
Int. J. Appl. Math. Comput. Sci., 2017, Vol. 27, No. 1, 133–155
DOI: 10.1515/amcs-2017-0010

A RELATION OF DOMINANCE FOR THE BICRITERION BUS ROUTING
PROBLEM

JACEK WIDUCH a

aInstitute of Informatics
Silesian University of Technology, ul. Akademicka 16, 44-100 Gliwice, Poland

e-mail: jacek.widuch@polsl.pl

A bicriterion bus routing (BBR) problem is described and analysed. The objective is to find a route from the start stop to the
final stop minimizing the time and the cost of travel simultaneously. Additionally, the time of starting travel at the start stop
is given. The BBR problem can be resolved using methods of graph theory. It comes down to resolving a bicriterion shortest
path (BSP) problem in a multigraph with variable weights. In the paper, differences between the problem with constant
weights and that with variable weights are described and analysed, with particular emphasis on properties satisfied only
for the problem with variable weights and the description of the influence of dominated partial solutions on non-dominated
final solutions. This paper proposes methods of estimation a dominated partial solution for the possibility of obtaining a
non-dominated final solution from it. An algorithm for solving the BBR problem implementing these estimation methods
is proposed and the results of experimental tests are presented.

Keywords: multicriteria optimization, set of non-dominated solutions, bicriterion shortest path problem, variable weights,
label correcting algorithm, transportation problem.

1. Introduction

The shortest path (SP) problem is one of the studied
issues of graph theory and one of great importance in
many information systems and applications. For example,
transportation problems where the goal is to determine the
shortest path (the path with the minimal length, or with
the minimal time or the cost of travel, etc.) between two
given points can be described as a SP problem. It is solved
by determining a path with minimal weight between two
given vertices in the graph with a single weight function.
There are well-known algorithms for finding the path
with minimal weight, like the Dijkstra, Bellman–Ford,
Floyd–Warshall and Johnson ones (Jungnickel, 1999). In
many cases using a graph with a single weight function
is insufficient because it does not describe precisely the
problem considered. For example, we want to determine
the path where the cost and the time of travel are
considered and minimized simultaneously. Thus, a graph
with k > 1 weight functions is used and the problem is
called the multicriteria shortest path (MSP) one. A special
case of the MSP problem is the BSP one, where k = 2
weight functions are considered.

The MSP and BSP problems are known to be

NP-complete by transformation from a 0-1 knapsack
problem (Garey and Johnson, 1990; Hansen, 1980;
Skriver and Andersen, 2000a). Many algorithms for
solving both problems are known, and they fall into
the following categories: label correcting algorithms
(Brumbaugh-Smith and Shier, 1989; Corley and Moon,
1985; Daellenbach and De Kluyver, 1980; Skriver and
Andersen, 2000b), label setting algorithms (Hansen,
1980; Martins, 1984; Tung and Chew, 1988), k-th shortest
path algorithms (Climaco and Martins, 1982), two-phase
algorithms (Mote et al., 1991) and others (Chen and
Nie, 2013; Dell’Olmo et al., 2005; Machuca et al., 2009;
Mandow and Pérez de la Cruz, 2008; Martı́ et al., 2009;
Raith and Ehrgott, 2009). The MSP problem is also solved
using the weighed linear scalarization method, where a
single-objective function is formulated and an optimal
solution to a single-objective function is determined
(Carraway et al., 1990). All of the algorithms mentioned
assume constant weights of the arcs of the graph, i.e., the
value of the weight function does not change for the given
arc.

For the first time the BBR problem was defined
and described by Widuch (2012). The bus network is

jacek.widuch@polsl.pl

134 J. Widuch

represented by a directed multigraph with two weight
functions standing for the cost and the time of travel,
respectively. For a given arc the weights take variable
values because they are calculated during the process of
finding the paths in the multigraph. The goal of the
problem is to determine a path between two given vertices
minimizing the time and the cost of travel simultaneously.
Additionally, the time of starting travel at the start vertex
is given. In the work of Widuch (2012) an analysis of
the problem and a label correcting algorithm with deleting
partial solutions were presented. In the algorithm, during
the process of finding the solutions only a single partial
solution is stored and it represents a path from the start
vertex to the given vertex vi. The new vertices are added
to the current partial solution by visiting the vertices of the
multigraph representing the bus network using the depth
first search and the backtracking method. Each vertex vi
stores the list of pairs (ti, ci), which constitute a set of
non-dominated solutions, where ti and ci are equal to the
time and the cost of travel of the partial solutions which
have already been analysed. These values are used for
estimating the partial solution after adding a new vertex if
it is possible to obtain a non-dominated final solution from
it. If the estimation is negative, then the partial solution is
not analysed and the backtrack is performed. Otherwise,
the partial solution is analysed until the final vertex has
been added to it.

BBR was modified by adding the next criterion, and
in the work of Widuch (2013) the multiple-criteria bus
routing (MBR) problem is described, where additionally
the length of the path is taken into consideration. Thus,
in the MBR problem we determine the path minimizing
three criteria, i.e., the time and the cost of travel and the
length of the path, simultaneously. There are important
differences between the properties of the paths and the
methods used to solve the MBR and BBR problems. The
set of non-dominated solutions contains only loopless
paths. The methods of estimating the partial solutions are
different and we cannot use the same methods in both the
problems.

In this paper a new algorithm for solving the BBR
problem is presented. The work contains theoretical
analysis of the BBR problem with reference to graph
theory with particular emphasis on differences between
that with constant weights and the problem with variable
weights. The properties satisfied only for the latter
problem are described. In particular, a possibility
of obtaining a non-dominated final solution from a
dominated partial solution is precisely analysed. It has
been proved theoretically and experimentally confirmed.
There are defined necessary terms for the final solution
obtained from a dominated partial solution, which are
not presented in the work of Widuch (2012). All
relationships between the final solutions, with one of them
obtained from a dominated partial solution, are defined.

The proposed representation of a partial solution and
more effective estimation of partial solutions used in the
algorithm influence the number of computed and analysed
partial solutions which are fewer in comparison with the
method presented by Widuch (2012).

The bus routing problem has gained the attention
of many researchers and have been intensively studied
in the last few decades. In the work of Huang et al.
(2014) the problem of optimal bus routing is studied.
It is formulated as linking a series of bus stops in a
certain order, aiming at minimizing the total cost, which
includes user and supplier costs. Thus, a single-criterion
problem is considered and ant colony optimization is used
to determine an optimal solution.

In 1969 the school bus routing problem (SBRP)
was formulated (Newton and Thomas, 1969). It is a
problem in the management of school bus fleet and seeks
to plan an efficient schedule for a fleet of school buses
that pick up students from various bus stops and deliver
them to the school by satisfying various constraints, such
as the bus capacity, where all students are picked and
each student must be assigned to a particular bus. The
objective of bus route planing is to visiting all bus stops
minimizing the number of school used buses and the
total bus travel distance while satisfying service qualities
such as student maximum riding time on a bus. The
problem is widely studied and a review of papers on SPRP
solutions is presented by Park and Kim (2010). The work
on solving the problem has continued by the adaptation
of various methods such as the branch-and-cut algorithm
(Riera-Ledesma and Salazar-González, 2012), ant colony
optimization (Addor et al., 2013; Arias-Rojas et al.,
2012; Bronshtein and Vagapova, 2015; Yigit and Unsal,
2016), simulated annealing (Manumbu et al., 2014), the
genetic algorithm (Sghaier et al., 2013), tabu search
(Pacheco et al., 2013), the GRASP (greedy randomized
adaptative search procedure) metaheuristic (Siqueira
et al., 2016), the time saving heuristic (Worwa, 2014),
the harmony search heuristic (Kim and Park, 2013), or
the column-generation-based algorithm (Caceres et al.,
2014). In the work of Chen et al. (2015) two algorithms
for solving the SBRP are proposed: an exact method of
mixed integer programming (MIP) and hybrid simulated
annealing with the local search metaheuristic.

The SBRP is modified and many variants of the
problem have been studied. One variant of the SBRP
is the school bus routing problem with time windows
(SBRPTW). It takes into account that buses must arrive
to pick up students before some specific time (lower
bound of the time window), and they can arrive before
another specific time (the upper bound of the time
window). In addition, the students were not picked up
before the beginning of the time window. A hybrid
column generation method (López and Romero, 2015)
and a branch-and-bound algorithm (Kim et al., 2012)

A relation of dominance for the bicriterion bus routing problem 135

are proposed to solve the problem. The next studied
variant of the SBRP is the school bus routing problem
with bus stop selection (SBRPBSS). Here a set of
potential stops is determined first in such a way that
each student lives within a given distance of at least
one stop. Routes are then determined for school buses
so that all students are picked up at a stop they can
reach. Thus, determining the set of visited bus stops
is a part of the problem. The following methods
of resolving the SBRPBSS are proposed: a genetic
algorithm (Dı́az-Parra et al., 2012; Kang et al., 2015), a
column-generation-based algorithm (Kinable et al., 2014;
Riera-Ledesma and Salazar-González, 2013), a GRASP
+ VND (variable neighborhood descent) matheuristic
(Schittekat et al., 2013), an artificial ant colony with
a variable neighborhood local search algorithm (Euchi
and Mraihi, 2012), continuous approximation (Ellegood
et al., 2015). In the work of Chalkia et al. (2014) the
SBRPBSS is modified and the safety of the bus stop (the
size and location of the waiting area, the quality of the
ground in the waiting area, and the visibility of the stop
for approaching drivers, pedestrian crossing, etc.) is in
addition considered.

The paper consists of four sections and it is organized
as follows. In Section 2, the BBR problem is described.
It contains the formulation of the mathematical model,
the analysis of the BBR problem and the algorithm for
solving it. The influence of dominated partial solutions
on non-dominated final solutions is precisely analysed
and the conditions, whose fulfillment makes it possible to
obtain a non-dominated final solution from a dominated
partial solution are presented. In Section 3 experimental
test results are presented. Finally, some conclusions are
drawn in Section 4.

2. Bicriterion bus routing problem

2.1. Formulation of the problem. The BBR problem
belongs to the group of problems where the goal is to
choose the means of transport and to find a route of travel
between two given points for a given time of starting
travel. The bus network is represented by a directed
weighted multigraph G = (V,E). The multigraph G
contains |V | = n vertices v1, . . . , vn and |E| = m arcs
e1, . . . , em (ei = (vj , vk); vj �= vk; vj , vk ∈ V). The
vertices represent the bus stops, thus a vertex expression
with reference to the multigraph G representing the bus
network determines the bus stop of the bus network. In
the network buses of M bus lines numbered from 1 to M
are run. The network is divided into zones and determines
the cost of travel.

For each bus line i (i = 1, . . . ,M) the route is
defined and consists of a sequence of stops through which
the bus runs from a start stop, represented by vertex vis,
to a final stop, represented by vertex vie, of the line. The

travel of the bus of a given bus line is directed, i.e., if it
runs from via to vib (via �= vib), this does not imply that
the bus runs in the opposite direction. The bus can run in
both directions but the routes can be different. Bus stops
belonging to the route of the bus line are different except
for the start and final stops, which can be the same. If the
start and final stops are identical, then we have called a
circular bus line.

Let the route of the i-th bus line (i = 1, . . . ,M) be
represented by a sequence of the following vertices:

〈vi0, vi1, . . . , vik−1, v
i
k〉, (1)

where vi0 = vis represents the start stop and vik = vie
represents the final stop of the line. The bus runs between
stops belonging to the route represented by (1) with a
given frequency. It runs from vi0 at time T i

0, passes through
vi1, . . ., vik−1 at times T i

0+δi0, . . ., T i
0+δik−2, respectively,

and reaches vik at time T i
0 + δik−1. The bus starts the

next course at time T i
1 (T i

1 = T i
0 + βi

0), and therefore
it reaches vi1, . . ., vik at times T i

1 + δi0, . . ., T i
1 + δik−1.

It executes pi courses and leaves vi0 at the following
times: T i

0, . . . , T
i
pi−1 (T i

0 < . . . < T i
pi−1), where T i

j =

T i
0 + βi

j−1 (j = 1, . . . , pi − 1). The timetable of the bus
of the i-th line (i = 1, . . . ,M) defines the values T i

0,
βi
0, . . . , β

i
pi−2, δi0, . . . , δ

i
k−1 (0 < βi

0 < . . . < βi
pi−2;

0 < δi0 < . . . < δik−1).
The frequency of the bus courses depends on the time

of day. For example, during peak hours it is greater than
in the evening. Thus the timetable defines the parameters
βi
0, . . . , β

i
pi−2 for the given bus line. The time of day

also influences the time of travel between two given bus
stops, i.e., it may be greater during peak hours than in
the evening. In addition, it depends on the way of travel
between the pair of stops, i.e., if the travel is directed or
the travel through other stops. Therefore the parameters
δi0, . . . , δ

i
k−1 are defined for each bus line. We assume a

simplified model of the bus network where the times of
getting on and off the bus by passengers are omitted.

The BBR problem is stated as follows. Given the bus
network structure, the bus line routes and the timetable,
the start stop represented by the start vertex vs and the
final stop represented by the final vertex ve between which
we want to travel, and the time Ts of starting travel at vs.
The goal is to find a route from the start stop to the final
stop minimizing the time and the cost of travel. The stops
belonging to the route, the stops of changes, the times of
departure from all stops belonging to the route, the bus
lines along which the buses run between stops should be
determined.

