoint problem Padj

(8) , then

δL(θ, I, ψ) = −
∫ tf

0

∫
∂Ω

ψδΦdt d(∂Ω),

with δΦ given in (5). Then δL(θ, I, ψ) can be written as

δL(θ, I, ψ)

= −
∫ tf

0

∫
∂Ω

ψ

Ns∑
j=1

φj(t)

π

(
Aj(·)δxj

+Bj(·)δzj
)
dt d(∂Ω).

Since 〈−→∇J, δI〉
L2(T,∂Ω)

= δJ = δL,

the gradient of the cost function is

−→∇J =

(
∂J

∂xj
,
∂J

∂zj

)
j=1,...,Ns

=

(
−
∫ tf

0

∫
∂Ω

φj
π
Ajψ dt d(∂Ω),

−
∫ tf

0

∫
∂Ω

φj
π
Bjψ dt d(∂Ω)

)
j=1,...,Ns

.

(9)

3.4. Step-length in the descent direction. The
step-length in the descent direction γk+1 corresponds to
the optimal depth in the descent direction for the new
value of the unknown heating source coordinates:

Ik+1 = Ik − γk+1
−−→
dk+1

γk+1 = argmin
R

J
(
Ik+1

)
,

(10)

where

J
(
Ik+1

)
=

1

2

∫ tf

0

3∑
i=1

(
θ

(
Ci; t; I

k − γk+1
−−→
dk+1

)
− θ̂i(t)

)2

dt.

For small variations in heating source localizations,
the problem can be linearized and the temperature is
written as

θ

(
Ci; t; I

k − γk+1
−−→
dk+1

)

= θ
(
Ci; t; I

k
)− γk+1δθ−−−→

dk+1
(Ci; t ).

Since δθ−−−→
dk+1

(Ci; t) is the sensitivity function induced by
the variation in the heating source coordinates denoted by−−→
dk+1, we have

J

(
Ik − γk+1

−−→
dk+1

)

=
1

2

∫ tf

0

3∑
i=1

(
θ
(
Ci; t; I

k
)− θ̂i(t)

)2

dt

+

(
γk+1

)2
2

∫ tf

0

3∑
i=1

(
δθ−−−→

dk+1
(Ci; t)

)2

dt
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− γk+1

∫ tf

0

3∑
i=1

(
θ
(
Ci; t; I

k
)− θ̂i(t)

)

×δθ−−−→
dk+1

(Ci; t) dt.

In order to minimize the quadratic functional

J
(
Ik − γk+1

−−→
dk+1

)
, γk+1 is determined such that

∂J
(
Ik − γk+1

−−→
dk+1

)
∂γ

= 0,

and then

∂J
(
Ik − γk+1

−−→
dk+1

)
∂γ

= γk+1

∫ tf

0

3∑
i=1

(
δθ−−−→

dk+1
(Ci; t)

)2

dt

−
∫ tf

0

3∑
i=1

(
θ
(
Ci; t; I

k
)− θ̂i(t))

)
δθ−−−→

dk+1
(Ci; t) dt.

Then the step-length in the descent direction γk+1 is

γk+1

=

∫ tf

0

3∑
i=1

(
θ
(
Ci; t; I

k
)− θ̂i(t))

)
δθ−−−→

dk+1
(·) dt

∫ tf

0

3∑
i=1

(
δθ−−−→

dk+1
(·)

)2

dt

.

(11)
At each iteration k , the sensitivity problem Psens (4)

has to be solved in the descent direction
−−→
dk+1 to compute

the step-length in the descent direction γk+1.

3.5. Admissible level of minimization. In order to
implement the algorithm of the CGM, a threshold Jstop has
to be defined in order to stop the iterative minimization
procedure. If all perturbations can be neglected and the
experiment takes place in ideal conditions, then, without
noisy measurements and model errors, Jstop can be ideally
fixed close to zero. In this numerical study, observations
are obtained from a given direct problem (where heat
source locations

I�j

(
x�j ,
−e
2
, z�j

)
j=1,...,Ns

are assumed to be known). These simulated observations
are taken into account to determine the source locations
in a reduced time. If temperature measurements are
not arbitrarily disturbed, the minimization algorithm is
stopped when J

(
Ik, θ

)
< Jstop = 10−3 K2· s. For

such a value, source locations are well estimated since the
additional criterion (tracking error)

