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In this paper, a fault-tolerant control (FTC) scheme is proposed for actuator faults, which is built upon tube-based model
predictive control (MPC) as well as set-based fault detection and isolation (FDI). In the class of MPC techniques, tube-
based MPC can effectively deal with system constraints and uncertainties with relatively low computational complexity
compared with other robust MPC techniques such as min-max MPC. Set-based FDI, generally considering the worst case
of uncertainties, can robustly detect and isolate actuator faults. In the proposed FTC scheme, fault detection (FD) is passive
by using invariant sets, while fault isolation (FI) is active by means of MPC and tubes. The active FI method proposed
in this paper is implemented by making use of the constraint-handling ability of MPC to manipulate the bounds of inputs.
After the system has been detected to become faulty, the input-constraint set of the MPC controller is adjusted to actively
excite the system for achieving FI guarantees on-line, where an active FI-oriented input set is designed off-line. In this way,
the system can be excited in order to obtain more extra system-operating information for FI than passive FI approaches.
Overall, the objective of this paper is to propose an actuator MPC scheme with as little as possible of FI conservatism
and computational complexity by combining tube-based MPC and set theory within the framework of MPC, respectively.
Finally, a case study is used to show the effectiveness of the proposed FTC scheme.
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1. Introduction

In general, all technical systems are prone to faults. In
a controlled system, if the plant itself is more reliable
than the sensors and actuators used, when the closed-loop
performance deviates from its normal situation, it is
possible to find sensors and/or actuators that have become
faulty. As faults can result in abnormal operation/failure,
effectively dealing with faulty situations for technical
systems is an important specification to assess the global
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performance of those systems. The objective of FTC is
to maintain satisfactory performance for the controlled
system even in the presence of faults.

In general, FTC is divided into passive (PFTC)
and active (AFTC) (Blanke et al., 2006). The former
deals with faults by using controller robustness while
the latter handles faults after obtaining fault information
by fault diagnosis techniques. PFTC is relatively
easy to implement but has a restrictive fault-tolerant
ability. Moreover, the larger the number of faults, the
worse the control performance. Comparatively, AFTC
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is more flexible because it contains a fault diagnosis
module to obtain real-time fault information. With
the obtained fault information, AFTC can deal with
faults more effectively. The fault diagnosis procedure
embedded in an FTC scheme generally includes three
steps: fault detection, fault isolation and fault estimation.
Although AFTC is the topic of the proposed FTC scheme,
this paper focuses more on the FD and FI tasks and
assumes that actuator-fault magnitudes are known in
advance. However, for FTC based on fault estimation
and accommodation, the readers are referred to the
works by Jiang and Chowdhury (2005), Jiang et al.
(2006) or Xu et al. (2012). Additionally, due to a
relatively low complexity and the ability of dealing with
system constraints, MPC is chosen as the control strategy
for the proposed scheme (Boskovic and Mehra, 2002;
Maciejowski, 1999; Yang and Maciejowski, 2015). As
an optimization-based method, robust MPC itself has
a degree of the PFTC ability with respect to additive
uncertainties (Borrelli et al., 2013).

In the work of Ocampo-Martinez et al. (2010), an
actuator FTC scheme using feedback-gain control and
invariant sets was proposed, where a bank of controllers
were designed to handle faults in different actuators
and the FDI task was implemented by using invariant
set-based passive FDI methods. However, this scheme
does not consider constraints on system variables and
needs to wait until the residual has entered into its
invariant set to isolate faults. In the work of Sun
et al. (2008), a fault-tolerant model predictive control
(FTMPC) scheme using the Kalman filter was proposed,
which focused on the implementation of an FTMPC
scheme without addressing in detail the features such
as feasibility. Yetendje et al. (2011) presented an
actuator FTMPC scheme with invariant set-based FDI,
which had relatively low complexity because of the
use of invariant sets for FDI. However, due to passive
implementation of FDI, the set separation-based FDI
condition is more conservative, which implies the loss
of the potential FDI and FTC performance to some
extent. The same authors extend the previous approach
to the sensor case using a multisensor scheme (Yetendje
et al., 2012). Raimondo et al. (2013) proposed an
FTMPC scheme using set-membership FDI. Their work
used an approach that combined passive FD and active
FI, but employed a different implementing method. The
active FI method proposed by Raimondo et al. (2013)
can reduce the FI conservatism, at the cost of high
computational complexity due to the requirement of
computing fault-separating inputs on-line. Moreover, the
scheme proposed by Raimondo et al. (2013) does not
provide guaranteed FI conditions to check in advance
whether or not the faults considered are isolable.

Since faults in actuators and sensors generally have
different features, the current paper focuses on actuator

faults by exploiting the potential of the proposed scheme.
In particular, the objective of this paper is to propose a
new scheme of actuator FTMPC not only to obtain less
conservative FI and FI guarantees, but also to implement
FTC with relatively low complexity. The proposed
FTC scheme can also obtain a balance between the FI
complexity and conservatism. In the scheme, FD is
passively implemented with invariant sets while FI is
actively carried out by using MPC and tubes that can
isolate faults during the transition induced by faults.

The principle of active FI consists in adjusting the
input-constraint set of the MPC controller to an off-line
designed FI-oriented input set that can guarantee FI. In
real time, whenever a fault is detected, the designed input
set is used as the temporary input-constraint set of the
MPC controller to implement FI during the transition.
Moreover, since this input set is constructed off-line,
guaranteed FI conditions can be verified off-line by
using invariant sets and established on-line by the MPC
controller for on-line FI guarantees. The proposed FTC
scheme is shown in Fig. 1, where NS stands for nominal
system and the subscript k is only used to show that the
discrete-time system is considered in this paper.

The advantages of the proposed scheme are twofold.
First, a new actuator FTC scheme integrating MPC
with set-based FDI to retain the advantages is proposed.
Second, a new active FI strategy built upon tube-based
MPC to obtain FI guarantees as well as a balance of FI
conservatism and complexity is implemented. The work
presented in this paper is inspired by our preliminary
results (Xu et al., 2014).

The remainder of this paper is divided into five
sections. Section 2, introduces the proposed FTC scheme.
Section 3 presents the FDI strategy based on invariant sets
and tubes. Section 4 introduces the FTC approach. In
Section 5, a case study is used to show the effectiveness
of the proposed scheme. Finally, Section 6 gives some
conclusions on the approach.

Note that, in this paper, the inequalities are
understood element-wise, O, I and diag(·) denote the
zero, the identity and the diagonal matrices with suitable
dimensions, respectively, |·| represents the element-wise
absolute value, B

r is a box composed of r unitary
intervals, and ⊕ and � denote the Minkowski sum and
Pontryagin difference, respectively.

2. System description

2.1. Plant model. It is assumed that the monitored
system is described by a linear discrete time-invariant
model including actuator faults, disturbances and
noises:

xk+1 = Axk +BFuk + ωk, (1a)

yk = Cxk + ηk, (1b)
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Fig. 1. Actuator FTMPC scheme.

where A ∈ R
n×n, B ∈ R

n×p and C ∈ R
q×n are constant

parametric matrices, xk ∈ R
n, uk ∈ R

p and yk ∈ R
q

are the state, input and output vectors at time instant k,
respectively, ωk and ηk are respectively unknown process
disturbances and measurement noise vectors, and F is
used to model actuator modes (healthy and faulty) which
are important/critical for system performance/safety.