The time of travel is the sum of the time of waiting
at the start stop, the times of waiting for changes and the
travel times between stops belonging to the route. The
travel times between stops are defined by the timetable of
bus lines. The cost of travel depends on the location of the

136 J. Widuch

stops in the area of zones, the number of changes in the
route and the type of bus line, i.e., whether it is a regular
or a fast line. Travel by a fast line is faster than by a regular
line, and the cost of travel is twice as large as the cost of
travel by a regular line. The cost of a single travel, i.e.,
travel without a bus change, by a bus of a regular line is
calculated as follows. A ticket for travel within the area of
a single zone equals c1 (0 < c1) units, within two zones it
equals c2 (c1 < c2) units and within the confines of more
than two zones it equals c3 (c2 < c3) units. Therefore the
cost of travel from the start stop to the final stop equals the
sum of costs of travel between the stops of bus changes. In
the examples the following costs of a ticket are assumed:
c1 = 2.0, c2 = 2.3 and c3 = 2.6 units.

2.2. Mathematical model of the BBR problem. The
mathematical model of the BBR problem is formulated as
follows (Table 1 shows the symbols used in the model):

min T (p) =

M∑

l=1

∑

i∈V

∑

j∈V

tijl·xijl , (2)

min C(p) =

M∑

l=1

∑

i∈V

∑

j∈V

cijl·xijl, (3)

subject to

M∑

l=1

∑

{j|(i,j)∈E}
xijl −

M∑

l=1

∑

{j|(j,i)∈E}
xjil

=

⎧
⎨

⎩

1 if i = vs,
0 if i �= vs, ve,
−1 if i = ve,

(4)

M∑

l=1

∑

j∈V

xijl ≤ 2, ∀i ∈ V, (5)

T k
p,a =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ts, k = 0,

Ts +
k−1∑
q=0

tabl, a = vqp, b = vq+1
p ,

l = lq,q+1
p ,

0 < k < len(p),

(6)

T k
p,a ≤ T k

p,d ∧ T k
p,d ∈ D[a; l],

k = 0, . . . , len(p)− 2, a = vkp , l = lk,k+1
p . (7)

The objective functions (2) and (3) minimize the time
and the cost of travel, respectively. The constraints (4)
yield a directed path from the start vertex vs to the final
vertex ve. Constraints (5) state that each vertex is visited
at most two times. The constraints (6) state the time of
arrival to each vertex belonging to the path. Finally, the
constraints (7) force that the time of departure from a
vertex is not earlier than the time of arrival to this vertex
and the time of departure is in line with the timetable.

Table 1. Symbols used in the mathematical model of the BBR
problem.

Parameters

V = {1, . . . , n} set of vertices representing bus
stops

E set of all arcs between vertices
M number of bus lines
D[1 . . . , n; 1, . . . ,M] timetable (times of departures of

each bus line from each bus stop)
tijl time of travel from vi to vj by

bus of line l, it includes potential
time of waiting at vi

cijl cost of travel from vi to vj by
bus of line l

vs, ve start and final vertices
Ts time of starting travel at vs

Additional symbols

p path from vs to ve
len(p) number of vertices belonging

to p

vkp vertex in k-th position in path p

lk,k+1
p line number of bus which runs

from vertex in k-th position to
vertex in (k + 1)-th position in p

Decision variables

xijl 1 if bus of line l traverses arc from
vi to vj , 0 otherwise

T k
p,a time of arrival to vertex in k-th

position in path p

T k
p,d time of departure from vertex in

k-th position in path p

2.3. Analysis of the BBR problem. The BBR problem
can be modeled in graph theoretical terms as follows. A
directed weighted multigraph G = (V,E) represents the
bus network. The vertices v1, . . . , vn represent the bus
stops. Each arc ei = (vj , vk), (vj �= vk; vj , vk ∈ V)
corresponds to a specific bus line whose buses run directly
from the stop represented by vj to the stop represented by
vk. Direct travel from vj to vk means that the route does
not include other vertices. Between a pair of stops buses
of many bus lines can run. Therefore the multigraph can
contain parallel arcs. The arc ei has a single label l(ei)
and two weights: t(ei) and c(ei).

The label l(ei) takes a value from the range 1, . . . ,M
and represents the line number of the bus which runs from
vj to vk. During the process of finding the solutions it is
used to determine if a change at the given bus stop is done,
and to determine the cost of travel.

The weight t(ei) takes a positive value and it equals
the difference between the time of arrival Tk to vk and the
time of arrival Tj to vj , i.e., t(ei) = Tk − Tj . Thus it
is a sum of the time of waiting at vj and the travel time
from vj to vk. The travel time from vj to vk is constant

A relation of dominance for the bicriterion bus routing problem 137

e1

e2 e3 e4

e5

v1

v2 v3 v4 v5

v6

Fig. 1. Route of the bus line. The dashed line denotes the border
of zones.

and defined by the timetable, but the time of waiting at vj
is variable and it depends on the time of arrival Tj to vj .
Therefore the value of t(ei) is variable and determined by
the time of waiting at vj .

The weight c(ei) takes a non-negative value and
equals c(ei) = ck − cj , where ck is the cost of travel
from vs to vk and cj is the cost of travel from vs to vj .
The weight c(ei) like the weight t(ei), is variable. The
value of c(ei) depends on a possible change at vj and
location the vertices vj and vk in the same zone or of in
different zones. We should consider the following cases
to determine the value of c(ei). First, travel with a change
at vj is considered. If vj and vk are located in the same
zone, then c(ei) equals c1 and c2 otherwise.1 Second, we
travel without a change at the vertex vj . If vj and vk are
located in the same zone, then this does not increase the
cost of travel and c(ei) = 0. If we cross a zone, then the
value of c(ei) depends on the number of zones which we
crossed since the last change while travelling to vj . If we
did not cross any zone, then c(ei) = c2 − c1. It equals
c(ei) = c3 − c2 if we crossed a single zone, and if we
crossed two or more zones it equals c(ei) = 0.

The determination of the value of the weight c is
illustrated with an example of travel to the vertex v6 by
a bus of the line whose route is presented in Fig. 1. The
value of the weight c of arcs e1, . . . , e5 depends on the
start vertex vs (Table 2). Let us consider the start vertex
vs = v1. The vertices v1 and v2 are located in the same
zone, therefore c(e1) = c1. We do not cross a zone while
travelling from v2 to v3. Therefore it does not increase the
cost of travel and the weight c of arc e2 equals c(e2) = 0.
The vertices v1, v2 and v3 are located in the same zone;
and therefore the cost of travel from v1 to v2 equals the
cost of travel from v1 to v3 and is equal to c1. We crossed
two zones while travelling from v1 to v5; therefore the
next crossed zone while travelling from v5 to v6 does not
increase the cost of travel and c(e5) = 0. Table 2 shows
that the weight c(ei) is not constant. For example, the
weight c(e5) takes 3 different values.

The bus route from the start stop represented by the
start vertex vs to the final stop represented by the final

1Travel by a bus of a regular line is assumed, otherwise the value of
c(ei) must be multiplied by 2.

Table 2. Values of the weight c of arcs e1, . . . , e5 depending on
the start vertex vs for travel to the final vertex v6 by a
bus of the line whose route is presented in Fig. 1.

vs c(e1) c(e2) c(e3) c(e4) c(e5)

v1 c1 0 c2 − c1 c3 − c2 0
v2 – c1 c2 − c1 c3 − c2 0
v3 – – c2 c3 − c2 0
v4 – – – c2 c3 − c2
v5 – – – – c2

vertex ve is given by the path

pvs,ve = 〈v0 = vs, e1, . . . , vk−1, ek, vk = ve〉 (8)

from vs to ve in the multigraph G representing the bus
network. For each vertex vi (i = 0, . . . , k − 1) belonging
to the path pvs,ve , the time of departure Ti is stored.
Thus a path expression with reference to the multigraph
G representing the bus network determines the bus route
in the network.

Definition 1. A partial solution is called the path pvs,vi in
the multigraph G from the start vertex vs to any vertex vi,
where vi �= vs and vi �= ve. The path pvs,ve from the start
vertex vs to the final vertex ve is called the final solution.

Definition 2. A path pvi,vj containing a subsequence of
vertices and arcs from vi to vj belonging to pvs,ve is called
a subpath of pvs,ve and it is denoted as follows:

pvi,vj = subpvs,ve
(vi, vj).

Definition 3. Assume that paths pvs,vi and pvi,ve
containing a sequence of vertices and arcs described by

pvs,vi = 〈v′0, e′1, . . . , e′j , vi〉,
pvi,ve = 〈v′′0 , e′′1 , . . . , e′′k, ve〉,

are given, where v′0 = vs and v′′0 = vi. The start vertex
of pvi,ve and the final vertex of pvs,vi are identical, and
it follows that it is possible to obtain the path pvs,ve as a
concatenation of pvs,vi and pvi,ve :

pvs,ve = pvs,vi ⊕ pvi,ve . (9)

The path pvs,ve consists of a sequence of vertices and arcs
belonging to the paths pvs,vi and pvi,ve :

pvs,ve = 〈vs, e′1, . . . , e′j, vi, e′′1 , . . . , v′′k−1, e
′′
k, ve〉.

The length of the path equals the number of arcs
belonging to the path. The path (8) has two weights
T (pvs,ve) and C(pvs,ve) that represent the time and the
cost of travel from vs to ve. These weights are equal to the
sum of the corresponding weights of the arcs belonging to

138 J. Widuch

pvs,ve , i.e.,

T (pvs,ve) =

k∑

i=1

t(ei), (10)

C(pvs,ve) =
k∑

i=1

c(ei). (11)

Additionally, the number of crossed zones in pvs,ve is
denoted by Z(pvs,ve).

The time of travel of the path pvs,ve (9) obtained as
a concatenation of pvs,vi and pvi,ve equals the sum of the
times of travel:

T (pvs,ve) = T (pvs,vi) + T (pvi,ve),

where the time of starting travel at vi equals Ti = Ts +
T (pvs,vi).

The cost of travel C(pvs,ve) of the path pvs,ve (9)
depends on a possible change at the vertex vi. If the travel
through vi is done with a change (Fig. 2(a)) then it is
necessary to validate a new ticket and the cost of travel
C(pvs,ve) equals the sum of the costs of travel:

C(pvs,ve) = C(pvs,vi) + C(pvi,ve).

Otherwise (Fig. 2(b)) it is not necessary to validate a new
ticket, the sum of costs of travel should be decreased by
Δc and equals

C(pvs,ve) = C(pvs,vi) + C(pvi,ve)−Δc.

vs

va vi vb

ve

(b)

lj li li li li lk

vs

va vi vb

ve

(a)

lj li li li+1 li+1 lk

Fig. 2. Paths from the start vertex vs to the final vertex ve: with
a change at the vertex vi (a), without a change at the
vertex vi (b). The label on each arc represents the line
number of the bus which runs between bus stops repre-
sented by the vertices connected by the arc.

The value of decreasing the cost Δc depends on the
vertex vi and the number of crossed zone borders Za since
the last change at va while travelling to vi in pvs,vi and the

Table 3. Values of decreasing the cost Δc depending on the
number of crossed zone borders Za and Zb being a re-
sult of travel through the vertex vi without a change.

Zb = 0 Zb = 1 Zb ≥ 2

Za = 0 c1 c1 c1
Za = 1 c1 2× c2 − c3 c2
Za ≥ 2 c1 c2 c3

number of crossed zone borders Zb to the next change at
vb while travelling from vi in pvi,ve (Fig. 2(a)). It equals

Δc = C(subpvs,ve
(va, vi)) + C(subpvs,ve

(vi, vb))

− C(subpvs,ve
(va, vb)),

where C(subpvs,ve
(va, vi)) and C(subpvs,ve

(vi, vb)) are
respectively the cost of travel from va to vi and the cost of
travel from vi to vb, and C(subpvs,ve

(va, vb)) equals the
cost of travel from va to vb. The values of Δc are shown
in Table 3.

The objective of the BBR problem is to find, in
the multigraph G representing the bus network, the path
pvs,ve minimizing (10) and (11) simultaneously.

The BBR problem is an example of a
multiple-criteria optimization (MO) problem, where
k (k > 1) minimized or maximized criteria fi
(i = 1, . . . , k) are given. In most cases, there does
not exist a single solution for which all the critera take
optimum values, because in order to improve the value
of any of the functions we need to degrade those of other
functions. Therefore the solution of the MO is a set of
solutions called the set of non-dominated (Pareto optimal)
solutions (Ehrgott, 2000; Pareto, 1896).

Definition 4. Assume that there are k (k > 1) minimized
criteria fi (i = 1, . . . , k) and two solutions A and B.
The solution A is said to dominate the solution B, which
is denoted as A
 B , if the following conditions are
satisfied:

∀i ∈ {1, . . . , k} : fi(A) ≤ fi(B),

∃j ∈ {1, . . . , k} : fj(A) < fj(B).

Solving the BBR problem consists in solving the
bicriterion shortest path (BSP) problem between vs and
ve vertices in a multigraph with variable weights. The
solution of the BBR problem consists of a set of paths in
the multigraph G, representing the bus network, forming
the set of non-dominated solutions. The weights defined
by (10) and (11) are the criteria to be minimized.