TE
(
Ik

)
=

Ns∑
j=1

√(
xkj − x�j

)2
+
(
zkj − z�j

)2

is quite small, where Ikj
(
xkj ,−e/2, zkj

)
is the estimated

location of the heat source I�j
(
x�j ,−e/2, z�j

)
at iteration

k. In the numerical setting considered, where I�j are
known, TE is relevant information to investigate the
algorithm behavior. The tracking error is considered
a stopping criterion and the algorithm is stopped if
TE

(
Ik

)
< 10−3 m. It is important to notice that,

for realistic experimental situations when heat source
locations are unknown, the tracking error cannot be
calculated. Then the stopping criterion can be considered
equal to

Jstop = Δt
Nc

2
σ2Nt,

where σ is the standard deviation of the Gaussian noise
and Nt is the number of observations for each of Nc = 3
sensors. Such a stopping strategy is discussed by Alifanov
(1994).

4. Numerical results

In the following paragraphs, several configurations are
investigated in order to illustrate CGM implementation
and its regularization effect in the context of identification
of heat source locations. For one, two or three
heat sources, the minimization of the cost function
and the evolution of the tracking error are shown
for observations obtained at three sensors (with or
without noise). Numerical results are obtained using
the Comsol-Multiphysics solver interfaced with Matlab
software with/without noisy measurements, for different
values of the final time tf (this key parameter can also be
considered the necessary measurement time).

4.1. Case A.1. In this first case, the plate is heated with
a single source located at I (0.01,−e/2, 0.01) in meters
(see Fig. 3). Assume that tf = 1 s. Numerical results for
the direct problem are presented in Fig. 4. Observations
are performed every 0.1 s and the temperature values
numerically obtained are considered as measurements
θ (Ci, t) for the set of sensors Ci (see Fig. 2). In
the following, the source coordinates are unknown. In
order to identify these unknown coordinates, the IHCP
described by Pinv (see Section 3) is solved. The initial
value of source localization is given by I (0.01,−e/2, 0).
The solution of Pinv is performed using CGM and results
are presented hereafter. The algorithm is stopped for
J
(
Ik, θ

)
< Jstop = 10−3. In Fig. 5, it is shown that

after eight iterations, criterion J
(
Ik, θ

)
converges under

the adopted stopping criterion. Moreover, evolution of the
tracking error, which decreases at each iteration, confirms
the correct behavior of the minimization algorithm. For
J
(
Ik, θ

)
< Jstop = 10−3, the tracking error is lower

than 10−3m. Coordinate evolution (versus iteration k)
of the sought source is shown in Fig. 6. The identified
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Fig. 3. Source location y = −e/2: Case A.1.

Fig. 4. Direct problem solution: Case A.1.

Fig. 5. Cost function and the tracking error: Case A.1.

Table 2. Criterion values vs. iteration k: Case A.1.
Iteration k 0 1 2 3 · · ·

J (I) 0.50 0.07 0.023 0.018 · · ·
Iteration k · · · 7 8

J (I) · · · 0.0016 0.0007

coordinates versus iteration k are presented in Table
3. The error for the localization of the disk center
is lower than 0.95 mm. These previous results show
that heat source coordinates are obtained after eight
iterations with the measurement time equal to one second.
The choice of this final time for identification purposes
plays a crucial role in the convergence of the conjugate

Fig. 6. Coordinate evolution on the heated face: Case A.1.

Table 3. Source coordinates (in mm) vs. iteration k: Case A.1.
Iteration k 0 1 2 3 · · ·

x 10 12.4 14.4 15.3 · · ·
z 0 1.5 2.9 4.8 · · ·

Iteration k · · · 7 8
x · · · 8.1 10.8
z · · · 12.5 9.5

Table 4. Criterion and tracking error (in mm) values versus iter-
ation k: Case A.2.
k 0 1 2 3 4
J 4.28 1.26 0.97 0.90 0.85
TE 10 9 8 5 7

k 5 6 7 · · · 12
J 0.75 0.729 0.727 · · · 0.727
TE 6 7 6.8 · · · 0.5

gradient algorithm. This choice depends on the number
of information pieces provided by sensors. For noisy
measurements, the final time has to be adapted in order to
obtain the desired convergence (and the correct location).