In (1), matrix F incorporates the actuator modes
considered. During real-time operation, a mode switching
implies a change in the value of F (i.e., fault occurrence
or system recovery to the healthy situation). Moreover,
F is assumed to be constant for each mode but
time-variant during the entire dynamical behavior where
mode switchings are included.

Assumption 1. (Disturbances and noises) ωk and ηk are
unknown but bounded by sets

W ={ω ∈ R
n : |ω − ωc| ≤ ω̄}, (2a)

V ={η ∈ R
q : |η − ηc| ≤ η̄}, (2b)

respectively, where ωc, ηc, ω̄ and η̄ are assumed to be
known and constant vectors.

Assumption 2. (Faults considered) Single, abrupt and
multiplicative faults are considered and the faults are
assumed to be persistent, namely, the duration of the faults
is longer than the detection and isolation time needed.

Under Assumption 2, it can be observed that F can
take p + 1 different values, i.e., F = Fi (i ∈ I =
{0, 1, 2, . . . , p}). F0 is the identity matrix denoting the
healthy actuator mode while Fi (i �= 0) modeling the i-th
actuator-fault mode is denoted as

Fi = diag(1 . . . 1

i

↓
fi 1 . . . 1), (3)

where fi is a scalar inside the interval [0, 1), which models
the actuator-fault magnitude of the i-th actuator.

Notice that it is possible to extend the proposed
FTMPC scheme to deal with sensor faults, multiple faults
and additive faults. For example, if there are more
elements, rather than a single element different from “1”
in the fault-modeling matrix F , the proposed method can
be used to handle multiple faults (see Reppa et al., 2015).

Assumption 3. (Stabilizability and detectability) The
pairs (A,BFi) for all i ∈ I and (A,C) are stabilizable
and detectable, respectively.

In this scheme, the input and state constraints are
taken into account, which are denoted as

X ={x ∈ R
n : |x− xc| ≤ x̄}, (4a)

U ={u ∈ R
p : |u− uc| ≤ ū}, (4b)

respectively, where the vectors xc, uc, x̄ and ū are known
and constant. W , V , X and U defined in (2) and (4) can
be rewritten into zonotopes. Thus, in this paper, all set
manipulations are implemented by zonotopes. The notion
of zonotopes is given in Definition A1 in Appendix.

2.2. Output setpoints. It is mentioned that p + 1
actuator modes are considered. Thus, the proposed
FTMPC scheme should have p + 1 different nominal
models, each corresponding to one mode. For the i-th
mode, the corresponding nominal model is given as

x̄i
k+1 = Ax̄i

k +BFiū
i
k + ωc, (5a)

ȳik = Cx̄i
k + ηc, (5b)

where ūk, x̄k and ȳk denote the nominal input, and state
and output vectors, respectively. For simplicity, it is
assumed that ωc and ηc, representing the centers of the
sets in (2a) and (2b), are zero vectors.

The control objective under the i-th mode is to
regulate the output vector around a given setpoint y∗i , i.e.,
in the absence of uncertainties,

lim
k→∞

(yk − y∗i ) → 0. (6)
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In this paper, the model in (5) does not consider ωc

and ηc for simplicity of the exposition. By using (5), a
state–input setpoint pair (x∗

i ,u∗
i ) corresponding to y∗i in

the i-th mode can be computed by

[
A− I BFi

C O

] [
x∗
i

u∗
i

]
=

[
O
y∗i

]
. (7)

However, with no loss of generality, if ωc and ηc

are non-zero, ωc and ηc can be added into (5a) and (5b),
respectively.

Assumption 4. (State–input setpoint pair) For the i-th
mode, (7) is solvable for all i ∈ I.

Under Assumption 4, a state–input setpoint pair
(x∗

i , u∗
i ) corresponding to y∗i can be obtained by

solving (7) or degrading the expected performance (i.e.,
changing the output setpoint) in order to guarantee that
(7) is solvable. For a given mode, (7) may have
multiple solutions (i.e., the state–input setpoint pair may
not be unique) or no solution. Thus, the designer
should determine a satisfactory state–input setpoint pair
according to particular requirements. Additionally,
although the given output can be time-varying (i.e.,
the tracking problem), only the regulation problem is
considered in this paper.

2.3. Observers and controllers. The tube-based MPC
technique used in this scheme taps into the results of
Mayne et al. (2006). As in their work, for each MPC
controller, a state observer is designed. Thus, a bank of
observers should be designed to match all modes, each
observer matching one mode.1

Correspondingly, the observer matching the j-th (j ∈
I) mode is designed as

x̂j
k+1 = (A− LjC)x̂j

k +BFjuk + Ljyk, (8a)

ŷjk = Cx̂j
k, (8b)

where x̂j
k and ŷjk are the estimated states and outputs,

respectively, and Lj is the j-th observer gain matrix that
is selected to stabilize the observer dynamics (8), which is
always possible under Assumption 3.

In order to control the system under different actuator
modes, a bank of tube-based output feedback MPC
controllers are used, each corresponding to one mode.
The nominal system corresponding to the i-th mode is
obtained by neglecting ωk and ηk in (5).

1This is similar to the idea used in the multiple model adaptive esti-
mation (MMAE) approach, where a bank of parallel Kalman filters, each
with a different model, are employed. However, in the MMAE method
(Hanlon and Maybeck, 2000), the hypothesis testing approach is used to
determine which is the model with the highest likelihood to explain the
input/output data.

According to Mayne et al. (2006), the control law of
the i-th tube-based MPC controller is

uk = ūi
k +Ki(x̂

i
k − x̄i

k), (9)

where Ki is the corresponding feedback-gain matrix.

3. Fault detection and isolation

3.1. System analysis. In the i-th mode, F takes the
value Fi and the i-th tube-based MPC controller, the i-th
state–input setpoint pair and the i-th observer are used in
the closed-loop system. Moreover, the state estimation
error of the j-th observer is defined as

x̃i,j,i
k = xk − x̂j

k. (10)

Regarding the superscript notation x̃i,j,i
k , the first

index means the i-th system mode, the second denotes the
j-th observer, and the third denotes that the i-th controller
is currently selected for closed-loop operation. Thus, x̃i,j,i

k

denotes the state estimation error of the j-th observer
when the current closed-loop system is in the i-th mode
and with the i-th MPC controller.