The set of non-dominated solutions can contain many
paths with the same values of the weights (10) and (11)
(Widuch, 2012). According to Definition 4 these paths
are non-dominated solutions.

Let the paths p′vs,ve and p′′vs,ve belong to the set of

A relation of dominance for the bicriterion bus routing problem 139

non-dominated solutions and

T (p′vs,ve) = T (p′′vs,ve), (12)

C(p′vs,ve) = C(p′′vs,ve). (13)

One of the following properties is satisfied:

1. The paths p′vs,ve and p′′vs,ve differ from each other in
vertices or arcs belonging to these paths.

2. The paths p′vs,ve and p′′vs,ve are identical, i.e., they
contain the same sequence of vertices and arcs, and
differ from each other in the times of departure from
all vertices belonging to these paths.

A necessary condition for a non-dominated solution with
the second property is determined by Lemma 1.

Lemma 1. (Widuch, 2013) Consider paths p′vs,ve and
p′′vs,ve which consist of the same sequence of vertices and
arcs but differ from each other in the times of departure
from vertices belonging to these paths. Let (12) and (13)
be satisfied. Then both the paths belong to the set of non-
dominated solutions if we change at least once in these
paths.

The multigraph G representing the bus network
contains many paths with the same sequence of vertices
and arcs that differ from each other in times of departure
from vertices. The property of a path belonging to the set
of non-dominated solutions is described by Lemma 2.

Lemma 2. Let PT be the set of all paths from vs to ve con-
taining the same sequence of vertices and arcs that differ
from each other in the times of departure from vertices.
For the path pvs,ve ∈ PT , let Δt equal the total time of
waiting for changes in pvs,ve . If pvs,ve belongs to the set
of non-dominated solutions, then

∀p′vs,ve ∈ PT : Δt ≤ Δt′, (14)

where Δt′ equals the total time of waiting for changes in
p′vs,ve .

Proof. The paths belonging to the set PT contain the
same sequence of vertices and arcs, and it follows that

∀p′vs,ve : C(pvs,ve) = C(p′vs,ve). (15)

The time of travel T (pvs,ve) equals the sum of the travel
times between vertices and the total time of waiting
for changes. The total travel times between vertices in
these paths are identical, and the time of travel T (pvs,ve)
depends on the total time of waiting for changes. If pvs,ve
is a non-dominated solution, then it follows that (14) and

∀p′vs,ve ∈ PT : T (pvs,ve) ≤ T (p′vs,ve)

are satisfied, otherwise it is a dominated solution. �

vs

va vc vb

ve

(b)

lj la la lb lb lk

vs

va vc vb

ve

vd

(a)

lj la la lb lb lk

la

lalb

lb

Fig. 3. Part of paths from the start vertex vs to the final vertex
ve: a non-loopless path (a), a loopless path (b).

The set of non-dominated solutions can contain paths
which are not loopless (Widuch, 2012). This property
is satisfied only in a multigraph with variable weights
of arcs, like the multigraph G representing the bus
network. It has been shown that the set of non-dominated
solutions contains only loopless paths if weights of arcs
are non-negative and constant, and at least one is positive
(Henig, 1985; Tung and Chew, 1988; 1992).

It should be pointed out that for each non-loopless
path pvs,ve there exists a loopless path p′vs,ve which
contains the same sequence of vertices and arcs like
pvs,ve but is devoid of the cycle. The properties of
the non-loopless path pvs,ve belonging to the set of
non-dominated solutions are defined by Theorem 1.

Theorem 1. Consider a non-loopless path pvs,ve contain-
ing the cycle pvc,vc (Fig. 3(a)) and a loopless path p′vs,ve
which contains the same sequence of vertices and arcs like
pvs,ve but is devoid of the cycle (Fig. 3(b)). The path pvs,ve
belongs to the set of non-dominated solutions if the follow-
ing conditions are satisfied:

1. The cycle pvc,vc contains only a single change.

2. At the vertex vc no change is made.

3. The sum of the time of travel through the cycle pvc,vc
and the total time of waiting for changes in vertices
of the non-loopless path pvs,ve equals the total time
of waiting for changes in vertices of the loopless path
p′vs,ve .

Proof. The weights c and t of arcs do not take negative
values, and for that reason C(p′vs,ve) ≤ C(pvs,ve) and
T (p′vs,ve) ≤ T (pvs,ve). The loopless path p′vs,ve does
not dominate pvs,ve when the following conditions are
satisfied:

140 J. Widuch

C(pvs,ve) = C(p′vs,ve), (16)

T (pvs,ve) = T (p′vs,ve). (17)

Thus, it is necessary to prove the fulfillment of (16) and
(17) and define conditions that guarantee this.

Consider two vertices of changes va and vb, where va
is the vertex of the last change while travelling to vc and
vb is the vertex of the next change while travelling from
vc (Fig. 3). For the paths pvs,ve and p′vs,ve the conditions

subpvs,ve
(vs, va) = subp′

vs,ve
(vs, va),

subpvs,ve
(vb, ve) = subp′

vs,ve
(vb, ve)

are satisfied, and it follows that the costs of travel from vs
to va and from vb to ve are equal in both paths, i.e,

C(subpvs,ve
(vs, va)) = C(subp′

vs,ve
(vs, va)),

C(subpvs,ve
(vb, ve)) = C(subp′

vs,ve
(vb, ve)).

For this reason the cost of travel C(pvs,ve) of the
non-loopless path pvs,ve depends on the cost of travel from
va to vb, and (16) holds if

C(subpvs,ve
(va, vb)) = C(subp′

vs,ve
(va, vb)). (18)

The subpath subp′
vs,ve

(va, vb) of the loopless path
contains a single change at the vertex vc (Fig. 3(b)). The
condition (18) is satisfied if the subpath subpvs,ve

(va, vb)
containing the cycle pvc,vc also contains a single change
at vd and we do not change at vc (Fig. 3(a)). With each
next change it is necessary to validate a new ticket. This
increases the cost of travel and C(p′vs,ve) < C(pvs,ve),
and the non-loopless path pvs,ve is dominated. This proves
Properties 1 and 2 in the Theorem. In the next part of
the proof, it is necessary to define the conditions of the
fulfillment of (18).

The condition (18) holds if the costs of travel from va
to the vertices vd and vc, where we change, and the costs
of travel from these vertices to the vertex vb are equal, i.e.,

C(subpvs,ve
(va, vd)) = C(subp′

vs,ve
(va, vc)), (19)

C(subpvs,ve
(vd, vb)) = C(subp′

vs,ve
(vc, vb)). (20)

The fulfillment of (19) depends on
Z(subpvs,ve

(va, vc)) and Z(subpvs,ve
(vc, vd)), where

Z(subpvs,ve
(va, vc)) equals the number of crossed zones

in the subpath from va to vc and Z(subpvs,ve
(vc, vd))

equals the number of crossed zones in the subpath from vc
to vd. If Z(subpvs,ve

(va, vc)) ≥ 2, then the next crossed
zone does not increase the cost of travel. Thus, (19) is
satisfied because the cost of travel C(subpvs,ve

(va, vd))
does not depend on Z(subpvs,ve

(vc, vd)). Otherwise,
i.e., Z(subpvs,ve

(va, vc)) < 2, the next crossed zone
increase the cost of travel and (19) is satisfied if
Z(subpvs,ve

(vc, vd)) = 0.

Table 4. Timetable of the path p1,7 from vs = 1 to ve = 7
containing a cycle.

Vertex/ Arrival Departure Bus Cost of
zone time time line travel

1 / 1 12:00 12:05 1 0.0
2 / 1 12:08 12:08 1 2.0
3 / 1 12:11 12:11 1 2.0
4 / 1 12:15 12:25 2 2.0
5 / 1 12:28 12:28 2 4.0
2 / 1 12:32 12:32 2 4.0
6 / 1 12:35 12:45 3 4.0
7 / 1 12:50 3 6.0

The condition (20) is satisfied in similar cases. If
Z(subpvs,ve

(vc, vb)) ≥ 2 then Z(subpvs,ve
(vd, vc)) does

not influence the cost of travel and (20) is satisfied.
Otherwise, we have Z(subpvs,ve

(vc, vb)) < 2, the
condition (20) is satisfied if Z(subpvs,ve

(vc, vd)) = 0.
In the second part of the proof, (17) will be

demonstrated. The condition

subpvs,ve
(vs, vc) = subp′

vs,ve
(vs, vc)

is satisfied. Then it follows that

T (subpvs,ve
(vs, vc)) = T (subp′

vs,ve
(vs, vc))

is satisfied, too, and the total times of waiting for
changes in vertices of the subpaths subpvs,ve

(vs, vc−1)
and subp′

vs,ve
(vs, vc−1) are equal, where vc−1 is the

vertex which precedes vc in the paths. If the time of travel
through the cycle pvc,vc equals the time of waiting for a
change at vc in p′vs,ve , then the times of departure from vc
in pvs,ve and p′vs,ve are identical. It follows that

T (subpvs,ve
(vc, ve)) = T (subp′

vs,ve
(vc, ve))

occurs and (17) is satisfied, and this proves Property 3
defined in the theorem.

When the time of travel through the cycle pvc,vc is
longer than the time of waiting for a change at vc in p′vs,ve ,
then (17) is satisfied if

T (pvc,vc) + Δtvc,ve = Δt′vc,ve ,

where Δtvc,ve and Δt′vc,ve equal the total time of
waiting for changes in the subpaths subpvs,ve

(vc, ve) and
subp′

vs,ve
(vc, ve), respectively. In this case, Property 3

defined in the Theorem is satisfied, too. �

We illustrate Theorem 1 with an example of
determining paths from vs = 1 to ve = 7. The path p1,7
containing the cycle 2 → 3 → 4 → 5 → 2 is presented
in Table 4.2 Table 5 shows the path p′1,7, which has the

2The column “Cost of travel” contains the cost of travel from the start
vertex vs = 1 to the given vertex, and the column “Bus line” contains
the bus line by which we leave the given vertex.

A relation of dominance for the bicriterion bus routing problem 141

Table 5. Timetable of the path p′1,7 from vs = 1 to ve = 7
without a cycle.

Vertex/ Arrival Departure Bus Cost of
zone time time line travel

1 / 1 12:00 12:05 1 0.0
2 / 1 12:08 12:15 2 2.0
6 / 1 12:18 12:45 3 4.0
7 / 1 12:50 3 6.0

same sequence of vertices and arcs as p1,7 but is devoid a
cycle. All vertices belonging to the cycle are located in the
same zone, and thus we do not cross a zone border while
running through the cycle and the travel through the cycle
does not increase the cost of travel. Therefore the costs of
travel of the paths p1,7 and p′1,7 are equal and their value
is 6.0 units. In the path p′1,7 we change at the vertices 2
and 6, and the times of waiting for a change are equal to 7
and 27 minutes, respectively. The time of departure from
the vertex 2 towards the vertex 6 in the path p1,7 is later
than in the path p′1,7; thus the time of waiting for change
at the vertex 6 in the path p1,7 is shorter and it equals 10
minutes. The time of making the cycle in the path p1,7
equals 24 minutes and is longer than the time of waiting
for change at vertex 2 in the path p′1,7. The sum of the time
of making the cycle and the time of waiting for change at
the vertex 6 in the path p1,7 is 34 minutes. It equals the
sum of times of waiting for a change at the vertices 2 and 6
in the path p′1,7. Therefore the times of travel of the paths
p1,7 and p′1,7 are equal and their value is 50 minutes. The
path p1,7 satisfies the conditions defined by Theorem 1.
The cycle contains only a single change at the vertex 4,
and the vertex 2 is passed without a change.

Let us consider the paths ptvs,ve and pcvs,ve with
the minimal time and the minimal cost of travel from
vs to ve, respectively, and cmax = C(ptvs,ve) and
tmax = T (pcvs,ve). The values tmax and cmax determine
the maximal time and the maximal cost of travel the
path belonging to the set of non-dominated solutions.
According to Definition 4, for the path pvs,ve , if
C(pvs,ve) > cmax is satisfied, then ptvs,ve
 pvs,ve .
Similarly, pcvs,ve
 pvs,ve if T (pvs,ve) > tmax occurs.
The value of tmax makes it possible to determine the latest
time of arrival T e

max to the final vertex ve in the path being
a non-dominated solution, i.e.,

T e
max = Ts + tmax. (21)

2.4. Influence of dominated partial solutions on non-
dominated final solutions. The partial solution pvs,vi
can be extended to the final solution pvs,ve by determining
the path from vi to ve. There are several problems
connected with this operation. Many partial solutions are
determined for the given vertex vi during the process of
finding the solutions and these partial solutions can be

compared to each other according to the time and the
cost of travel. If the partial solution is dominated by
another partial solution, it is necessary to decide whether
it should be stored and analysed or if it may be omitted. In
consequence, it is important to know whether it is possible
to extend a dominated partial solution and obtain from it a
non-dominated final solution. An answer to this question
contains conditions required to obtain a non-dominated
final solution from a dominated partial solution which are
presented in this subsection. They take into account, in-
ter alia, on whether the vertex vi is passed with a change
or without it. Therefore all possible cases are analysed.
Next, it is necessary to define the conditions under which
a dominated partial solution may be omitted because it is
not possible to obtain a non-dominated final solution from
it. The estimation is done based on the partial solutions
already computed for the vertex vi. This subsection
resolves all of the mentioned problems and it contains all
listed conditions.