4.2. Case A.2. The temperature predicted in the same
configuration as for Case A.1 is disturbed by additive
Gaussian noise defined byN (0, 0.5).

Both the cost-function and tracking error versus
iteration k are shown in Table 4 and Fig. 7. It is shown
that the convergence of the iterative algorithm is achieved
in 12 iterations with the convergence of the tracking error
under the threshold value TE

(
Ik, θ

)
< 10−3. In order

to illustrate that the final time tf = 1s does not provide
enough observations, tracking errors are compared for
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Fig. 7. Cost function and the tracking error: Case A.2.

Table 5. Source coordinates (in mm) vs. iteration k: Case A.2.
k 0 1 2 3 4
x 10 12.8 14.6 14.2 6.7
z 0 1.8 3.3 8.2 16.4

k 5 · · · 12
x 5.2 · · · 8.9
z 13.5 · · · 10.5

tf = 1 s and tf = 2 s in Fig. 8. It is shown that for tf = 1
s, the tracking error is almost constant for k ≥ 6 and it
is not possible to identify the correct heat source location.
For tf = 2 s the tracking error obtained after 12 iterations
is lower than the desired accuracy. Coordinate evolution
is shown in Table 5. The error for the localization of the
disk center is lower than 1.21 mm.

4.3. Case A.3. Let us consider a greater standard
deviation, i.e., Gaussian noise N (0, 1) (see Fig. 9). Both
the cost-function and the tracking error versus iteration k
are shown in Table 6 and Fig. 10. The identified source
coordinates are presented in Table 7. The error for the
localization of the disk center is lower than 0.77 mm.
Moreover, in Fig. 11, evolution of the tracking error for
several final time values is presented. The obtained results
show that three seconds (tf = 3 s) are sufficient to identify
the heating source coordinates considering the measured
temperature disturbed by Gaussian noiseN (0, 1), while 2
seconds do not provide enough disturbed observations to

Fig. 8. Tracking error for different final time values: Case A.2.

Fig. 9. Disturbed measurements for tf = 3 s: Case A.3.

Fig. 10. Cost function and the tracking error: Case A.3.

identify the correct location.
The previous cases confirm robustness of the CGM

when identifying a single heat source location. Moreover,
the regularization effect of the CGM is illustrated when
noisy data are taken into account for identification
purposes.

Table 6. Criterion and tracking error (in mm) values vs. itera-
tion k: Case A.3.
k 0 1 2 3 4
J 13.81 5.105 4.074 3.968 3.968
TE 10 8 5 4.7 4.7

k 5 6 7
J 3.958 3.755 3.596
TE 4.5 2.6 0.8

Table 7. Source coordinates vs. iteration k: Case A.3.
k 0 1 2 3 4
x 10 12.9 13.7 12.4 12.4
z 0 2.4 6.2 5.9 5.9

k 5 6 7
x 12 10.3 10.3
z 6 7.4 9.3

4.4. Case B.1. Consider two heat sources whose
real positions are defined by I1 (0.01,−e/2, 0.01) and
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Fig. 11. Tracking error for different final time values: Case A.3.

Table 8. Criterion values vs. iteration k: Case B.1.
Iteration k 0 1 2 3 4
J (I1, I2) 1.14 0.18 0.074 0.058 0.047

Iteration k · · · 8 9
J (I1, I2) · · · 0.0016 4 10−5

I2 (−0.01,−e/2, 0.01) in meters (see Fig. 12). Simulated
temperatures (treated as measured temperatures for
identification purposes) are presented in Fig. 13.

Fig. 12. Source location y = −e/2: Case B.1.

Assume that for the inverse problem solution the
CGM is implemented with initial sources coordinates
equal to Ik=0

1 (0.01,−e/2, 0) and Ik=0
2 (−0.01,−e/2, 0).

Results are presented in Fig. 14 and Table 8. Evolution
of the identified coordinates for the two heat sources is
shown in Fig. 15 and the values are presented in Table
9. The error for the localization of the disk center is
lower than 0.1 mm. In this case, observations performed
during only one second (tf = 1 s) are relevant to
identify the locations of two sources. The effect of noisy
measurements is investigated in the following section.