If j �= i in (10), the dynamics of x̃i,j,i
k can be derived

by using (1), (8) and (9) as

x̃i,j,i
k+1 =(A− LjC)x̃i,j,i

k +B(Fi − Fj)ū
i
k + ωk

− Ljηk +B(Fi − Fj)Ki(x̂
i
k − x̄i

k), (11)

and the corresponding output-estimation error of the j-th
observer can also be derived as

ỹi,j,ik =yk − ŷjk = Cx̃i,j,i
k + ηk. (12)

Moreover, in the i-th mode, the term x̂i
k − x̄i

k

appearing in both (9) and (11) is denoted as

ei,i,ik = x̂i
k − x̄i

k. (13)

Its dynamics can be derived by using (5) and (8) as

ei,i,ik+1 = (A+BFiKi)e
i,i,i
k + LiCx̃i,i,i

k + Liηk, (14)

where x̃i,i,i
k corresponds to the case j = i in (10) and its

dynamics can be obtained from (11), i.e.,

x̃i,i,i
k+1 = (A− LiC)x̃i,i,i

k + [I − Li]

[
ωk

ηk

]
. (15)

Since ωk ∈ W and ηk ∈ V , a robust positively
invariant (RPI) set of x̃i,i,i

k , denoted by X̃ i,i,i, can be
constructed. In this paper, the notion of RPI sets and
the method to construct those are based on the results of
Kofman et al. (2007), Kolmanovsky and Gilbert (1998),
and Olaru et al. (2010), which are given in Appendix.

As long as x̃i,i,i
k∗ ∈ X̃ i,i,i holds, x̃i,i,i

k ∈ X̃ i,i,i always
holds for all k > k∗. In the same way, considering x̃i,i,i

k ∈
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X̃ i,i,i and ηk ∈ V , an RPI set of ei,i,ik , denoted by Ei,i,i,
can be constructed by using (14). For the i-th mode, if a
fault is detected, an input set Ū i

f is defined for FI analysis
as

Ū i
f = {ūi ∈ R

p :
∣∣ūi − ūi,c

f

∣∣ ≤ ūi
f , ū

i,c
f ∈ R

p, ūi
f ∈ R

p},

which should be employed whenever a fault is detected
we suppose that

ūi
k ∈ Ū i

f ,

where ūi,c
f and ūi

f are constant and known vectors.

Remark 1. (Input-constraint set for FI) In this paper, an
active FI strategy is proposed. The rationale behind the
FI strategy is that, after FD, the input-constraint set of the
i-th optimization problem corresponding to the i-th MPC
controller is adjusted (to Ū i

f ) to restrict inputs to values
that can excite the plant to enable FI. Besides, Ū i

f will only
be used for FI when the system is in the i-th mode after
FD. Moreover, Ū i

f is different from the input-constraint
set U . Likewise, in the proposed FI strategy, after a fault
is isolated and simultaneously the system is reconfigured,
Ū i
f will not be used any longer. At this stage, Ū i

f is
introduced in order to help the readers understand the
following proposed FI method. However, the detailed
introduction of Ū i

f will be given in Section 4.

Similarly, for ei,i,ik ∈ Ei,i,i and ūi
k ∈ Ū i

f in

(11), an RPI set of x̃i,j,i
k , denoted by X̃ i,j,i, can be

determined. Furthermore, the set of the corresponding
output-estimation error is

Ỹ i,j,i = CX̃ i,j,i ⊕ V. (16)

For the particular case when j = i, the
output-estimation-error set Ỹ i,i,i corresponding to X̃ i,i,i

can also be determined and used for FDI. Generally,
the RPI sets X̃ i,i,i, Ei,i,i and X̃ i,j,i should be as small
as possible, being ideally tight approximations of the
minimal RPI set.

3.2. Fault detection. The FD approach used in this
paper is a passive one based on invariant sets, which
can simplify the FD task into only testing whether or
not the residual is inside its corresponding invariant set.
The advantage of the FD method used consists in its low
computational complexity.

Considering (11) and (14), since ωk ∈ W and ηk ∈
V , if ūi

k ∈ Ū i
f always holds, it can be observed that,

as long as ei,i,ik ∈ Ei,i,i holds, x̃i,j,i
k ∈ X̃ i,j,i (j �= i)

can always hold. However, as for (15), it can be seen
that X̃ i,i,i is independent of the effect of ei,i,ik and ūi

k

while Ei,i,i is dependent of X̃ i,i,i. Thus, theoretically,
the most convenient way to detect faults is to test the

inclusion x̃i,i,i
k ∈ X̃ i,i,i.2 But, practically, since x̃i,i,i

k is
not obtainable, instead, only the signal ỹi,i,ik can be used.
Thus, the first criterion for FD is to test whether or not

ỹi,i,ik ∈ Ỹ i,i,i (17)

is violated in real time. If a violation of (17) is detected,
this means that a fault has occurred. Otherwise, it is
considered that the system still operates in the i-th mode.

Although (17) can be used for FD, if only (17) is
applied, the fault sensitivity of the proposed FTC scheme
will not be fully exploited. The reason is due to the
fact that, even though (17) holds, it cannot be guaranteed
that the inclusion x̃i,i,i

k ∈ X̃ i,i,i holds, too, which means
that the detection of ỹi,i,ik ∈ Ỹ i,i,i has a different fault
sensitivity from that of x̃i,i,i

k ∈ X̃ i,i,i. In this case, it is
necessary to consider the second FD criterion to describe
this situation, i.e., to test whether or not

ei,i,ik ∈ Ei,i,i (18)

is violated in real time. If (18) is violated, this also implies
that a fault has occurred. Note that, as mentioned before,
the FD criterion (18) can indirectly describe the inclusions
corresponding to the other observers, i.e.,

ỹi,j,ik ∈ Ỹ i,j,i, j �= i. (19)

Thus, the FD strategy of this proposed FTC scheme
is to use both (17) and (18). As long as either of them is
violated, this implies that the system has become faulty.

Remark 2. (Fault detection) Simultaneous use of the
criteria (17) and (18) means that the system information
captured by all the observers has been used for FD.
Additionally, for the proposed FD strategy, even though
some faults occur, it is possible that the FD criteria (17)
and (18) are not violated. This means that these faults
cannot be detected and will not actively be tolerated
under the framework of this proposed active FTC scheme.
Instead, they can only be tolerated to some extent by the
PFTC ability of the proposed scheme.

3.3. Fault isolation.

3.3.1. Behavior after faults. In the scheme, the FI task
is started up after a fault is detected by the proposed FD
strategy. With no loss of generality, it is assumed that
the l-th (l �= i) fault occurs, i.e., after that, the system

2Under the framework of the proposed FTC scheme, mode switching
has several different cases including the situations from the healthy mode
to a faulty mode, from a faulty mode to another faulty mode, and from a
faulty mode to the healthy mode. However, with no loss of generality, the
terms and/or concepts fault, fault occurrence, fault detection and fault
isolation are used in this paper to generally mean mode, mode switching,
mode-switching detection and mode-switching isolation, respectively.
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mode changes from i to l. Although the mode changes
from i to l, before the fault is isolated and the system
is reconfigured, the closed-loop system structure will not
change yet, which implies that the closed-loop system is
still composed of the same controller and observer during
the FI phase.