Assume that there are two final solutions pvs,ve and
p′vs,ve obtained from the partial solutions pvs,vi and p′vs,vi ,
where pvs,vi
 p′vs,vi . If the weights of arcs are constant
then it shown that the monotonicity assumption holds,
i.e., a final solution p′vs,ve obtained from a dominated
partial solution p′vs,vi is a dominated solution (pvs,ve

p′vs,ve) and pvs,ve belongs to the set of non-dominated
solutions solely if, for each vi belonging to pvs,ve , the
subpath subpvs,ve

(vs, vi) is a non-dominated solution,
too (Azevedo and Martins, 1991; Carraway et al., 1990;
Martins et al., 1999; Mote et al., 1991).

Lemma 3. Consider a weighed multigraph G, where the
weights take non-negative and variable values, and two
partial solutions pvs,vi and p′vs,vi , where pvs,vi
 p′vs,vi .
Then the monotonicity assumption does not hold, and it
is possible to obtain a non-dominated final solution p′vs,ve
from a dominated partial solution p′vs,vi .

Proof. According to Definition 4, if pvs,vi
 p′vs,vi , then
(22) or (23) holds:

T (pvs,vi) < T (p′vs,vi) ∧ C(pvs,vi) ≤ C(p′vs,vi), (22)

T (pvs,vi) ≤ T (p′vs,vi) ∧ C(pvs,vi) < C(p′vs,vi). (23)

Let δt and δc be respectively the differences between the
times and the costs of travel of the partial solutions p′vs,vi
and pvs,vi :

δt = T (p′vs,vi)− T (pvs,vi),

δc = C(p′vs,vi)− C(pvs,vi).

In order to prove the theorem, it is necessary to
consider all possible cases of obtaining the final solution
on the basis of a partial one. The time and the cost of travel
of the final solutions p′vs,ve and pvs,ve obtained from p′vs,vi

142 J. Widuch

and pvs,vi will be analysed. Let us denote by p′vs,ve and
pvs,ve the concatenation of paths:

pvs,ve = pvs,vi ⊕ pvi,ve , (24)

p′vs,ve = p′vs,vi ⊕ p′vi,ve . (25)

From the conditions (22) or (23) it follows that δt ≥
0 and δc ≥ 0. The relationship between the time of travel
is defined by one of the following conditions:

T1: T (pvi,ve) = T (p′vi,ve)+δt⇒ T (pvs,ve) = T (p′vs,ve),

T2: T (pvi,ve) > T (p′vi,ve)+δt⇒ T (pvs,ve) > T (p′vs,ve),

T3: T (pvi,ve) < T (p′vi,ve)+δt⇒ T (pvs,ve) < T (p′vs,ve).

If δt = 0, then the relationship between the time of travel
depends only on the time of travel from vi to ve. A similar
relationship occurs between the cost of travel, i.e.,

C1: C(pvi,ve)−Δc+ δc = C(p′vi,ve)−Δc′ ⇒
C(pvs,ve) = C(p′vs,ve).

C2: C(pvi,ve)−Δc+ δc > C(p′vi,ve)−Δc′ ⇒
C(pvs,ve) > C(p′vs,ve),

C3: C(pvi,ve)−Δc+ δc < C(p′vi,ve)−Δc′ ⇒
C(pvs,ve) < C(p′vs,ve),

where Δc and Δc′ are equal to the decrease in the cost
of travel of the paths (24) and (25) when the vertex vi is
passed without a change. According to Definition 4, the
following conditions are satisfied:

δc = 0 ⇒ δt > 0,

δt = 0 ⇒ δc > 0.

On the basis of T1–T3 and C1–C3 it is possible to
determine nine relationships between the final solutions
pvs,ve and p′vs,ve , denoted by R1–R9:

R1: C1 ∧ T1⇒ pvs,ve and p′vs,ve are non-dominated,

R2: C1 ∧ T2⇒ p′vs,ve
 pvs,ve ,

R3: C1 ∧ T3⇒ pvs,ve
 p′vs,ve ,

R4: C2 ∧ T1⇒ p′vs,ve
 pvs,ve ,

R5: C2 ∧ T2⇒ p′vs,ve
 pvs,ve ,

R6: C2 ∧ T3⇒ pvs,ve and p′vs,ve are non-dominated,

R7: C3 ∧ T1⇒ pvs,ve
 p′vs,ve ,

R8: C3 ∧ T2⇒ pvs,ve and p′vs,ve are non-dominated,

R9: C3 ∧ T3⇒ pvs,ve
 p′vs,ve .

A possible change at the vertex vi (Fig. 2) determines
whether a given relationship of R1–R9 is actually satisfied
or just only theoretically and never occurs. For that reason
the following cases are considered:

1. passing vi with a change in pvs,ve and p′vs,ve ,

2. passing vi with a change only in p′vs,ve ,

3. passing vi with a change only in pvs,ve ,

4. passing vi without a change in pvs,ve and p′vs,ve .

In the first case, travel with a change at vi in pvs,ve
and p′vs,ve is considered. It follows that Δc = Δc′ = 0,
and the time and the cost of travel of pvs,ve and p′vs,ve only
depend on pvi,ve and p′vi,ve , which are subpaths of pvs,ve
and p′vs,ve , respectively:

pvi,ve = subpvs,ve
(vi, ve),

p′vi,ve = subp′
vs,ve

(vi, ve).

If pvi,ve and p′vi,ve are identical, then

T (pvi,ve) = T (p′vi,ve),
C(pvi,ve) = C(p′vi,ve),

and according to (22) and (23), the following conditions
are satisfied:

T (pvs,ve) ≤ T (p′vs,ve), (26)

C(pvs,ve) ≤ C(p′vs,ve). (27)

It follows that p′vs,vi
 pvs,vi never occurs and the
relationships R2, R4 and R5 are not satisfied.

It should be pointed out that it is not possible to
obtain p′vs,ve for which (26) or (27) is not satisfied. This
would mean that pvi,ve and p′vi,ve are different and one of
the following conditions is satisfied:

T (pvi,ve) > T (p′vi,ve),
C(pvi,ve) > C(p′vi,ve).

In this case, pvs,ve would be created as a concatenation
of paths: pvs,ve = pvs,vi ⊕ p′vi,ve , then the subpaths
subpvs,ve

(vi, ve) and subp′
vs,ve

(vi, ve) are identical and
the conditions (26) and (27) occur.

In the second case, a change at vi in p′vs,ve is but
in pvs,ve it is passed without a change. It follows that
Δc′ = 0 and Δc �= 0. If the subpaths subpvs,ve

(vi, ve)
and subp′

vs,ve
(vi, ve) are identical, then

T (pvs,ve) ≤ T (p′vs,ve),
C(pvs,ve) < C(p′vs,ve).

Therefore, pvs,vi
 p′vs,vi and only the relationship R7 or
R9 can be satisfied. When the subpaths subpvs,ve

(vi, ve)
and subp′

vs,ve
(vi, ve) are different, then it is not possible to

determine the relationship between the time and the cost
of travel of the paths pvs,ve and p′vs,ve , thus any of the
relationships R1–R9 can be fulfilled.

A relation of dominance for the bicriterion bus routing problem 143

Table 6. Possibility of fulfillment of the relationships R1–R9 between the final solutions pvs,ve and p′vs,ve passing the vertex vi with
or without a change and the subpaths subpvs,ve

(vi, ve) and subp′vs,ve
(vi, ve) identical or different.

Relationship between the final solutions pvs,ve and p′vs,ve
R1 R2 R3 R4 R5 R6 R7 R8 R9

vertex vi is passed with change in pvs,ve and p′vs,ve , + − + − − + + + +
subpaths subpvs,ve

(vi, ve) and subp′vs,ve
(vi, ve) are identical

vertex vi is passed with change in p′vs,ve but in pvs,ve
it is passed without change, subpaths − − − − − − + − +

subpvs,ve
(vi, ve)

and subp′vs,ve
(vi, ve) are identical

vertex vi is passed without change in p′vs,ve but in pvs,ve it is passed
with or without change or vi is passed with change + + + + + + + + +
in p′vs,ve but in pvs,ve it is passed without change,

subpaths subpvs,ve
(vi, ve) and subp′vs,ve

(vi, ve) are different
vertex vi is passed without change in p′vs,ve

but in pvs,ve it is passed with or without a change, + − + + − + + − +
subpaths subpvs,ve

(vi, ve) and subp′vs,ve
(vi, ve) are identical

In the next case, vi is passed without a change in
p′vs,ve obtained from the dominated partial solution p′vs,vi
and a change is performed in pvs,ve , thus Δc′ �= 0
and Δc = 0. When the subpaths subpvs,ve

(vi, ve) and
subp′

vs,ve
(vi, ve) are identical, then

T (pvs,ve) ≤ T (p′vs,ve), (28)

but the cost of travel depends on Δc′ and δc, and one of
the following conditions is satisfied:

Δc′ = δc ⇒ C(pvs,ve) = C(p′vs,ve), (29)

Δc′ > δc ⇒ C(pvs,ve) > C(p′vs,ve), (30)

Δc′ < δc ⇒ C(pvs,ve) < C(p′vs,ve). (31)

According to (28)–(31), the relationships R2, R5 and
R8 never occur. If the subpaths subpvs,ve

(vi, ve)
and subp′

vs,ve
(vi, ve) are different, then any of the

relationships T1–T3 and C1–C3 can occur, thus any of
the relationships R1–R9 can be fulfilled.

In the last case, travel without a change at vi in pvs,ve
and p′vs,ve is considered, thus Δc �= 0 and Δc′ �= 0.
First, the case when the subpaths subpvs,ve

(vi, ve) and
subp′

vs,ve
(vi, ve) are identical is considered. It should be

pointed out that vi in the partial solutions pvs,vi and p′vs,vi
is reached by a bus of the same line. The conditions (22)
or (23) is satisfied and it follows that

T (pvs,ve) ≤ T (p′vs,ve).

The cost of travel depends on Δc, Δc′ and δc, therefore
one of the following conditions can be fulfilled:

Δc′ = Δc+ δc ⇒ C(pvs,ve) = C(p′vs,ve),
Δc′ > Δc+ δc ⇒ C(pvs,ve) > C(p′vs,ve),
Δc′ < Δc+ δc ⇒ C(pvs,ve) < C(p′vs,ve).

For that reason the relationships R2, R5 and R8 never
occur.

If the subpaths subpvs,ve
(vi, ve) and

subp′
vs,ve

(vi, ve) are different then any of the relationships
T1–T3 and C1–C3 can be satisfied and any of the
relationships R1–R9 can be fulfilled.

To complete the proof, the possibility of the
fulfillment of the relationships R1–R9 between the final
solutions pvs,ve and p′vs,ve in each case is presented in
Table 6. If the given relationship never occurs, then it
is denoted by the symbol “−”, otherwise, i.e., it can be
satisfied, it is denoted by the symbol “+”. �

According to Lemma 3, a final solution obtained
from a dominated partial solution can be a non-dominated
one. Thus, during the process of finding the solutions, it is
necessary to analyse dominated partial solutions and they
cannot be omitted. For a given partial solution pvs,vi one
can estimate whether the final solution obtained from it
will be a dominated one. This can be estimated on the
basis of the values tmax, cmax, timin, cimin and Δc, where
timin and cimin are equal respectively the minimal time and
the minimal cost of travel from vi to the final vertex ve.
The time of travel from vi to ve, depends on the time of
arrival to vi, therefore the value timin equals the minimal
time of travel from vi to ve which guarantees arrival to
ve no later than the time T e

max (21). As mentioned in
Section 2.3, if the time of arrival to ve is later than T e

max,
then the solution is dominated.

Theorem 2. (Widuch, 2012) Let pvs,vi be a partial so-
lution representing a path from the start vertex vs to the
vertex vi. It is possible to obtain a non-dominated final
solution from pvs,vi even when the following condition is
satisfied:

C(pvs,vi) + cimin −Δc > cmax.

144 J. Widuch

It can be estimated that the final solution obtained
from the partial solution pvs,vi will be a dominated one.
The partial solution pvs,vi can be omitted if it is not
possible to obtain a non-dominated final solution from it.
When it is estimated on the basis of the cost of travel, then
the possibility of travel through the vertex vi without a
change and travel to any vertex which is a successor of vi
in the path of this line should be taken into account. Thus
we must assume the value Δcmax being a maximal value
of the decreasing of the cost of travel which takes into
account the number of zones Za that we crossed since the
last change while travelling to vi (Table 3).

The partial solution pvs,vi can be omitted when

C(pvs,vi) + cimin −Δcmax > cmax (32)

occurs. If the vertex vi is the final vertex of the line by
whose bus we arrive at vi in pvs,vi , then we must change
at vi and in this case Δcmax = 0.0 is assumed. The partial
solution can be estimated on the basis of the time of travel
and can be omitted if condition

T (pvs,vi) + timin > tmax (33)

is satisfied.
The partial solutions already computed can be used

to estimate, given the partial solution pvs,vi , whether the
final solution obtained from it will be a dominated one.
We can stop analysing a dominated partial solution and
it can be omitted when the conditions determined by
Theorem 3 are satisfied. Otherwise we have to continue
analysing it.