4.5. Case B.2. Assume that the measured temperatures
are disturbed by Gaussian noise N (0, 0.5) (see Fig. 16).
Evolution of both the cost function and the tracking error
is outlined in Fig. 17 and Table 10. The obtained
coordinates of the localizations of the two heating sources
are given in Table 11. The error for the localization of the
disk center is lower than 0.81 mm. In order to justify the

Fig. 13. Direct problem solution: Case B.1.

choice of the final time (tf = 2 s), a comparison between
the tracking errors obtained for tf = 1 s and tf = 2
s versus iteration k is presented in Fig. 17. It is shown
that, for noise N (0, 0.5), observations performed during
1 second are not efficient for identifying the locations
of two heat sources. In fact, in such a situation the
signal/noise ratio is too small and the CGM fails to extract
relevant information so quickly. For a final time equal to 2
seconds, convergence is correct and unknown coordinates
are accurately identified.

Fig. 14. Cost function and the tracking error: Case B.1.

Fig. 15. Source coordinates evolution on the heated face:
Case B.1.
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Table 9. Source coordinates (in mm) vs. iteration k: Case B.1.
k 0 1 2 3 4
x1 10 12.4 14.3 14.8 9
z1 0 1.5 2.8 5.7 15
x2 −10 −12 −14.7 −14.7 −9
z2 0 1.4 2.8 5.7 15

k 5 6 7 8 9
x1 6.8 7.2 7.5 10.3 10
z1 12.5 13.5 13.5 10.4 10
x2 −6.7 −7.2 −7.4 −10.2 −10
z2 12.6 13.5 13.6 10.5 10

4.6. Case B.3. For a larger noise standard deviation
N (0, 1), the predicted temperature is shown in Fig. 19.
The CGM for of the identification source coordinates is
called for tf = 10 s and results are presented in Fig. 20
and Tables 12 and 13. The localization error of the
disk center is lower than 1.21 mm. According to the

Fig. 16. Disturbed measurements for tf = 2 s: Case B.2.

Fig. 17. Cost function and the tracking error vs. k: Case B.2.

Table 10. Cost function and tracking error (in mm) vs. k:
Case B.2.
k 0 1 2 3 4
J 9.2 2.2 1.6 1.3 1.7
TE 20 17 16 6 20

k 5 6 · · · 23
J 2.17 0.087 · · · 0.67
TE 14 14 · · · 0.6

Table 11. Source coordinates (in mm) vs. iteration k: Case B.2.
k 0 · · · 3 4 5
x1 10 · · · 12.7 7 4.1
z1 0 · · · 11.5 19 13.3
x2 −10 · · · −12.3 −6 −3.3
z2 0 · · · 11.5 19 12.6

k · · · 10 11 12 · · ·
x1 · · · 15.3 3.5 6 · · ·
z1 · · · 8.4 17.6 15 · · ·
x2 · · · −17.3 −1.6 −5 · · ·
z2 · · · 9.4 16.9 15 · · ·
k 15 16 17 · · · 23
x1 12 8 7.5 · · · 9.6
z1 9 14.3 13.5 · · · 10.7
x2 −14 −7.3 −6.7 · · · −9.6
z2 10 13.9 13.1 · · · 10.3

previous results with the final time tf = 10 s, it is shown
that the CGM is robust and efficient when identifying the

Fig. 18. Tracking error for different final times: Case B.2.

Fig. 19. Disturbed measurements for tf = 10 s: Case B.3.

Table 12. Cost function and the tracking error (in MM) vs. k:
Case B.3.
k 0 · · · 3 4 5
J 384 · · · 50 40 27
TE 20 · · · 7 14 12

k · · · 7 8 · · · 11
J · · · 26.37 26.37 · · · 12.84
TE · · · 8.5 3.5 · · · 0.5
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locations of two heat sources. In order to justify the choice
tf = 10 s, several final times are compared in Fig. 21. It is
important to note that for observations performed during
10 seconds, even with significant noise (see Fig. 19), heat
source coordinates are accurately identified in only 11
iterations.

4.7. Case C.1. For this last studied configuration,
the CGM is implemented in order to identify the
location of three heat sources (S1, S2 and S3)
located at I1 (0.01,−e/2, 0.01), I2 (−0.01,−e/2, 0.01)
and I3 (0,−e/2,−0.005) in meters (see Fig. 22).