According to (1), (5), (8) and (9), when the l-th
fault occurs, the state estimation error of the j-th observer
changes from x̃i,j,i

k to x̃l,j,i
k with the dynamics

x̃l,j,i
k+1 =(A− LjC)x̃l,j,i

k +B(Fl − Fj)ū
i
k + ωk

− Ljηk +B(Fl − Fj)Kie
l,i,i
k , (20)

and ei,i,ik in (14) changes to el,i,ik with the dynamics

el,i,ik+1 = (A+BFiKi)e
l,i,i
k + LiCx̃l,i,i

k + Liηk. (21)

In order to collect all the available system-operating
information for fault diagnosis after the l-th fault from the
i-th mode, a vector is defined as

ξi→l
k =

[
x̃l,0,i
k · · · x̃l,i,i

k · · · x̃l,p,i
k el,i,ik

]T
.

According to (20) and (21), the dynamics of ξi→l
k can

be obtained as

ξi→l
k+1 = Ai→lξ

i→l
k +Bi→lū

i
k + Eω

i→lωk + Eη
i→lηk,

(22)

where

Ai→l =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A− L0C O · · · O
...

... · · · ...
O A− LiC · · · O
...

... · · · ...
O O · · · A− LpC
O LiC · · · O

B(Fl − F0)Ki

...
B(Fl − Fi)Ki

...
B(Fl − Fp)Ki

A+BFiKi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Bi→l =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

B(Fl − F0)
...

B(Fl − Fi)
...

B(Fl − Fp)
O

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Eω
i→l =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
...
I
...
I
O

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Eη

i→l =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−L0

...
−Li

...
−Lp

Li

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Remark 3. (Stability) Under Assumption 3, the observer
and feedback gains L0, L1, . . . , Lp and F0, F1, . . . , Fp

can be designed to make Ai→l a Schur matrix for all
i, l ∈ I. With (22), the closed-loop system can be
stable by designing the observer and feedback gains and
the parameters of open-loop optimization problem of the
tube-based MPC controller (see Mayne et al., 2006).

Furthermore, as for ūi
k ∈ Ū i

f , ωk ∈ W and ηk ∈ V ,
an RPI set of ξi→l

k can be constructed, which is denoted
by Ξi→l. By projecting Ξi→l towards the component
space, an RPI set of each component of ξi→l

k can be
obtained. For example, an RPI set (denoted by X̃ l,j,i)
of x̃l,j,i

k can be obtained by projecting Ξi→l to the space
of x̃l,j,i

k . Similarly, an RPI set (denoted by El,i,i) of
el,i,ik can be constructed. This implies that, after the
l-th fault, x̃l,j,i

k and el,i,ik will converge into X̃ l,j,i and
El,i,i, respectively. Moreover, with (2b), the set of the
corresponding output-estimation error can be obtained as

Ỹ l,j,i = CX̃ l,j,i ⊕ V. (23)

When the system mode switches from i to l, all sets
of output-estimation errors can be constructed, which are
listed in Table 1. Note that, in Table 1, each row excluding
the i-th one corresponds to one candidate mode after the
mode switching from the i-th one.

3.3.2. Residual tubes. Generally, the residual is
defined as a signal sensitive to faults and with a
manageable magnitude. In this FTC scheme, the
output-estimation errors are defined as residual signals.
The dynamics of x̃l,l,i extracted from (22) are used for
FI implementation, which has the form

x̃l,l,i
k+1 =(A− LlC)x̃l,l,i

k + ωk − Llηk, (24)

while x̃l,j,i (j �= l) will not be used for direct FI
implementation but for the establishment of guaranteed
FI conditions. By using W and V to replace ωk and
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Table 1. Sets of output-estimation errors.
Observer 0 · · · Observer i · · · Observer p

Mode 0 Ỹ 0,0,i · · · Ỹ 0,i,i · · · Ỹ 0,p,i

...
... · · ·

... · · ·
...

Mode i Ỹ i,0,i · · · Ỹ i,i,i · · · Ỹ i,p,i

...
... · · ·

... · · ·
...

Mode p Ỹ p,0,i · · · Ỹ p,i,i · · · Ỹ p,p,i

ηk, the set-based description of x̃l,l,i
k and ỹl,l,ik can be

obtained as

X̃ l,l,i
k+1 =(A− LlC)X̃ l,l,i

k ⊕W ⊕ (−LlV ), (25a)

Ỹ l,l,i
k =CX̃ l,l,i

k ⊕ V. (25b)

Proposition 1. (Estimation-error tubes) Given that the l-
th (l �= i) fault occurs when the system is in the i-th mode
and the state estimation error x̃l,l,i

k∗ of the l-th observer
is bounded by a set X̃ l,l,i

k∗ at time instant k∗, if X̃ l,l,i
k∗ is

used to initialize (25) to generate tubes, x̃l,l,i
k ∈ X̃ l,l,i

k and
ỹl,l,ik ∈ Ỹ l,l,i

k will hold for all k ≥ k∗.

Proof. Since (25a) considers the worst case of the
uncertain factors ωk and ηk in (24), if x̃l,l,i

k∗ ∈ X̃ l,l,i
k∗ holds

at time instant k∗, this implies that x̃l,l,i
k ∈ X̃ l,l,i

k and
ỹl,l,ik ∈ Ỹ l,l,i

k will always hold for all k ≥ k∗. �

It is assumed that the l-th fault is detected at time
instant kd when the system is in the i-th mode. If an initial
set is used to initialize (25a) at time instant kd, the tubes
corresponding to the state and output estimation errors
generated by (25) can be denoted as

T̃
x,l,l,i
kd

={X̃ l,l,i
kd

, X̃ l,l,i
kd+1, X̃

l,l,i
kd+2, . . . }, (26a)

T̃
y,l,l,i
kd

={Ỹ l,l,i
kd

, Ỹ l,l,i
kd+1, Ỹ

l,l,i
kd+2, . . . }. (26b)

That initial set is used to initialize the dynamics
(25) to generate tubes for FI and introduced here
for the discussion of the FI method. A detailed
construction method for set initialization will be presented
in Section 3.3.4.

When the system is in the i-th mode, a violation
of (17) or (18) implies that a mode changing from i
to another unknown mode has occurred (this unknown
mode is denoted as f ∈ I \ {i}), i.e., there are p mode
candidates except for the i-th one. Thus, for FI, all the p
output-estimation error tubes T̃y,l,l,i

kd
(l ∈ I \ {i}) have to

be obtained. At time instant kd, the proposed FI algorithm
generates p output-estimation-error tubes T̃y,l,l,i

kd
(l ∈ I \

{i}), each corresponding to a candidate mode. Moreover,
for the p corresponding observers, as long as

x̃f,l,i
kd

⊆ X̃ l,l,i
kd

, f, l ∈ I \ {i} (27)

are guaranteed at the FD time such that

ỹf,l,ikd
⊆ Ỹ l,l,i

kd
. (28)

Therefore, this implies that, among the p generated
output-estimation-error tubes after FD, there exists at least
one tube (here it is assumed that this tube corresponds to
the m-th actuator mode) that can always satisfy

ỹf,m,i
k ⊆ Ỹ m,m,i

k , k ≥ kd, m ∈ I \ {i}. (29)

If the fault is indexed by l (i.e., f = l) and (27) is
satisfied for all k ≥ kd, T̃y,l,l,i

kd
can always satisfy ỹf,l,ik ⊆

Ỹ l,l,i
k . This implies that the fault will be indicated by one

of the p tubes that can always satisfy (29).