Theorem 3. Consider partial solutions pvs,vi and p′vs,vi .
The final solution obtained from pvs,vi will be a dominated
one if

T (pvs,vi) ≥ T (p′vs,vi), (34)

C(pvs,vi)−Δcmax > C(p′vs,vi). (35)

Therefore pvs,vi can be omitted.

Proof. Let us consider the final solutions pvs,ve and p′vs,ve
respectively obtained from pvs,vi and p′vs,vi ,

pvs,ve = pvs,vi ⊕ pvi,ve ,

p′vs,ve = p′vs,vi ⊕ p′vi,ve .

From (34) it follows that the time of arrival to vi in pvs,vi
is not earlier than the time of arrival to vi in p′vs,vi , and
the time of departure from vi can be earlier in p′vs,vi .
Therefore the subpaths pvi,ve and p′vi,ve from vi to the
final vertex ve in the paths pvs,ve and p′vs,ve can be
different. This case is not considered for the following
reason. The subpaths pvi,ve and p′vi,ve can be identical
and this case decides on negative estimation of the partial
solution pvs,vi .

If the subpaths pvi,ve and p′vi,ve are identical, then
from (34) it follows that

T (pvs,ve) ≥ T (p′vs,ve). (36)

If (35) holds, then

C(pvs,ve) > C(p′vs,ve) (37)

regardless of whether a change at vi is performed it is
passed without a change.

From (36) and (37) it follows that pvs,ve is a
dominated solution and it is not possible to obtain a
non-dominated partial solution from pvs,vi when (34) and
(35) are satisfied. �

Consider the vertex vi and the list LPS[vi] containing
k partial solutions p1vs,vi , . . . , p

k
vs,vi determined for the

vertex vi. Let tpimin, tpimax and cpimax be respectively the
minimal and the maximal time of travel and the maximal
cost of travel from among all partial solutions in the list
LPS[vi]:

tpimin = min{T (p1vs,vi), . . . , T (pkvs,vi)},
tpimax = max{T (p1vs,vi), . . . , T (pkvs,vi)},
cpimax = max{C(p1vs,vi), . . . , C(pkvs,vi)}.

Let cpimin signify the minimal cost of travel decreased by
the value of Δcimax (i = 1, . . . , k) from among all partial
solutions, i.e.,

cpimin = max{C(p1vs,vi)−Δc1max, . . . ,

C(pkvs,vi)−Δckmax}.

The estimation of the partial solution pvs,vi can
be done on the basis of the values of tpimax and cpimax.
According to Theorem 3, the partial solution pvs,vi can
be omitted when

T (pvs,vi) ≥ tpimax ∧ C(pvs,vi)−Δcmax > cpimax (38)

is satisfied. The final solution obtained from it will be a
dominated one. Additionally, the partial solutions stored
in the list LPS[vi] can be estimated on the basis of pvs,vi
and the values of cpimin and tpimin. If

T (pvs,vi) ≤ tpimin ∧ C(pvs,vi) < cpimin, (39)

then all partial solutions can be removed from the list
LPS[vi]. These partial solutions can be omitted because
it is not possible to obtain a non-dominated final solution
from any of them. The estimation is done only by
checking the (38) and (39) conditions without comparing
pvs,vi with solutions stored in the list LPS[vi]. Thus, it is
done in O(1) time and does not depend on the number of
partial solutions in the list LPS[vi].

A relation of dominance for the bicriterion bus routing problem 145

2.5. Algorithm for solving the BBR problem. The
algorithm for finding all non-dominated paths from the
start vertex vs to the final vertex ve and for the time of
starting travel Ts at vs is presented as Algorithm 1. It
belongs to the group of label correcting algorithms with
storing partial solutions and implements the methods of
estimation of partial solutions presented in Section 2.4.
During the process of finding the solutions, the following
data structures are used:

• LPS[vi]: the list of computed partial solutions for the
vertex vi ∈ V ; for the final vertex ve it contains the
final solutions formed as the set of non-dominated
solutions;

• LFS: the list of final solutions constitute the set
of non-dominated solutions, where each solution
represents the path from vs to ve for the time of
starting travel equal to Ts;

• Q: the queue containing vertices for which the partial
solutions have been computed.

The solutions stored in the list LPS[vi] are represented
by a record (tsi, csi, vk, li, Tk, LPPk) containing the
following data:

• tsi, csi: the time and the cost of travel from vs to vi,

• vk: the vertex which precedes vi in the path,

• li: the bus line by which we arrive from vk to vi,

• Tk: the time of departure from vk towards vi,

• LPPk: the list of pointers to the partial solutions for
the vertex vk.

In the initial part of the algorithm (lines 1–7)
the values tmax, cmax, t

i
min and cimin are computed by

the procedure FINDTC. The values tmax and cmax are
computed by determining adequately the path of the
minimal cost and that of the minimal time of travel from
vs to ve. The path of the minimal time of travel is
determined in the multigraph G = (V,E) using the
Dijkstra algorithm. It is not possible to find the path of
the minimal cost of travel in the multigraph G using this
algorithm or the other shortest path one (Widuch, 2012).
Thus it is necessary to create the multigraphG′ = (V,E′),
E ⊂ E′, obtained from G, by adding additional arcs for
each bus line. Let the path of the i-th bus line contains
following sequence of vertices:

〈vi0, vi1, . . . , vik−1, v
i
k〉.

For each pair of vertices via and vib (a = 0, . . . , k − 2,
b = a+2, . . . , k) an arc (via, v

i
b) is added to the multigraph

G′. The path of the minimal cost of travel is determined in
the multigraph G′ = (V,E′) using the Dijkstra algorithm.

Algorithm 1. Algorithm SOLVEBBR for finding all
non-dominated paths from the start vertex vs to the final
vertex ve and for the time of starting travel Ts.

Input: vs, ve, Ts, G = (V,E)
Output: LFS

1: tmax, cmax, t
i
min, c

i
min ← FINDTC(vs, ve, Ts, G);

2: G← MODIFYG(G, timin, tmax, c
i
min, cmax);

3: for all vi ∈ V do
4: LPS[vi]← ∅;
5: end for
6: Ss ← (0, 0, 0, 0, Ts, ∅); LPS[vs].ADDTOLIST(Ss);
7: Q← ∅; Q.PUSH(vs);
8: while not Q.EMPTY() do
9: vk ← Q.POP();

10: for all Sk ∈ LPS[vk] has not yet been analysed do
11: for all (vk, vi, li) ∈ out(vk); vi �= vs do
12: if not INPATH(Sk, vi) then
13: tsi, csi ← the time and the cost of travel

from vs to vi;
14: Tk ← the time of departure from vk;
15: Δcmax ← the maximal decreasing of the

cost of travel from vs to vi;
16: Si ← (tsi, csi, vk, li, Tk,&Sk);
17: if estimation of Si is positive then
18: if vi = ve then
19: LPS[vi]⇐ ADDFSOL(LPS[vi], Si);
20: else
21: LPS[vi] ⇐ ADDPSOL(LPS[vi], Si,

Δcmax, tmax, cmax, timin, cimin);
22: Q.PUSH(vi);
23: end if
24: end if
25: end if
26: end for
27: end for
28: end while
29: LFS⇐ CREATEFULLPATHS(LPS[ve], ve);
30: LFS⇐ PATHSDIFFERTIMES(LFS, G);
31: LFS⇐ PATHSCONTAININGCYCLES(LFS, G);
32: return LFS;

The Dijkstra algorithm and the multigraphsG and G′

are also used in the procedure FINDTC for determining
the minimal times and the minimal costs of travel from
each vertex vi ∈ V to ve, and these values are stored in
timin and cimin. The value timin guarantees arrival to ve no
later than the time T e

max.
The values of tmax, cmax, t

i
min and cimin make it

possible to determine a set of vertices that do not belong
to a path being a non-dominated solution. If one of the
following conditions is satisfied:

timin[vi] ≥ tmax, (40)

cimin[vi]−Δcimax > cmax, (41)

146 J. Widuch

then a path containing the vertex vi does not belong
to the set of non-dominated solutions. Thus vi can be
removed from the multigraph G. Therefore G is modified
(line 2 of Algorithm 1) by the procedure MODIFYG,
which removes from G all vertices vi for which (40) or
(41) is satisfied. Additionally, all arcs incoming into vi
and all arcs outgoing from vi are removed from G.

In the next steps of the initial part of the algorithm,
for each vertex vi ∈ V (vi �= vs) the list of partial
solutions LPS[vi] is initialised as empty (lines 3–5). The
list LPS[vs] of the start vertex vs is initialised by an
initial solution (line 6) from which the algorithm starts
computation and vs is inserted into the queue Q (line 7).

The paths from vs to ve belonging to the set of
non-dominated solutions are computed in the while-loop
(lines 8–28) by visiting vertices of the multigraph G
using a modified breadth first search method (Jungnickel,
1999). There are computed all paths belonging to the set
of non-dominated solutions except for those containing
cycles, and paths differ from each other only in the times
of departure from vertices. These paths are computed by
the procedures PATHSCONTAININGCYCLES and PATHS-
DIFFERTIMES (lines 30–31) based on the paths computed
in the while-loop.

In a single iteration of the while-loop the following
operations are executed. The first vertex vk from the
queue Q is taken (line 9). In the for-loop (lines 10–27)
we try to extend each unanalyzed partial solution Sk in the
list LPS[vk] (each partial solution is analysed only once)
and obtain new solutions for all adjacent vertices of the
vertex vk. For this purpose, in the for-loop all outgoing
arcs (vk, vi, li) of the vertex vk are analysed (lines 11–26).
The arc (vk, vi, li) corresponds to the li bus line whose
buses run directly from vk to vi. If vi does not belong
to the path represented by the partial solution Sk (it is
checked by the procedure INPATH in line 12), then the
time tsi and the cost csi of travel from vs to vi as well
as the time of departure Tk from vk are computed (lines
13–14). Additionally, a maximal decrease in the cost of
travel Δcmax is determined (line 15) and a new solution
Si is created (line 16). The solution Si represents a path
from vs to vi and the vertex vk precedes vi in the path.

The solution Si is estimated if it is possible to obtain
a non-dominated final solution from it. It is omitted if (32)
or (33) is satisfied, which is checked in line 17. Otherwise,
Si is inserted into the list LPS[vi]. If vi = ve, then Si

is inserted into LPS[vi] by the procedure ADDFSOL (line
19), otherwise the procedure ADDPSOL is used and vi is
inserted into the queue Q (lines 21–22).

In the last part of the algorithm, for all computed
solutions in the list LPS[ve] full paths are determined by
the procedure CREATEFULLPATHS (line 29), and these
paths are stored in the list LFS. The full path is determined
based on values stored in the record representing a
solution in the list LPS[ve]. The record contains the vertex

vk, which precedes the vertex ve in the path, and contains
the list LPPk, which stores pointers to the partial solutions
for the vertex vk. Thus, the path is created from ve by
visiting the vertices which precede the current vertex until
the start vertex vs is reached. The full path is determined
on the basis of the vertex vk and the list of pointers LPPk

stored in the record representing the solution.
Next, paths that differ from each other only in the

times of departure from vertices belonging to the path
are determined by the procedure PATHSDIFFERTIMES

(line 30). According to Lemma 1, we change at least
once in these paths. Thus in the procedure each path
pvs,ve stored in the list LFS is analysed but only the paths
containing at least single vertex of change are taken into
consideration. Let pvs,ve contain k (k > 0) vertices of
changes: v0, . . . , vk, where v0 = vs. Let us assume the
times of departure from v0, . . . , vk are equal respectively
to T0, . . . , Tk. If one can leave vj (j = 0, . . . , k−1) at any
time later than the time Tj and this does not increase the
time of travel T (pvs,ve), then a new path p′vs,ve is created
and added to the list LFS. The path p′vs,ve differs from
the path pvs,ve only in times of departure from vertices
belonging to these paths, and hence these paths differ in
times of waiting for changes on vertices v0, . . . , vk. The
times of travel in both paths are equal, i.e., T (pvs,ve) =
T (p′vs,ve), and it follows that the total times of waiting for
changes in these paths are also equal.

In the last step, paths containing cycles are
determined by the procedure PATHSCONTAININGCY-
CLES (line 31). A necessary condition for a
non-dominated solution containing cycles is determined
by Theorem 1, and therefore the paths containing at least
a single vertex of change are analysed. Let us consider the
path pvs,ve (Fig. 3(b)), where the change is made at vc and
we arrive at it on a bus of the line la and leave it on a bus
of the line lb. The paths pava

0 ,v
a
k

and pa
vb
0,v

b
k

of the buses of

la and lb contain the following sequence of vertices:

pava
0 ,v

a
j
= 〈va0 , . . . , vap = vc, . . . , v

a
j 〉,

pavb
0,v

b
k
= 〈vb0, . . . , vbq = vc, . . . , v

b
k〉,

and these paths have a common vertex vc. If

∃x ∈ {p+ 1, . . . , j} ∧ ∃y ∈ {0, . . . , q − 1} : vax = vby,

then the paths pava
0 ,v

a
k

and pa
vb
0,v

b
k

have also a common

vertex vd, where vd = vax = vby , and there exists the
cycle pvc,vc which starts and ends at vc and contains vd.
If passing a cycle does not increase the time of travel and
the conditions defined by Theorem 1 are satisfied, then a
new path p′vs,ve (Fig. 3(a)) containing the cycle pvc,vc is
created and inserted into the list LFS.