Simulated temperatures (treated as the measured
temperatures for identification purposes) are presented in
Fig. 23. The corresponding initial source coordinates
are Ik=0

1 (0.01,−e/2, 0), Ik=0
2 (−0.01,−e/2, 0) and

Ik=0
3 (0,−e/2, 0).

The results are presented in Figs. 24 and 25 and
Tables 14 and 15. The error for the localization of the
disk center is lower than 0.23 mm. For this situation, if
the final time is lower than 7 s, then the algorithm cannot
converge and the cost function cannot decrease under the
stopping criterion fixed as Jstop = 10−3 (see Section 3.5).
In fact, an important amount of observations is required in
order to discriminate between the three sources.

4.8. Case C.2. Measurements disturbed by Gaussian
noise N (0, 0.5) are considered in Fig. 26. The results are
shown in Fig. 27 and Tables 16 and 17. The error for the
localization of the disk center is lower than 0.65 mm.

Fig. 20. Cost function and tracking error evolution: Case B.3.

Table 13. Source coordinates (in mm) vs. iteration k: Case B.3.
k 0 1 2 3 4
x1 10 13.8 15 11 6.4
z1 0 2.2 5 13 15.7
x2 −10 −13.8 −15 −10 −6.1
z2 0 2.2 5 13 15.6

k 5 6 · · · 11
x1 5.8 7.9 · · · 9.5
z1 14.3 13.8 · · · 11.1
x2 −5.66 −7.8 · · · −9.5
z2 14.2 13.6 · · · 10.8

Fig. 21. Tracking error for different final times: Case B.3.

Fig. 22. Source location y = −e/2: Case C.1.

Fig. 23. Direct problem solution: Case C.1.

Fig. 24. Cost function and the tracking error vs. k: Case C.1.

Table 14. Criterion values vs. iteration k: Case C.1.
k 0 1 2 · · · 22 23
J 70 32 13 · · · 0.002 0.0009

In Fig. 28, evolution of the tracking error is shown
for several final times, and it is evidenced that a time
longer than for non-disturbed observations is required for
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Fig. 25. Evolution of the source coordinates on the heated face:
Case C.1.

Table 15. Source coordinates (in mm) vs. iteration k: Case C.1.
k 0 1 2 · · · 17 · · · 23
x1 10 11.9 9.5 · · · 9.9 · · · 9.8
z1 0 1.1 5.6 · · · 9.7 · · · 9.9
x2 −10 −11.2 −9.6 · · · −10.2 · · · −10.1
z2 0 1.1 5.6 · · · 9.6 · · · 9.9
x3 0 0 −0.01 · · · 0 · · · 0
z3 −10 −11.3 −12.4 · · · −5.1 · · · −5.2

Fig. 26. Disturbed measurements for tf = 8 s: Case C.2.

Fig. 27. Cost function and the tracking error: Case C.2.

location identification.

4.9. Case C.3. For this final case, additive Gaussian
noise N (0, 1) is considered, and three sensors and three
heat sources have to be located. The measurements are

Table 16. Cost function and the tracking error (in mm) vs. iter-
ation k: Case C.2.

k 0 1 2 3 4 · · · 18
J 101 47 20 17 14 · · · 2.96
TE 25 24 16 14.4 14.2 · · · 0.8

Table 17. Source coordinates (in mm) versus iteration k: Case
C.2.

k 0 1 2 · · · 11 12
x1 10 11.3 9.5 · · · 9.6 10
z1 0 1.2 6.0 · · · 6.3 7.6
x2 −10 −11.1 −9.3 · · · −9.2 −9.6
z2 0 1.2 5.9 · · · 6.2 7.4
x3 0 0 0 · · · 0 −0.07
z3 −10 −10 −11.4 · · · −8.8 −6.8

k · · · 15 · · · 17 18
x1 · · · 9.6 · · · 9.9 9.9
z1 · · · 8.1 · · · 8.9 10.2
x2 · · · −9.9 · · · −10.9 −10.5
z2 · · · 7.9 · · · 9.4 9.6
x3 · · · 0.09 · · · −0.01 0.02
z3 · · · −7.2 · · · −5.3 −5.1

Fig. 28. Tracking error evolution for different final time values:
Case C.2.

shown in Fig. 29. The results are shown in Fig. 30 as well
as Tables 18 and 19 for the final time tf = 16 s. The error
for the localization of the disk center is lower than 0.45
mm. In Fig. 31, evolution of the tracking error is shown
for several final times.