3.3.3. Fault isolation approach. In order to isolate a
fault, it has to guarantee that one and only one tube can
always satisfy its corresponding inclusion (29) after FD
and then the fault can be indicated by the index of this
tube. Based on this idea, guaranteed FI conditions are
established in Proposition 2.

Proposition 2. (Guaranteed FI conditions) When the
system is in the i-th mode, for any observer out of the
p+ 1 observers (assume that it is indexed by j), if all the
p + 1 output-estimation-error sets corresponding to this
observer (i.e., the p+1 sets in the j-th column of Table 1)
can satisfy

Ỹ j,j,i ∩
p⋃

l=0

Ỹ l,j,i = ∅, l �= j, i, j, l ∈ I, (30)

once a mode changing from the i-th mode to another con-
sidered mode is detected at time instant kd, this mode
can be isolated during the transition induced by the mode
changing by searching the output-estimation-error tube
that satisfies (29) for all k ≥ kd.

Proof. As concluded, T̃y,j,j,i
kd

will converge to Ỹ j,j,i. If

(30) holds, T̃y,j,j,i
kd

is able to confine the output-estimation

error ỹl,j,ik only under the condition l = j. If l �= j, at the
first several steps, T̃y,j,j,i

kd
is able to confine ỹl,j,ik due to the
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initialization condition (27). But, as T̃
y,j,j,i
kd

approaches

Ỹ j,j,i, ỹl,j,ik diverges from T̃
y,j,j,i
kd

. This implies that,
under the condition (30), by searching the tube that is
always able to confine ỹl,j,ik after FD, the fault can be
isolated. �

3.3.4. Construction of initial sets. As mentioned in
(26), one of the key points of the proposed FI strategy
consists in constructing the initial sets of state estimation
errors, which satisfy (27) at time instant kd to initialize
(25) in order to generate output-estimation-error tubes.
For the j-th observer, according to (12), it can obtain

Cx̃i,j,i
kd

∈ {ỹi,j,ikd
} ⊕ (−V ). (31)

In (31), since ỹi,j,ikd
can be obtained in real time, it

is always possible to construct a zonotopic set containing
x̃i,j,i
kd

at the FD time. In the work of Alamo et al.
(2005), a method computing a zonotope containing
the intersection of a strip and a zonotope is given in
Property A4. Based on this method, a zonotope containing
x̃i,j,i
kd

can be constructed by considering (31) composed
of q inequalities (i.e., strips). Besides, the method
proposed by Le et al. (2013) can also be used to construct
a zonotopic set containing x̃i,j,i

kd
. This method can

compute a zonotopic approximation of the intersection
of a zonotope and a polytope. With this method, (31) is
regarded as a whole that describes a polytope to construct
an initial zonotope, which can be seen in Property A5.

Remark 4. (Construction of initial sets) If C is invertible,
a set bounding x̃i,j,i

kd
can be directly obtained by (31)

with the inverse of C. If C is not invertible, an initial
zonotope to bound x̃i,j,i

kd
can be obtained by the method

in Propositions A4 or A5. In the second case, it may
need to give a zonotopic starting set for the methods in
Propositions A4 and A5 and this set can be designed
according to the physical constraints of the system.

According to (31), it can be observed that, for the j-th
observer, the expression of (31) is independent of system
mode changing. This means that (31) can always be used
to construct a set to bound the state estimation error of the
j-th observer in any mode. Since X , U , W and V can be
rewritten as zonotopes, from the computational point of
view, all tubes are generated by using zonotopes.

4. Fault-tolerant control

4.1. Steady-state behaviors. In the proposed
FTC scheme, system operation is divided into the
transient-state and steady-state phases. The steady-state
operation is observed when all relevant system signals
corresponding to a system mode are inside their
corresponding bounding sets. Comparatively, the
transient-state operation describes the operating process

between fault occurrence and the steady-state operation
of the mode corresponding to this fault. In this
paper, these two operations will be discussed, separately.
This subsection focuses on system behavior during the
steady-state operation.

At steady state of the i-th mode, the tube-based MPC
technique proposed by Mayne et al. (2006) is adopted to
implement FTC, and the control law of the i-th one is
given in (9). For the tube-based MPC controller (9), the
key part ūi

k is the open-loop optimization problem based
on the i-th nominal system as in (5).

X and U are hard system constraints that
imply indirect constraints on the nominal system-based
open-loop optimization problem. In the i-th mode, the
indirect input constraint is computed via (9), i.e.,

uk = ūi
k +Kie

i,i,i
k .

As in Section 3.1, at a steady state of the i-th mode,

ei,i,ik ∈ Ei,i,i

should hold. Thus, the input-constraint set of the
open-loop optimization problem can be obtained as

ūi
k ∈ Ū i = U �KiE

i,i,i. (32)

Additionally, taking

xk = x̄i
k + ei,i,ik + x̃i,i,i

k

into account, the hard state-constraint set for steady-state
functioning can be described as

x̄i
k ∈ X̄ i = X � (Ei,i,i ⊕ X̃ i,i,i). (33)

Assumption 5. (Indirect constraint sets) In the i-th mode,
X̄ i and Ū i are non-empty for all i ∈ I.

The non-emptiness of X̄ i and Ū i is the precondition
for using the tube-based MPC technique. Assumption 5 is
a well-known and accepted condition in the field. Under
Assumption 5, the open-loop optimization problem of the
i-th tube-based MPC controller, based on the i-th nominal
system (5), has the following form:

Jk = min
ūi

N−1∑
j=0

‖(x̄i
k+j|k − x∗

i )‖2Qi
+ ‖(ūi

k+j|k − u∗
i )‖2Ri

+‖(x̄i
k+N |k − x∗

i )‖2Pi

subject to x̄i
k+j|k∈ X̄ i,

ūi
k+j|k∈ Ū i,

x̄i
k+N |k∈ X̄ i

T ,

x̄i
k|k= x̄i

k,

(34)

where

ūi = [ūi
k|k, ū

i
k+1|k, · · · , ūi

k+N−1|k]
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is the optimized control sequence over the horizon N ,
Qi Ri and Pi are positive-definite matrices, and X̄ i

T

is the corresponding terminal state constraint set. The
purpose of adding the terminal constraint in (34) is for the
feasibility and stability. In (34), X̄ i

T is defined as the maxi-
mal control invariant (MCI) set of the i-th nominal system
corresponding to the nominal constraint sets X̄ i and Ū i

such that the i-th tube-based MPC controller is feasible
(see Definition A6 in Appendix for the MCI sets). As
mentioned in Remark 3, the tube-based MPC controller
can be designed to make the closed-loop system stable;
see the works of Borrelli et al. (2013) and Mayne et al.
(2006) for details of tube-based MPC.

4.2. Transient-state behavior before FD. As
mentioned before, after fault occurrence, the system
quits from the steady-state operation and enters the
transient-state operation. Different from the steady-state
operation of the i-th mode, fault occurrence implies that
the system mode changes from the i-th one to another one
that will be denoted by an index l (l �= i).