The procedure ADDPSOL is described by
Algorithm 2. It tries to insert Si into the list of
partial solutions LPS. In the first part of the procedure

A relation of dominance for the bicriterion bus routing problem 147

lilh

lg

lj

vg

vh

vj

vk vi

Fig. 4. Ways of arriving to the vertex vk.

(lines 1–5) the solution Si and solutions in the list LPS
are estimated on the basis of values tpimax, cpimax, tpimin and
cpimin without comparing Si with solutions stored in LPS.
First, in line 1 the condition (38) is checked, and if it is
satisfied then the final solution obtained from Si will be
a dominated solution. Therefore Si is omitted and the
function returns an unmodified list LPS (line 2). The next,
according to (39) condition it is estimated (line 3) if the
final solutions obtained from partial solutions stored in
LPS will be dominated. If the estimation is positive then
all solutions are removed from LPS and Si is inserted into
LPS (line 4). In this case, the procedure returns the list
LPS containing only single solution Si (line 5).

In the second part of the procedure, in the for-loop
the partial solution Si is compared with each solution S
stored in LPS (lines 7–14). According to Theorem 3 there
are checked the conditions (34) and (35) (lines 9 and 11).
If the condition in line 9 is satisfied, then it is not possible
to obtain non-dominated final solutions from Si; therefore
Si is omitted, the procedure ends its execution and returns
LPS (line 10). If the condition in line 11 is met, then
a final solution obtained from S stored in LPS will be a
dominated solution, and therefore it is removed from LPS
(line 12).

If the estimation of the partial solution Si is positive,
i.e., it is possible to obtain from it a non-dominated final
solution, then it is inserted into the list LPS (lines 15–19).
It should be pointed out that the vertex vk, which precedes
the vertex vi in the path, can be reached from many
vertices by buses of different lines. In Fig. 4 it is reached
from vg , vh, vj , and each case represents a different path
from vs to vk. These paths are represented by solutions
Sg, Sh, Sj stored in the list LPS[vk]. The solutions Sg,
Sh, Sj are extended by adding the vertex vi to obtain new
solutions S′

g , S′
h, S′

j for vi. The new solutions represent
different paths from vs to vi, where vi is preceded by
vk in these paths and vi is reached by a bus of the line
li. If the times and the costs of travel are identical, i.e.,
S′
g.tsi = S′

h.tsi = S′
j .tsi and S′

g.csi = S′
h.csi = S′

j.csi,
then only a single solution S′ is created and stored in the

Algorithm 2. Procedure ADDPSOL of adding the partial
solution Si to the list LPS.

Input: LPS, Si,Δcmax, tmax, cmax, t
i
min, c

i
min

Output: LPS
1: if Si.tsi ≥ LPS.tpimax and Si.csi − Δcmax >

LPS.cpimax then
2: return LPS;
3: else if Si.tsi ≤ LPS.tpimin and Si.csi < LPS.cpimin

then
4: LPS.CLEAR(); LPS.ADDTOLIST(Si);
5: return LPS;
6: else
7: for all S ∈ LPS do
8: Δc′max ← the maximal decrease in the cost of

travel in the solution S;
9: if Si.tsi ≥ S.tsi and Si.csi − Δcmax > S.csi

then
10: return LPS;
11: else if S.tsi ≥ Si.tsi and S.csi − Δc′max >

Si.csi then
12: LPS.REMOVE(S);
13: end if
14: end for
15: if ∃S ∈ LPS: S.tsi = Si.tsi and S.csi = Si.csi

and S.lsi = Si.lsi then
16: S.LPPk.ADDTOLIST(Si.LPPk);
17: else
18: LPS.ADDTOLIST(Si);
19: end if
20: return LPS;
21: end if

Algorithm 3. Procedure ADDFSOL of adding the final
solution Si to the list LPS.
Input: LPS, Si

Output: LPS
1: if Si.tsi > LPS.tpimax and Si.csi > LPS.cpimax then
2: return LPS;
3: else if Si.tsi < LPS.tpimin and Si.csi < LPS.cpimin

then
4: LPS.CLEAR(); LPS.ADDTOLIST(Si);
5: return LPS;
6: else
7: for all S ∈ LPS do
8: if S
 Si then
9: return LPS;

10: else if Si
 S then
11: LPS.REMOVE(S);
12: end if
13: end for
14: LPS.ADDTOLIST(Si);
15: return LPS;
16: end if

148 J. Widuch

list LPS[vi]. In the solution S′ the list LPPk stores pointers
to the solutions Sg, Sh, Sj , which decreases the number
of stored and analysed solutions as well as the time of
computation. But in the procedure CREATEFULLPATHS

(line 29 of Algorithm 1), from a single solution S′ three
full paths are determined. In these paths the vertex vi is
preceded by the vertices vg , vh, vj , respectively.

In line 15 of the procedure ADDPSOL it is checked if
the list LPS contains a solution S in which the vertex vi is
reached by a bus of the same line as in the partial solution
Si and the time and the cost of travel of S and Si are equal.
If S exists, then the pointer to the partial solution for the
vertex vk is added to the list LPPk stored in S (line 16)
and the new partial solution Si is not inserted into the list
LPS. Otherwise Si is inserted into LPS (line 18).

The procedure ADDFSOL is described by
Algorithm 3. It tries to insert the new solution Si to
the list LPS storing solutions for the final vertex ve. The
first part of the procedure (lines 1–5) is similar to lines
1–5 of the procedure ADDPSOL. The solution Si and
solutions in the list LPS are estimated on the basis of the
values tpimax, cpimax, tpimin and cpimin without comparing Si

with solutions stored in LPS. During the estimation the
solution Si or all solutions in the list LPS are omitted as
dominated ones (lines 2 and 4).

In the second part of the procedure (lines 7–15) the
solution Si is compared with each solution S stored in the
list LPS. If Si dominates S (line 10), then S is removed
from the list LPS (line 11), or if S dominates Si (line 8),
then Si is omitted and the procedure ends its execution
(line 9). If Si is a non-dominated solution, then it is
inserted into the list LPS (line 14).

The time and memory complexities of the algorithm
SOLVEBBR depend on the number of paths belonging
to the set of non-dominated solutions. The latter is a
variant of the BSP problem. The BSP problem is known
to be NP-complete and, as shown by Serafini (1987) or
Skriver and Andersen (2000b), in the worst case, that
of solutions of the problem grows exponentially with the
number of vertices representing the bus stops. Therefore
any algorithm that attempts to solve it is also exponential
in terms of worst-case time and memory complexities.
The worst case occurs when all possible paths between
a given pair of vertices belong to the set of non-dominated
solutions and the number of paths equals

∏n
i=1 xi· di,

where di is equal to the outdegree of the vertex vi;
xi = 1 if vi �= ve and xi = 0 otherwise (we do
not examine arcs outgoing from the final vertex ve and
the path does not contain these arcs). Therefore the
pessimistic memory complexity equals O(dn), where d =
maxi=1,...,n{xi· di}.

Time complexity is clearly dominated by execution
of the while-loop (lines 8–28 of the algorithm
SOLVEBBR). Each path determined in the while-loop
contains at most n vertices. For each of qk solutions

Table 7. Parameters of the multigraphs G and G′ representing
the bus network.

multigraph G multigraph G′

number of vertices 1211 1211
number of arcs 5549 35610

minimum indegree of vertex 1 6
minimum outdegree of vertex 1 6

minimum degree of vertex 2 13
maximum indegree of vertex 13 122

maximum outdegree of vertex 13 122
maximum degree of vertex 26 244

determined for the vertex vk and stored in the list
LPS[vk] (line 10), all of dk outgoing arcs from vk
are examined (line 11). Thus, in the worst case it
is necessary to examine

∏n
i=1 xi· qi· di arcs, and

pessimistic time complexity equals O(rn), where
r = maxi=1,...,n{xi· qi· di}.

3. Experimental test results

The SOLVEBBR algorithm was implemented in C++
and the test experiments were carried out on a 2.9 GHz
Intel(R) Core(TM) i5-4570S CPU computer with 4 GB of
RAM, running Windows 7 Enterprise x64. The results
of the tests are compared with those obtained by the
algorithm denoted by WID12 and presented in (Widuch,
2012). In the tests, a random generated bus network
consisting of 1211 stops divided into 26 zones was used.
In the network, buses of 500 bus lines are run: the
shortest length of the route of a bus line equals 6 and the
longest length of the route equals 29. The parameters of
the multigraphs G and G′ representing the bus network
are presented in Table 7.3 The performed tests had the
following goals:

• investigate the properties of computed
non-dominated final solutions, i.e., the number
of computed final solutions containing cycles, the
number of computed final solutions differing from
each other only in the times of departure from
vertices belonging to the paths, and the number of
computed final solutions obtained from dominated
partial solutions;

• compare the computation time and the number
of computed partial solutions using the tested
algorithms; all computed partial solutions inserted
into the list LPS[vi] (line 21 of the procedure
SOLVEBBR) during a single experiment were
counted; additionally, all analysed and omitted
partial solutions for which the estimation is negative

3An indegree, an outdegree and a degree of a vertex are defined by
Jungnickel (1999).

A relation of dominance for the bicriterion bus routing problem 149

(this means that the final solutions obtained from
them are dominated) were counted;

• count the number of computed non-dominated final
solutions;

• count the number of computed final solutions
satisfying the relationships R1-R9 defined in
Section 2.4.

We carried out 7,326,550 test experiments using
the SOLVEBBR and WID12 algorithms. The aim of a
single test was to find all paths belonging to the set of
non-dominated solutions for the given pair of the start vs
and the final ve vertices and the time of staring travel Ts at
vs. The tests were carried out for all pairs of vertices and
for the times of starting travel equal to Ts = 0:00, 8:00,
12:00, 16:00 and 20:00, respectively. The results of the
tests are presented depending on the number of changes
in the path and the length of the path.

The results of test experiments using the algorithms
are presented in Tables 8 and 9. Here we show

• the number of all computed non-dominated final
solutions during all experiments and the maximal
number of computed non-dominated final solutions
in a single experiment,

• the maximal number of computed and omitted partial
solutions in a single experiment,

• maximal computation time in milliseconds.

Additionally, in charts (Fig. 5) we show

• the percentage number of non-dominated solutions
containing cycles,

• the percentage number of solutions with the same
time and cost of travel and the same path, differing
from each other only in the times of departure from
the vertices,

• the percentage number of solutions obtained from
dominated partial solutions.

The number of solutions differing from each other only
in the times of departure and the of solutions obtained
from dominated partial solutions were computed by
mutual comparison of solutions obtained in a single
experiment. According to Theorem 1 and Lemma 1,
the paths containing cycles and those differing from each
other only in the times of departure belong to the set of
non-dominated solutions if we change at least once in
these paths. Therefore, there was no such path without
a change. The percentage number of these determined
solutions grows with the length of the path. The maximum
length of a determined path equals 95, and it should be
pointed out that all paths of this length contain a cycle.

About 80% of the determined paths of the maximum
length differ from each other only in the times of departure
from vertices.

The computation time depends on the number of
computed partial and final non-dominated solutions. With
an increase in the length of the path and the number
of changes, the searched space of solutions grows
and so does the number of computed partial solutions.
The maximal computation time using the SOLVEBBR
algorithm equals 343 milliseconds and was a result of
determining the paths in which the bus change 6 and 7
times was made while the length of the path equals 41–70
vertices. In these cases the number of computed partial
solutions is maximal and equal to 10,121.

The SOLVEBBR algorithm applies conditions for
estimation of partial solutions described in Sections 2.3
and 2.4, but the WID12 algorithm does not apply them.
For that reason, a larger space of solutions by the
WID12 algorithm than by the SOLVEBBR algorithm is
searched, the WID12 algorithm computes a larger number
of partial solutions than the SOLVEBBR algorithm and
a larger number of solutions are analysed by the WID12
algorithm. Therefore, the computation time is larger for
the WID12 algorithm than the for SOLVEBBR algorithm.

The number of computed partial solutions also
depends on their representation. The partial solutions
stored in the list LPS[vi] of the vertex vi contain the list
of pointers LPPk to the partial solutions for the vertex vk,
which precedes vi in the path from the start vertex vs to
vi (see Section 2.5). Thus the partial solution represents
many paths from vs to vi. It is an important difference
to the WID12 algorithm, wherein the partial solution
represents a single path from vs to vi. Therefore, the
number of computed partial solutions by the SOLVEBBR
algorithm is smaller than the number of partial solutions
computed and analysed by the WID12 algorithm. In
the best case, it computes 66 times less partial solutions.
For that reason, the computation time is shorter for the
SOLVEBBR algorithm than for the WID12 algorithm, and
in the best case it is 47 times less. It depends on checking
by the procedure INPATH if the vertex vi belongs to the
path represented by the partial solution Sk (line 12 of
the SOLVEBBR algorithm). It is executed in O(k) time,
where k equals the length of the path, but in the WID12
algorithm it is checked in O(1) time.