Fig. 29. Disturbed measurements for tf = 16 s: Case C.3.
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If tf < 16 s, the tracking error does not converge
under the desired threshold.

5. Analysis

According to the previous results, the necessary
measurement time tf depends on the standard deviation
of the noise and 2Ns unknown parameters. This can
be illustrated by Table 20. In realistic cases, where the
tracking error TE cannot be estimated, it is more difficult
to define the reduced time tf . It seems to be attractive
to investigate the signal/noise ratio and to compare the
energy signal

E =

∫ tf

0

3∑
i=1

(
θ̂i(t)− θ0

)2

dt

with the admissible level of minimization

Jstop =
3

2
σ2nt.

It is important to notice that both of these functions
are increasing in time and are obtained without any a pri-
ori information on the source location. Without noise,
it is important to obtain enough information in order to
discriminate between sources. The final time depends on
the distance between sources and sensors, as well as the
heat flux. In the three studied configurations, this time
can be described by tf = 1 + t0, where t0 is defined as
the time for which E > e7.5(Ns−2). If noise has to be
taken into account, then tf = 1 + t0 + t1, where t1 is
defined as the time for which E > (Jstop)

0.6Ns .
It is obvious that the previous formulas are

heuristically determined and adapted to the studied
configurations. However, the complexity problem is taken
into account: t0 depends on the number of sources and t1
is related to the number of observations and the standard

Fig. 30. Cost function and the tracking error: Case C.3.

Table 18. Cost function and the tracking error (in mm) vs. iter-
ation k: Case C.3.

k 0 1 2 3 4 · · · 11
J 457 231 63 46 40 · · · 23.6
TE 25 24 13 12.3 12.2 · · · 0.9

Table 19. Source coordinates (in mm) vs. iteration k: Case C.3.
k 0 1 2 · · · 9 10 11
x1 10 11.5 8.9 · · · 9.0 9.4 9.6
z1 0 1.4 7.2 · · · 7.0 9.1 9.9
x2 −10 −11.5 −9.0 · · · −9.2 −9.1 −10
z2 0 1.5 7.1 · · · 7 9.1 9.9
x3 0 0 0.01 · · · 0.02 0.4 −0.4
z3 −10 −11.5 −11.8 · · · −9.4 −6.3 −5.2

Fig. 31. Tracking error for different final times tf : Case C.3.

Table 20. Required measurement time tf (in s).
σ = 0 σ = 0.5 σ = 1

Ns = 1 1 2 3
Ns = 2 1 2 10
Ns = 3 7 8 16

Table 21. Admissible level of minimization and signal energy
(in K2·s).

Jstop σ = 0 σ = 0.5 σ = 1

Ns = 1 0 7.5 45
Ns = 2 0 7.5 150
Ns = 3 0 30 240

E σ = 0 σ = 0.5 σ = 1

Ns = 1 0.4 3 10
Ns = 2 1.4 11 1400
Ns = 3 2800 4200 33400

Table 22. Predicted tf (in s).
σ = 0 σ = 0.5 σ = 1

Ns = 1 1 3 4
Ns = 2 2 4 7
Ns = 3 7 8 17

deviation of the noise. In Table 22, predicted values
tf = 1 + t0 + t1 are given and can be compared with
Table 20.

6. Conclusion

In this paper, an inverse heat conduction problem
(IHCP) is formulated in order to estimate the location
of one or several heat sources in a three-dimensional
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geometry using the conjugate gradient method (CGM).
For this algorithm implementation, the solution of
three well-posed problems is required. Numerical
experiments have been performed in order to study the
effect of the number of sources, measurement noise,
regularization, and the observation time required for
accurate identification. Robustness of the proposed
algorithm has been illustrated. If an adequate number
of observations is available, identification is achieved in
several iterations. This adequate number of observations
is directly connected to the final time. In experimental
situations, it has to be determined considering the
signal/noise ratio, the number of sources and the
admissible level of minimization.