In order to analyze the transient-state behavior
induced by a fault, the transient-state operation is divided
into three different phases. The first one starts from the
occurrence till detection of the fault, the second starts
from the detection to isolation of the fault and the third
begins from system reconfiguration to the steady-state
operation of the l-th mode. Taking into account that the
second and third phases of the transition correspond to
the FI task, this subsection only focuses on the first-phase
transition while the other two transient-state phases will
be discussed in the next subsection.

Remark 5. (After-fault behavior) When the system is in
the i-th mode at the beginning, after the l-th fault, ỹi,i,ik

and ei,i,ik will change into ỹl,i,ik and el,i,ik , respectively.

During the first phase of the transition, even though
the l-th fault has occurred, the FD criteria (17) and (18)
still hold, i.e.,

ỹl,i,ik ∈ Ỹ i,i,i

and
el,i,ik ∈ Ei,i,i.

Although the FD criteria (17) and (18) still hold during the
first phase of the transition, it cannot be guaranteed that

x̃l,i,i
k ∈ X̃ i,i,i (35)

can still hold, which can be observed from (20) and
(21). This problem is inevitable. Because the satisfaction
of (35) cannot be guaranteed, during this transient-state
phase, the state constraint

xk = x̄i
k + el,i,ik + x̃l,i,i

k ∈ X

may be violated. However, notice that, during the first
phase of the transition, the input constraint

uk = ūi
k +Kie

l,i,i
k ∈ U

always holds under the satisfaction of Assumption 5 and
el,i,ik ∈ Ei,i,i. As has been mentioned, since the problem
indicated in (35) is inevitable, the satisfaction of the state
constraint has to be assumed during this phase.

Assumption 6. (First-phase transition) During the
first-phase transition, the inclusion xk = x̄i

k + el,i,ik +

x̃l,i,i
k ∈ X always holds.

Since the open-loop optimization problem in (34)
is not affected by the real system, its feasibility can
always be preserved during the first phase of the transition.
Moreover, during this phase, the closed-loop system is
still composed of the same elements with the i-th fault-
free mode. Although the l-th fault has occurred, the
process assumes that the system still operates in the i-th
mode as long as both state and input constraints are
satisfied.

4.3. Transient-state behavior during FI. The active
FI task corresponds to the second phase of the transition.
During this phase, it is already known that a fault
has occurred in the system. Thus, the most important
objective is to isolate the fault. The basic FI principle
here is to directly change the input-constraint set of
the i-th open-loop optimization problem on the i-th
nominal system to indirectly change the input set of
the plant to force the satisfaction of the proposed FI
conditions by means of the constraint-handling ability
of the open-loop MPC optimization problem behind the
MPC controller. In this way, the plant input vector can
be confined into a predefined set U i

f to excite the system
and to obtain more system-operating information for FI
implementation. Note that U i

f for active FI has already
been briefly introduced in Remark 1.

As observed from (22) and (23), when the system
mode changes from i to l, the sets of the state and
output estimation errors are determined by the sets of ūi

k,
ωk and ηk, and the fault magnitudes if it is considered
that the observer and feedback gains have already been
designed. Without explicitly considering the observer and
feedback gains, a function is used to describe the sets of
the output-estimation errors to help the readers understand
the proposed FI approach, i.e.,

Ỹ l,j,i = f i→l(Ū i
f ,W, V ), j �= l, (36)

which implies that whether or not the guaranteed FI
conditions in Proposition 2 hold depends on adjusting the
set of the nominal inputs ūi

k. Note that Ỹ l,l,i is determined
by W and V and is free from the effect of Ū i

f .
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Assumption 7. (Input-constraint set) In the i-th mode,
for all i ∈ I, there exists an input set Ū i

f such that the FI
conditions proposed in Proposition 2 are satisfied.

Thus, under Assumption 7, at the time instant when
a switching from the mode i to l is detected, if ūi

k

can always be confined inside the FI input set Ū i
f by

the open-loop optimisation problem of the i-th MPC
controller, the FI conditions in Proposition 2 can be forced
to hold on-line by Ū i

f , and then the FI approach proposed
in Section 3.3 can be used to isolate the fault. Thus,
when the system is in the i-th mode, the tube-based MPC
controller has two objectives:

• Steady-state operation (including the first-phase
transition): no fault is detected and the main task
is to achieve system performance. Thus, in order
to make full use of the potential performance of the
system, the input-constraint set Ū i is used for the i-th
open-loop optimization problem.

• Transient-state operation (only the second phase):
a fault is detected and the main task is to isolate
and reconfigure the system to obtain satisfactory
performance even in the presence of the fault.
During this stage, the proposed FI approach actively
adjusts the input-constraint set of the i-th open-loop
optimization problem from Ū i to Ū i

f at the FD time
kd to establish the FI conditions on-line, which is the
proposed active FI strategy.

During the second phase of the transition (i.e., the
FI process), in addition to guaranteeing the satisfaction of
the FI conditions, the feasibility, stability and constraint
satisfaction of the controller and system should also be
considered. The optimization problem (34) is updated
by directly using the nominal state from the nominal
prediction model. The nominal states are generated by the
nominal prediction model free from the effect of the real
system. Thus, as long as the i-th open-loop optimization
problem can be designed to be feasible, the feasibility
feature of the optimization can be preserved during the
whole FI process if the constraints X and U are not
considered. Since the set of the nominal input vectors of
the i-th nominal system is adjusted for FI, the feasibility
of the i-th optimization problem should be preserved by
using a new pair of constraint sets.

Thus, during the FI process, except that the input
constraint of (34) is switched from Ū i to Ū i

f to
establish the FI conditions on-line, the state and terminal
constraints are accordingly switched from X̄ i to X̄ i

f

and X̄ i
T to X̄f

i

T , respectively. The set X̄ i
f is the

state-constraint set of (34) for the FI process and X̄f
i

T
is a control invariant (CI) set of the i-th nominal system
corresponding to ūi

k ∈ Ū i
f and x̄i

k ∈ X̄ i
f . The sets Ū i

f and

X̄ i
f are a pair of designing parameters used to guarantee

FI and constraint satisfaction in this FTC scheme.

Remark 6. (Transient constraint satisfaction) During the
FI process, from mode i to l, Ū i

f ⊕ Kie
l,i,i
k ∈ U and

X̄ i
f ⊕ el,i,ik ⊕ x̃l,i,i

k ∈ X should hold such that the hard
input and state constraints are not violated, which is the
precondition of the proposed FTC scheme and is used to
ensure the availability of the tube-based MPC technique.
The satisfaction of this condition can be affected by
system dynamics, faults, Ū i

f and X̄ i
f . This means that a

proper pair of Ū i
f , and X̄ i

f should be designed to guarantee
the effectiveness of the proposed FI strategy.

Based on the explanation of Remark 6, in order
to ensure the availability of the proposed FTC scheme,
Assumption 8 is further made.

Assumption 8. (Transient constraint sets) There exists a
pair of Ū i

f and X̄ i
f such that the constraints uk ∈ U and

xk ∈ X are not violated during the whole FI phase.