The representation of a partial solution and
conditions used for estimation of partial solutions have
also influence the number of omitted partial solutions. It
should be pointed out that each omitted partial solution
was analysed, but due to negative estimation it was not
inserted into the list LPS[vi]. Therefore the conditions for
estimation of partial solutions applied by the SOLVEBBR
algorithm and the proposed representation of the partial
solution decrease the number of analysed and omitted
partial solutions. In the best case it is 214 times less.

150 J. Widuch

Table 8. Number of all computed non-dominated final solutions during all experiments, the maximal number of computed non-
dominated final solutions in a single experiment, the maximal number of computed and omitted partial solutions in a sin-
gle experiment and maximal computation time for the SOLVEBBR and WID12 algorithms. They depend on the number of
changes.

Maximal number Number Maximal number of partial solutions Maximal computation
Number of non-dominated of non-dominated computed by algorithm omitted by algorithm time (in ms) for algorithm

of final solutions final solutions
changes computed in computed during SOLVEBBR WID12 SOLVEBBR WID12 SOLVEBBR WID12

single experiment all experiments

0 3 161251 962 9789 18249 356123 16 16
1 52 2018583 3375 70275 46119 2224413 16 16
2 1966 10022638 5435 165285 75672 4299398 16 94
3 4772 28648372 7596 416546 80712 12184704 32 140
4 23917 57132301 9171 576074 108322 16522381 62 499
5 127259 96012598 10121 622354 118343 17852038 140 733
6 529039 58530211 10121 622354 120729 17852038 343 749
7 228614 7889988 10121 622354 120729 17852038 343 780
8 4149 1516711 10121 564170 120729 16549834 312 780
9 1410 375808 10121 556555 119128 16549834 312 780
10 300 113357 10121 525733 113660 14866546 172 780
11 270 28950 10121 568959 87476 16396951 172 670
12 180 5587 9421 622354 83366 17852038 31 702
13 72 860 6281 208329 76607 6343552 16 749
14 32 32 5557 208329 52898 4655803 16 276

Table 9. Number of all computed non-dominated final solutions during all experiments, the maximal number of computed non-
dominated final solutions in a single experiment, the maximal number of computed and omitted partial solutions in a single
experiment and maximal computation time for the SOLVEBBR and WID12 algorithms. They depend on the length of the
path.

Maximal number Number Maximal number of partial solutions Maximal computation
Length of non-dominated of non-dominated computed by algorithm omitted by algorithm time (in ms) for algorithm

of final solutions final solutions
path computed in computed during SOLVEBBR WID12 SOLVEBBR WID12 SOLVEBBR WID12

single experiment all experiments

1–5 106 295599 946 6601 17091 214944 16 16
6–10 545 1776642 1828 28007 28896 860096 16 16
11–15 2822 4792685 3344 67973 46990 2061928 16 32
16–20 6648 9626750 4323 202677 79282 5748026 16 78
21–25 8447 16043672 6012 202677 85086 5748026 32 219
26–30 20207 22892227 7644 337508 99581 9955280 62 249
31–35 36037 27976184 9114 496767 108817 14218868 63 374
36–40 90347 32729054 9171 622354 118343 17852038 296 608
41–45 106932 37001418 10121 622354 118343 17852038 343 749
46–50 290418 38250850 10121 622354 118343 17852038 343 780
51–55 288822 31927564 10121 622354 120729 17852038 343 780
56–60 228044 20002773 10121 622354 120729 17852038 343 780
61–65 49336 11397158 9905 622354 120729 17852038 343 780
66–70 117832 5403238 9905 622354 120729 17852038 343 749
71–75 12346 1780694 9905 568959 120729 16396951 219 749
76–80 7166 511479 9905 444956 119128 13732192 78 733
81–85 2490 45222 9905 438201 117127 13732192 47 530
86–90 240 3825 7375 265206 107377 6889943 31 436
91–95 60 213 6063 265206 80152 1082443 16 109

A relation of dominance for the bicriterion bus routing problem 151

 0

 20

 40

 60

 80

 100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14C
om

pu
te

d
no

n-
do

m
in

at
ed

 s
ol

ut
io

ns
 [%

]

Number of changes

(a)

Solutions containing cycles
Solutions differing from each other only in the times of departure from vertices belonging to the paths

Solutions obtained from dominated partial solutions

 0

 20

 40

 60

 80

 100

1-5 6-10
11-15

16-20
21-25

26-30
31-35

36-40
41-45

46-50
51-55

56-60
61-65

66-70
71-75

76-80
81-85

86-90
91-95

Length of the path

(b)

Fig. 5. Properties of all computed non-dominated solutions by the SOLVEBBR algorithm depending on the number of changes (a) and
the length of the path (b).

In the single experiment it was not determined more
than 3 non-dominated final solutions where we travel
without a bus change (Table 8). The maximal number
of bus changes equals 14, and there were determined 32
paths with this property, all in a single experiment. During
all experiments most paths were determined with lengths
from the range 46–50 vertices, and 38,250,850 paths were
determined (Table 9). The average number of computed
non-dominated final solutions during a single experiment
equals 36, where 28 solutions have the same paths and
differ from each other only in the times of departure from
all vertices belonging to these paths while 6 solutions
contain a cycle. The average numbers of partial solutions
computed and omitted by the SOLVEBBR algorithm are
equal to 305 and 6,918, respectively. This is about 7 and
11 times less than for the WID12 algorithm. This implies
that the SOLVEBBR algorithm searches a smaller space
of solutions than the WID12 algorithm.

The next goal of the tests was to count the number
of determined final solutions satisfying the relationships
R1–R9 defined in Section 2.4. It was counted by mutual
comparison all pairs of paths belonging to a determined
set of non-dominated solutions. The paths that differ from
each other only in the times of departure from vertices
belonging to these paths are not counted because each
path contains at least one vertex vi for which one of the
relationships R1–R9 is satisfied due to the time of travel
from vs to vi. Consider a pair of paths

pvs,ve = 〈v0 = vs, . . . , vj , . . . , vx = ve〉,
p′vs,ve = 〈v′0 = vs, . . . , v

′
k, . . . , v

′
y = ve〉,

belonging to the set of non-dominated solutions. The
paths are compared if the following conditions are
satisfied:

1. These paths have a common vertex vi, i.e.,

∃j ∈ {1, . . . , x− 1} ∧
∃k ∈ {1, . . . , y − 1} : vj = v′k = vi.

If there exist many j and k, then the minimal values
from among j and k are taken into account.

2. The partial solution pvs,vi dominates the partial
solution p′vs,vi , i.e., pvs,vi
 p′vs,vi , where

pvs,vi = subpvs,ve
(vs, vi),

p′vs,vi = subp′
vs,ve

(vs, vi).

If the solution satisfies several relationships, then all
these cases are counted, and if satisfies the relationship
many times, then it is counted only once. The results
of the comparison of the solutions are presented in plots
(Fig. 6). The determined non-dominated final solutions
are compared, therefore only relationships R1, R6 and R8
are satisfied. To check satisfaction of other relationships,
it is necessary to determine all possible paths from the
start vertex vs to the final vertex ve. Thus the dominated
solutions cannot be omitted during computation in the
SOLVEBBR algorithm. This kind of test is not possible
to be carried out within reasonable time due to memory
complexity. The plots contain results for all cases
considered in Section 2.4, i.e.,

• when vi is passed without a change in both the
compared paths pvs,ve and p′vs,ve (Figs. 6(a) and (b)),

• when vi is passed without a change in pvs,ve and we
change at vi in p′vs,ve (Figs. 6(c) and (d)),

• when we change at vi in pvs,ve and it is passed
without a change in p′vs,ve (Figs. 6(e) and (f)),

152 J. Widuch

 0

 10

 20

 30

 40

 50

 60

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14C
om

pu
te

d
no

n-
do

m
in

at
ed

 s
ol

ut
io

ns
 [%

]

(a)

Solutions satisfying relation R1
Solutions satisfying relation R6

Solutions satisfying relation R8
Solutions satisfying relations R1, R6 and R8

 0

 10

 20

 30

 40

 50

1-5 6-10
11-15

16-20
21-25

26-30
31-35

36-40
41-45

46-50
51-55

56-60
61-65

66-70
71-75

76-80
81-85

86-90
91-95

(b)

 0

 1

 2

 3

 4

 5

 6

 7

 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14C
om

pu
te

d
no

n-
do

m
in

at
ed

 s
ol

ut
io

ns
 [%

]

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

1-5 6-10
11-15

16-20
21-25

26-30
31-35

36-40
41-45

46-50
51-55

56-60
61-65

66-70
71-75

76-80
81-85

86-90
91-95

(d)

 0

 20

 40

 60

 80

 100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14C
om

pu
te

d
no

n-
do

m
in

at
ed

 s
ol

ut
io

ns
 [%

]

(e)

 0

 5

 10

 15

 20

1-5 6-10
11-15

16-20
21-25

26-30
31-35

36-40
41-45

46-50
51-55

56-60
61-65

66-70
71-75

76-80
81-85

86-90
91-95

(f)

 0

 5

 10

 15

 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14C
om

pu
te

d
no

n-
do

m
in

at
ed

 s
ol

ut
io

ns
 [%

]

Number of changes

(g)

 0

 1

 2

 3

 4

 5

1-5 6-10
11-15

16-20
21-25

26-30
31-35

36-40
41-45

46-50
51-55

56-60
61-65

66-70
71-75

76-80
81-85

86-90
91-95

Length of the path

(h)

Fig. 6. Percentage number of all computed non-dominated solutions by the SOLVEBBR algorithm satisfying R1, R6 and R8 in relation
to the number of changes and the path length.

A relation of dominance for the bicriterion bus routing problem 153

• when we change at vi in both the compared paths
pvs,ve and p′vs,ve (Figs. 6(g) and (h)).

The number of solutions satisfying the relationships
considered decreases with the length of the path, except
for the case when the vertex vi is passed without a change
in both paths pvs,ve and p′vs,ve (Fig. 6(b)). In this case it
grows from the length of 76.

In most cases the relationship R1 is satisfied by
solutions if the time and the cost of travel fulfill the
conditions

T (pvs,ve) = T (p′vs,ve) ∧ C(pvs,ve) = C(p′vs,ve). (42)

The largest difference between the number of solutions
satisfying the relationship R1 and the number of solutions
satisfying the relationships R6 and R8 occurs when we
change at vi in pvs,ve . This is due to the fact that
in most cases the subpath subpvs,ve

(vi, ve) is the same
as the subpath subp′

vs,ve
(vi, ve) and the time of travel

T (pvs,ve) = T (p′vs,ve). Both paths belong to the set
of non-dominated solutions, therefore the cost of travel
C(pvs,ve) = C(p′vs,ve) and (42) occurs.

Most solutions satisfy the relationships in the case
when vi is passed without a change in p′vs,ve obtained
from the dominated partial solution p′vs,vi (Figs. 6(a),
(b), (e) and (f)). When vi is passed without a change,
the cost of travel C(p′vs,ve) equals the sum of costs
of travel C(p′vs,vi) and C(subp′

vs,ve
(vi, ve)) decreased

by Δc′. This increases the possibility of obtaining a
non-dominated solution from a dominated partial one.
Otherwise, when we change at vi in p′vs,vi , we do not
decrease the cost of travel C(p′vs,vi) by Δc′. Therefore
in many cases a final solution obtained from a dominated
partial one was a dominated solution. Thus, at most 20%
of non-dominated final solutions were obtained from a
dominated partial solutions (Figs. 6(c), (d), (g) and (h)).

For each number of changes and each range of the
path length a solution obtained from a dominated partial
solution exists. Thus, these solutions would not have
been determined as a result of omitting dominated partial
solutions as in the case of the multigraph with constant
weights (Skriver and Andersen, 2000b). It can be seen
that the number of solutions obtained from a dominated
partial solution decreases with the path length. It should
be noted that about 70% solutions where in the path a
change is performed 11 times and about 5% solutions
where the journey is performed without a change were
obtained from dominated partial solutions. Additionally,
in each case there exists pair of solutions pvs,ve and p′vs,ve
satisfying any relationship,

T (pvs,ve) < T (p′vs,ve)∧C(pvs,ve) > C(p′vs,ve),
T (pvs,ve) = T (p′vs,ve)∧C(pvs,ve) = C(p′vs,ve),
T (pvs,ve) > T (p′vs,ve)∧C(pvs,ve) < C(p′vs,ve),

that takes place between the time and the cost of travel,
where pvs,ve is obtained from the partial solution pvs,vi
and p′vs,ve is obtained from the dominated partial solution
p′vs,vi , i.e., pvs,vi
 p′vs,vi .

For 1,838,360 tests all non-dominated solutions were
obtained from non-dominated partial solutions, and this
is about 25% of tests carried out. Thus about 75% of
conducted tests contain at least one solution obtained from
a dominated partial solution, and for 311,309 tests (which
is about 4% of all executed tests) all non-dominated
solutions were obtained from dominated partial solutions.
The results demonstrate that the monotonicity assumption
does not hold in the BBR problem and the proposed
estimation of partial solutions applied by the SOLVEBBR
algorithm makes it possible to determine these solutions.
Otherwise, i.e., when dominated partial solutions are
omitted, it would not determine any of these solutions.