Several directions can be considered for further
works. Theoretical determination of the required
observation time has to be investigated in specific
academic situations. Simultaneous identification of both
the location and the strength of fixed heat sources
is also an interesting goal considering the necessary
measurement time. Moreover, for mobile heat source
tracking, a sliding time window based on minimal time
determination seems to be quite an attractive approach.
Last but not least, an experimental device will be
developed in the LARIS-Lab research institute in order
to test numerous situations for several heat sources.
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Appendix

In order to better understand the formulation of the
boundary and final conditions in the adjoint problem,
consider the variation in the Lagrangian

δL(θ, I, ψ) =
∫ tf

0

∫
Ω

Eδθ dt dΩ

+

∫ tf

0

∫
Ω

(
ρc
∂δθ

∂t
− λΔδθ

)
ψ dt dΩ

= I1 + I2.

The second term is developed using integration by parts in
time and space:

I2 =

∫ tf

0

∫
Ω

(
ρc
∂δθ

∂t
− λΔδθ

)
ψ dt dΩ

=

∫ tf

0

∫
Ω

ρc
∂δθ

∂t
ψ dt dΩ−

∫ tf

0

∫
Ω

λΔδθψ dt dΩ,

= I3 − I4,

I3 =

∫ tf

0

∫
Ω

ρc
∂δθ

∂t
ψ dt dΩ

=

∫
Ω

(
[ρcδθψ]

tf
0 −

∫ tf

0

ρcδθ
∂ψ

∂t
dt

)
dΩ.

Setting the initial condition δθ(x, y, z; 0) = 0 in the
sensitivity problem, we have

I3 =

∫
Ω

ρcδθψ(.; tf ) dΩ−
∫ tf

0

∫
Ω

ρcδθ
∂ψ

∂t
dt dΩ

For the last term, we get

I4 =

∫ tf

0

∫
Ω

λΔδθψ dt dΩ

=

∫ tf

0

(∫
∂Ω

λ
∂δθ

∂	n
ψdδΩ−

∫
∂Ω

λδθ
∂ψ

∂	n
dδΩ

)
dt

+

∫ tf

0

∫
Ω

λδθΔψ dΩdt

Setting the boundary condition for the sensitivity
problem

∀(x, y, z; t) ∈ ∂Ω× T, −λ
(
∂δθ

∂	n

)
= hδθ − δΦ,

we have

I4 =

∫ tf

0

∫
∂Ω

(−hδθ + δΦ)ψδΩdt

−
∫ tf

0

∫
∂Ω

λδθ
∂ψ

∂	n
dδΩdt

+

∫ tf

0

∫
Ω

λδθΔψ dΩdt

= −
∫ tf

0

∫
∂Ω

(
hψ + λ

∂ψ

∂	n

)
δθδΩdt

+

∫ tf

0

∫
∂Ω

δΦψ dδΩdt+

∫ tf

0

∫
Ω

λδθΔψ dΩdt.

Consequently, the variation in the Lagrangian becomes

δL =

∫ tf

0

∫
Ω

Eδθ dt dΩ

+

∫
Ω

ρcδθψ(.; tf ) dΩ−
∫ tf

0

∫
Ω

ρcδθ
∂ψ

∂t
dt dΩ
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+

∫ tf

0

∫
∂Ω

(
hψ + λ

∂ψ

∂	n

)
δθδΩdt

−
∫ tf

0

∫
∂Ω

δΦψ dδΩdt−
∫ tf

0

∫
Ω

λδθΔψ dΩdt

=

∫ tf

0

∫
Ω

(
E − ρc∂ψ

∂t
− λΔψ

)
δθ dt dΩ

+

∫
Ω

ρcδθψ(.; tf )dΩ−
∫ tf

0

∫
∂Ω

δΦψ dδΩdt

+

∫ tf

0

∫
∂Ω

(
hψ + λ

∂ψ

∂	n

)
δθδΩdt.

As for Eqn. (7), the Lagrange multiplier ψ has to be
a solution of the following system of PDEs:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀(x, y, z; t) ∈ Ω× T,
λ

(
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2

)
= E − ρc∂ψ

∂t
,

∀(x, y, z) ∈ Ω, ψ(x, y, z; tf ) = 0,

∀(x, y, z; t) ∈ ∂Ω× T, −λ
(
∂ψ
∂	n

)
= hψ.

Thus,

δL(θ, I, ψ) = −
∫ tf

0

∫
∂Ω

ψδΦdt d(∂Ω).
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