Notice that the selection of the pair (uk ∈ U and
xk ∈ X) plays an important role in the proposed FTC
scheme. Since the methodological procedure of selecting
that pair is out of the scope of this paper, Ū i

f and X̄ i
f

have been selected by trial and error towards a suitable
operation of the proposed approach. During the FI task,
in addition to constraint satisfaction, the feasibility and
stability of the i-th open-loop optimization problem with
a new pair of constraint sets should be guaranteed as well.
Based on the optimization (34), to guarantee its feasibility,
the nominal states generated from the nominal system
internal model inside its terminal state constraints should
always be confined in the MCI set. Thus, at the FD time
kd, when switching the constraints of the i-th open-loop
optimization problem for active FI, the nominal state x̄i

kd

should be considered for the sake of feasibility.

Proposition 3. (Transient-state feasibility) During FI, if
x̄i
k ∈ X̄f

i

T holds at time instant k, (34) will be always
feasible at the next time instants.

Proof. Since X̄f
i

T is a CI set of the i-th nominal
system under the constraint sets Ū i

f and X̄ i
f and the i-th

optimisation problem is open-loop, x̄i
k ∈ X̄f

i

T implies the
feasibility of the optimization problem at all the next time
instants according to the definition of the CI sets. �

For the proposed FI strategy, the constraint sets
of i-th open-loop optimization should be adjusted for
FI implementation at the FD time kd. Thus, based
on Proposition 3, the following strategy is proposed to
guarantee the feasibility of the MPC controller during FI:

• If x̄i
kd

∈ X̄f
i

T , (34) is always feasible during the FI
process according to Proposition 3.
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• If x̄i
kd

�∈ X̄f
i

T , the center of X̄f
i

T is used to update
(34) to guarantee feasibility at time instant kd. For
k > kd, at one time instant k∗, if x̄i

k∗ ∈ X̄f
i

T , the
feasibility of (34) can always be guaranteed for all
k > k∗. Otherwise, the center of X̄f

i

T is still used to

update (34) till the inclusion x̄i
k ∈ X̄f

i

T is satisfied at
one time instant k > kd.

The aforementioned strategy to guarantee feasibility
comes from a practical viewpoint. Moreover, since set
operation and representation are based on zonotopes, X̄f

i

T
should also be a zonotope and its center can always be
obtained to update the open-loop optimization problem as
a remedial measure.

During the second phase of the transition, the
feasibility of both the open-loop optimization and
constraint satisfaction problems can be guaranteed by
using the aforementioned method. However, another
important aspect of the proposed FTC scheme is the
stability of the closed-loop scheme. Generally, to
guarantee this feature, two points should be considered:
the stability of the closed-loop dynamics, which can be
guaranteed by Remark 3, and the feasibility and stability
of the open-loop optimization problem (34), which can
be guaranteed by using the terminal-state constraint and
selecting suitable control parameters as shown in (34).
Particularly, this paper follows the procedure presented
by Mayne et al. (2006) in order to design a stabilizing
tube-based MPC controller.

4.4. Transient-state behavior after FI. In the FTC
scheme, when a fault is isolated at time instant ki, at
the same time the system should be reconfigured with
a different tube-based MPC controller that corresponds
to this new mode. After the controller adjusting, the
FTC scheme will face the same feasibility problem as
during the second phase of the transition: it is assumed
that the l-th actuator mode is isolated. Thus, the l-th
tube-based MPC controller with the corresponding input
and state constraints should be used, the l-th observer
is employed to obtain the state estimation, and the l-th
nominal system is used to generate the nominal states for
the l-th open-loop optimization problem.

In order to guarantee feasibility after system
reconfiguration, two methods are proposed. The first one
is similar to the second-phase transition, which uses the
center of X̄ l

T to update the l-th open-loop optimization
problem at one time instant when

x̄l
k ∈ X̄ l

T .

The second method is to use a state value x̄l
ki

∈
X̄ l

T to initialize the l-th nominal system and open-loop
optimization at the FI time instant ki. With either of the
two methods, according to Proposition 3, the feasibility

of the l-th open-loop optimization problem can always be
preserved after reconfiguration. Additionally, the system
can also keep being stable during this phase.

During this third-phase transition, except for the
feasibility, stability and constraint satisfaction, a right
restart of the FD mechanism still needs to be guaranteed.
After system reconfiguration, the closed-loop system is
operating in the l-th mode. Thus, the restarting of
the FD mechanism should be considered to monitor the
mode-switching behavior in this new mode. However,
since in the FTC scheme the implementation of FD
is based on invariant sets, if the FD mechanism is
simultaneously restarted when the system is reconfigured,
it is possible that the FD strategy creates false FD alarms.
This situation will appear if the signals ỹl,l,lk and el,l,lk do
not enter into their respective sets Ỹ l,l,l and El,l,l. This
implies that, for the sake of right restarting, it should be
guaranteed that all signals ỹl,l,lk and el,l,lk have already
entered into their respective sets.

In this paper, there are also two methods to avoid
false FD alarms. The first one is to set a waiting time;
as long as this waiting time is sufficiently long, after the
waiting time, the signals can enter into their sets and the
restarting of the FD mechanism can be done in the right
way. In the second one after reconfiguration,

ỹl,l,lk ∈ Ỹ l,l,l and el,l,lk ∈ El,l,l

are tested until at a time instant both inclusions hold.
Then, at this time instant, the FD mechanism is restarted
in the new operating mode to avoid false FD alarms.

Remark 7. (Waiting time) The waiting time can be
arbitrarily defined as long as it can assure right restarting
of the FD mechanism such that the aforementioned false
FD alarms can be avoided. However, it is better to define
the waiting time with a proper length based on the settling
time of the system.

4.5. Fault-tolerant control procedure. In previous
sections, the FDI and FTC approaches have been
introduced in detail. In this subsection, the key point is
to make a brief summary for the proposed FTC scheme,
which is presented as follows:

• It is assumed that the system is in a steady state of the
i-th mode. The FD task consists in real-time testing
whether or not (17) or (18) is violated. If no violation
is detected, it is considered that the system is still in
the i-th mode. Otherwise, it is implied that a fault
has occurred in the system.

• Once a fault is detected at time instant kd, the active
FI approach will be started up to isolate the fault by
adjusting the constraints of (34) from X̄ i, Ū i and
X̄ i

T to X̄ i
f , Ū i

f and X̄f
i

T , respectively, to satisfy the
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Fig. 2. Flow chart of FTC.

FI conditions on-line. Notice that the corresponding
methods to guarantee the feasibility should be used
during this phase.

• Simultaneously, at k = kd, p output-estimation-error
tubes (26) are initialized by using initial sets
constructed by (31). For each tube, (29) is tested in
real time. Whenever a tube violates (29), the index
of this tube is removed from the fault candidates until
there is one and only one tube left, which implies that
the fault is isolated and that the index of this tube
indicates the fault.

• Once the fault is isolated (it is assumed that the
fault is indexed by l), the l-th observer, the l-th
tube-based MPC controller and the l-th state–input
pair are selected to reconfigure the system (now the
constraint sets should be X̄ l

f , Ū l
f and X̄f

l

T for the
new MPC controller, respectively). Notice that the
corresponding methods to guarantee the feasibility
of the l-th open-loop optimization and the right
restarting of the FD mechanism should be used.