The maximal number of computed non-dominated
final solutions in the single test equals 529,183. There are
only 145 solutions differing from each other in vertices or
arcs belonging to these paths, but 143 solutions satisfying
the relationships R1 and R6 from among them. Thus,
143 were obtained from dominated partial solutions. The
maximal number of non-dominated solutions obtained
from dominated partial ones in a single test equals 2,627
and these solutions satisfying the relationships R1, R6
and R8. The number of all non-dominated solutions
determined in this test equals 4,962, and all solutions
obtained from dominated partial ones differ from each
other in vertices or arcs belonging to these paths. In
these two tests the omission of dominated partial solutions
would cause a failure in finding valid non-dominated final
solutions.

4. Conclusions

In this paper the bicriterion bus routing (BBR) problem
was considered and its theoretical analysis was presented.
It was shown that a non-dominated final solution can
be obtained from a dominated partial one. This is an
important property used during the process of determining
solutions. We presented a detailed analysis of the
conditions that must be fulfilled in order to obtain a
non-dominated solution from a dominated partial one.

We proposed a new label correcting algorithm for
solving the BBR problem. The proposed representation
of a partial solution and methods of estimating partial
solutions decrease the number of computed and analysed
partial solutions in comparison with the algorithm
presented by Widuch (2012). The methods of estimating
partial solutions make it possible to determine all
non-dominated solutions, which was confirmed by
experimental tests. The tests were carried out for all
pairs of vertices in a multigraph representing the bus
network and for 5 different times of starting travel.

154 J. Widuch

The experimental tests showed that about 75% of the
conducted tests contain a non-dominated final solution
obtained from a dominated partial one and about 4% of
conducted tests contain all non-dominated final solutions
obtained from a dominated partial solution.

The problem is known to be NP-complete, and in the
worst case the number of solutions grows exponentially
with the number of vertices representing the bus stops. On
the basis of the test results we found that our procedure
exhibits a reasonable execution time for a bus network
containing about 1200 stops. Additionally, a test results
demonstrate that the number of non-dominated solutions
is not exponential in reality. The set of non-dominated
solutions determined by the algorithm may be a basis for
choosing by a passenger or an application a single bus
route. It is chosen on the basis of additional criteria, for
example, the length of the route, the number of changes,
the total waiting time at bus stops, etc.

References
Addor, J.A., Amponsah, S.K., Annan, J. and Sebil, C. (2013).

School bus routing: A case study of wood bridge school
complex, Sekondi-Takoradi, Ghana, International Journal
of Business and Social Research 3(12): 26–36.

Arias-Rojas, J.S., Jiménez, J.F. and Montoya-Torres, J.R.
(2012). Solving of school bus routing problem by ant
colony optimization, Revista EIA 9(17): 193–208.

Azevedo, J.A. and Martins, E.Q.V. (1991). An algorithm for the
multiobjective shortest path problem on acyclic networks,
Investigação Operacional 11(1): 52–69.

Bronshtein, E.M. and Vagapova, D.M. (2015). Comparative
analysis of application of heuristic and metaheuristic
algorithms to the school bus routing problem, Informatics
and Its Applications 9(2): 56–62.

Brumbaugh-Smith, J. and Shier, D. (1989). An empirical
investigation of some bicriterion shortest path
algorithms, European Journal of Operational Research
43(2): 216–224.

Caceres, H., Batta, R. and He, Q. (2014). School bus routing
with stochastic demand and duration constraints, Trans-
portation Research Board 93rd Annual Meeting, Washing-
ton, DC, USA, pp. 1–23.

Carraway, R.L., Morin, T.L. and Moskowitz, H. (1990).
Generalized dynamic programming for multicriteria
optimization, European Journal of Operational Research
44(1): 95–104.

Chalkia, E., Grau, J.M.S., Bekiaris, E., Ayfandopoulou, G.,
Ferarini, C. and Mitsakis, E. (2014). Routing algorithms
for the safe transportation of pupils to school using school
buses, Transport Research Arena (TRA) 5th Conference:
Transport Solutions from Research to Deployment, Paris,
France, pp. 1–10.

Chen, P. and Nie, Y.M. (2013). Bicriterion shortest path problem
with a general nonadditive cost, Transportation Research
B: Methodological 57: 419–435.

Chen, X., Kong, Y., Dang, L., Hou, Y. and Ye, X. (2015).
Exact and metaheuristic approaches for a bi-objective
school bus scheduling problem, PLoS ONE 10(7): 1–20.
DOI:10.1371/journal.pone.0132600.

Climaco, J.C. and Martins, E.Q.V. (1982). A bicriterion shortest
path algorithm, European Journal of Operational Research
11(4): 399–404.

Corley, H.W. and Moon, I.D. (1985). Shortest paths in networks
with vector weights, Journal of Optimization Theory and
Application 46(1): 79–86.

Daellenbach, H.G. and De Kluyver, C.A. (1980). Note on
multiple objective dynamic programming, Journal of the
Operational Research Society 31(7): 591–594.

Dell’Olmo, P., Gentili, M. and Scozzari, A. (2005). On finding
dissimilar Pareto-optimal paths, European Journal of Op-
erational Research 162(1): 70–82.

Dı́az-Parra, O., Ruiz-Vanoye, J.A., Buenabad-Arias, A. and
Cocón, F. (2012). A vertical transfer algorithm for the
school bus routing problem, 4th World Congress on Na-
ture and Biologically Inspired Computing (NaBIC), Mex-
ico City, Mexico, pp. 66–71.

Ehrgott, M. (2000). Multicriteria Optimization, Springer-Verlag,
Berlin.

Ellegood, W. A., Campbell, J. F. and North, J. (2015).
Continuous approximation models for mixed load school
bus routing, Transportation Research B 77: 182–198.

Euchi, J. and Mraihi, R. (2012). The urban bus routing
problem in the Tunisian case by the hybrid artificial ant
colony algorithm, Swarm and Evolutionary Computation
2: 15–24.

Garey, M. and Johnson, D. (1990). Computers and Intractibility:
A Guide to the Theory of NP-Completeness, W.H. Freeman
& Co., New York, NY.

Hansen, P. (1980). Bicriterion path problems, in G. Fandel and
T. Gal (Eds.), Multiple Criteria Decision Making: Theory
and Application, Springer-Verlag, Berlin, pp. 109–127.

Henig, M.I. (1985). The shortest path problem with two
objective functions, European Journal of Operational Re-
search 25(2): 281–291.

Huang, L.C., Guan, W. and Xiong, J. (2014). Routing design
optimization of bus joint for passenger transfer centers, in
M. Sun and Y. Zhang (Eds.), Renewable Energy and Envi-
ronmental Technology, Applied Mechanics and Materials,
Vol. 448, Trans Tech Publications, Zurich, pp. 4140–4149.

Jungnickel, D. (1999). Graphs, Networks and Algorithms, 2nd
Edition, Springer-Verlag, Berlin.

Kang, M., Kim, S.K., Felan, J.T., Choi, H.R. and Cho, M.
(2015). Development of a genetic algorithm for the school
bus routing problem, International Journal of Software En-
gineering and Its Applications 9(5): 107–126.

Kim, B.I., Kim, S. and Park, J. (2012). A school bus
scheduling problem, European Journal of Operational Re-
search 218(2): 577–585.

Kim, T. and Park, B.J. (2013). Model and algorithm for solving
school bus problem, Journal of Emerging Trends in Com-
puting and Information Sciences 4(8): 596–600.

A relation of dominance for the bicriterion bus routing problem 155

Kinable, J., Spieksma, F.C.R. and Berghe, G.V. (2014). School
bus routing—a column generation approach, International
Transactions in Operational Research 21(3): 453–478.

López, E.R. and Romero, J. (2015). A hybrid column generation
and clustering approach to the school bus routing problem
with time windows, Ingenierı́a 20(1): 111–127.

Machuca, E., Mandow, L. and Pérez de la Cruz, J.L. (2009).
An evaluation of heuristic functions for bicriterion shortest
path problems, Proceedings of the 14 Portuguese Confer-
ence on Artificial Inteligence (EPIA 2009), Aveiro, Portu-
gal, pp. 205–216.

Mandow, L. and Pérez de la Cruz, J.L. (2008). Path recovery in
frontier search for multiobjective shortest path problems,
Journal of Intelligent Manufacturing 21(1): 89–99.

Manumbu, D.M., Mujuni, E. and Kuznetsov, D. (2014). A
simulated annealing algorithm for solving the school bus
routing problem: A case study of Dar es Salaam, Computer
Engineering and Intelligent Systems 5(8): 44–58.

Martı́, R., González Velarde, J.L. and Duarte, A. (2009).
Heuristics for the bi-objective path dissimilarity problem,
Computers & Operations Research 36(11): 2905–2912.

Martins, E.Q.V. (1984). On a multicriteria shortest path
problem, European Journal of Operational Research
16(2): 236–245.

Martins, E.Q.V., Pascoal, M.M.B., Rasteiro, D.M.L.D. and
Santos, J.L.E. (1999). The optimal path problem,
Investigação Operacional 19(1): 43–60.

Mote, J., Murthy, I. and Olson, D.L. (1991). A parametric
approach to solving bicriterion shortest path problems, Eu-
ropean Journal of Operational Research 53(1): 81–82.

Newton, R.M. and Thomas, W.H. (1969). Design of school bus
routes by computer, Socio-Economic Planning Sciences
3(1): 75–85.

Pacheco, J., Caballero, R., Laguna, M. and Molina, J. (2013).
Bi-objective bus routing: An application to school buses in
rural areas, Transportation Science 47(3): 397–411.

Pareto, V. (1896). Course d’Economie Politique, F. Rouge,
Lausanne.

Park, J. and Kim, B.-I. (2010). The school bus routing problem:
A review, European Journal of Operational Research
202(2): 311–319.

Raith, A. and Ehrgott, M. (2009). A comparison of solution
strategies for biobjective shortest path problems, Journal
Computers and Operations Research 36(4): 1299–1331.

Riera-Ledesma, J. and Salazar-González, J.J. (2012). Solving
school bus routing using the multiple vehicle traveling
purchaser problem: A branch-and-cut approach, Comput-
ers & Operations Research 39(2): 391–404.

Riera-Ledesma, J. and Salazar-González, J.J. (2013). A column
generation approach for a school bus routing problem with
resource constraints, Computers & Operations Research
40(2): 566–583.

Schittekat, P., Kinable, J., Sörensen, K., Sevaux, M. and
Spieksma, F. (2013). A metaheuristic for the school bus
routing problem with bus stop selection, European Journal
of Operational Research 229(2): 518–528.

Serafini, P. (1987). Some considerations about computational
complexity for multi objective combinatorial problems, in
J. Jahn and W. Krabs (Eds.), Recent Advances and Histor-
ical Development of Vector Optimization, Lecture Notes in
Economics and Mathematical Systems, Vol. 294, Springer,
Berlin/Heidelberg, pp. 222–232.

Sghaier, S.B., Guedria, N.B. and Mraihi, R. (2013). Solving
school bus routing problem with genetic algorithm, Inter-
national Conference on Advanced Logistics and Transport
(ICALT’2013), Sousse, Tunisia, pp. 7–12.

Siqueira, V.S., Silva, F.J.E.L., Silva, E.N., Silva, R.V.S. and
Rocha, M.L. (2016). Implementation of the metaheuristic
grasp applied to the school bus routing problem, Interna-
tional Journal of e-Education, e-Business, e-Management
and e-Learning 6(2): 137–145.

Skriver, A.J.V. and Andersen, K.A. (2000a). A classification
of bicriteria shortest path (BSP) algorithms, Asia-Pacific
Journal of Operational Research 17(2): 199–212.

Skriver, A.J.V. and Andersen, K.A. (2000b). A label correcting
approach for solving bicriterion shortest-path problems,
Computers & Operations Research 27(6): 507–524.

Tung, C.T. and Chew, K.L. (1988). A bicriterion Pareto-optimal
path algorithm, Asia-Pacific Journal of Operational Re-
search 5(2): 166–172.

Tung, C.T. and Chew, K.L. (1992). A bicriterion Pareto-optimal
path algorithm, European Journal of Operational Research
62(2): 203–209.

Widuch, J. (2012). A label correcting algorithm for
the bus routing problem, Fundamenta Informaticae
118(3): 305–326.

Widuch, J. (2013). A label correcting algorithm with storing
partial solutions to solving the bus routing problem, Infor-
matica 24(3): 461–484.

Worwa, K. (2014). A case study in school transportation
logistics, Research in Logistics & Production 4(1): 45–54.

Yigit, T. and Unsal, O. (2016). Using the ant colony algorithm
for real-time automatic route of school buses, International
Arab Journal of Information Technology 13(5): 559–565.

Jacek Widuch was awarded the PhD degree at
the Silesian University of Technology in 2008.
At present he is an assistant professor in the In-
stitute Informatics there. His main research inter-
ests are connected with multicriteria optimization
algorithms in transportation problems and paral-
lel computing. He is a member of the Upper Sile-
sian Regional Committee of the Polish School
Contest in Informatics.

Received: 25 January 2016
Revised: 13 July 2016
Accepted: 10 November 2016

	Introduction
	Bicriterion bus routing problem
	Formulation of the problem
	Mathematical model of the BBR problem
	Analysis of the BBR problem
	Influence of dominated partial solutions on non-dominated final solutions
	Algorithm for solving the BBR problem

	Experimental test results
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