• After the system enters the steady state of the l-th
mode, the whole working procedure of the proposed
scheme will be revisited to monitor this new mode
and the control objective is to regulate the system
around the corresponding setpoint.

To further help the readers understand the the
approach proposed in this paper, a flow chart describing
the FTC procedure is presented in Fig. 2, where the whole
procedure is divided into five steps: FI conditions, fault
detection, active fault isolation, fault-tolerant control and
steady-state operation.

5. Illustrative example

A two-tank system taken from the work of Steffen (2005),
shown in Fig. 3, is used as an example to illustrate the
proposed FTC scheme. The mathematical model of this
two-tank system can be found in the work of Osella et al.

Fig. 3. Two-tank system.

(2015). With a sampling time of 0.01 s, the dynamics of
the system can be represented in discrete-time form as

xk+1 = Adxk +BdFiuk + Edωk, (37a)

yk = Cdxk + ηk, (37b)

with

Ad =

[
0.975 0
0.025 0.975

]
, Cd =

[
1 0
0 1

]
,

Bd =

[
0.1 −0.05
0 0.05

]
, Ed =

[
0.1 0
0 0.1

]
,

where Fi is used to model the actuator status (healthy
or faulty), and it is further assumed that |ω| ≤[
0.001 0.001

]T
and |η| ≤ [

0.001 0.001
]T

.
In this case study, faults in actuators are considered.

In total, there are three actuator modes taken into account,
i.e., F0 (healthy mode), F1 (a fault in the first actuator),
and F2 (a fault in the second actuator):

F0 =

[
1 0
0 1

]
, F1 =

[
0.5 0
0 1

]
, F2 =

[
1 0
0 0.5

]
.

The water levels of the two tanks should vary within
a range because of the physical limitations. Moreover,
actuators also have a limited range of operation. Thus, the
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(a)

(b)

Fig. 4. After-fault sets with active FI.

system state and input constraints describing the limits of
water levels and valves are set as

U =

{
u :

[−1
−1

]
≤ u ≤

[
1
1

]}
,

X =

{
x :

[−1
−1

]
≤ x ≤

[
1
1

]}
.

Based on (37), three observers with the form (8) are
designed, each matching one actuator mode. With no
loss of generality, the same poles are defined for the three
observers for simplicity, i.e., p = [0.2, 0.1]T . Thus, the
three designed observer gains are

L0 = L1 = L2 =

[
0.775 0
0.025 0.875

]
.

Accordingly, three tube-based MPC controllers
corresponding to the three modes are designed to control
the system, whose feedback gains are designed as

K0 =

[−0.7913 −0.3189
0.2199 −0.4766

]
,

K1 =

[−0.6727 −0.3012
0.3532 −0.4109

]
,

K2 =

[−0.8097 −0.3052
0.1161 −0.3142

]
.

In this example, the output setpoints for the three
actuator modes are given as

y∗0 = y∗1 = y∗2 =

[
0.1
0.05

]
.

Associated with these output setpoints, the state and
input setpoint pairs are

x∗
0 =

[
0.1
0.05

]
, u∗

0 =

[
0.0125
−0.025

]
,

x∗
1 =

[
0.1
0.05

]
, u∗

1 =

[
0.025
−0.025

]
,

x∗
2 =

[
0.1
0.05

]
, u∗

2 =

[
0.0125
−0.05

]
.

In this example, two fault scenarios are considered,
each one corresponding to one actuator fault:

• Scenario 1: from time instants 1 to 75, the system is
healthy, and from 76 to 150, the first actuator fault
occurs.

• Scenario 2: from time instants 1 to 75, the system is
healthy, and from 76 to 150, the second actuator fault
occurs.

For these two scenarios, after a fault occurrence, a
pair of active FI input and state sets need to be designed

(a)

(b)

Fig. 5. After-fault sets without active FI.
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for the nominal MPC optimization problem of the healthy
tube-based MPC controller, which are presented as

Ū0
f =

{
u :

[
0.2
0.2

]
≤ u ≤

[
0.4
0.4

]}
,

X̄0
f =

{
x :

[ −0.973
−0.9306

]
≤ x ≤

[
0.973
0.9306

]}
.

Remark 8. (State-input sets for active FI) The set pair
Ū0
f and X̄0

f is not unique. If only the implementation of
FI is considered, any set pair that satisfies the proposed FI
conditions can be used for active FI.

With no loss of generality, only scenarios from
healthy to faulty are considered to illustrate this FTC
scheme. Thus, corresponding to Ū0

f , the after-fault sets of
output-estimation errors of the two actuator-fault modes
switched from the healthy mode can be constructed,
which are shown in Fig. 4. The figure shows that the
active FI set Ū0

f can satisfy the guaranteed FI conditions in
Proposition 2. This implies that, after detection of either
of the two faults, it is guaranteed that the fault can be
isolated by using the proposed FI approach.

For comparison, Fig. 5 demonstrates the after-fault
sets without active FI. In this case, the after-fault
output-estimation-error sets from the healthy mode should
be constructed by using the input set Ū0 that can be
computed by (32). In Fig. 5, the sets Ỹ 110n and Ỹ 220n

are relatively small, and this shows that if the proposed
active FI strategy is not used, it cannot be guaranteed to
isolate the faults after FD.

Note that, in Figs. 4 and 5, the sets Ỹ 110, Ỹ 210, Ỹ 220,
Ỹ 110n, Ỹ 210n and Ỹ 220n are outer-bounding interval
hulls of the corresponding invariant sets for simplicity
of computation, which do not affect the checking of the
proposed FI conditions.

Remark 9. (Notation) In Figs. 6–11, we employ
symbols E000(l), ei00k (l), Ỹ 000(l), ỹi00k (l), Ỹ 111

k (l),
Ỹ 222
k (l), ỹi10k (l), ỹi20k (l) and y(l), u(l) to denote the l-th

components of E0,0,0, ei,0,0k , Ỹ 0,0,0, ỹi,0,0k , Ỹ 1,1,1
k , Ỹ 2,2,2

k ,
ỹi,1,0k , ỹi,2,0k , y and u, respectively. Since the output matrix
is the identity matrix, the figure of system states is omitted
here for simplicity.

For the first fault scenario, the FD results are shown
in Fig. 6, where ỹi0086 (1) �∈ Ỹ 000(1) indicates that a
fault is detected at this time instant. Thus, the proposed
active FI process is activated at the time instant k = 86.
Furthermore, it is obtained that ỹi1087 ∈ Ỹ 111

87 and ỹi2087 �∈
Ỹ 222
87 hold, which implies that the fault in the first actuator

has occurred. Then the whole system is reconfigured to
tolerate the fault. Accordingly, the inputs and outputs
of Scenario 1 are presented in Fig. 8, which shows that
the proposed FTC scheme can tolerate this fault with
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Fig. 6. FD of Fault 1.
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Fig. 7. FI of Fault 1.

satisfactory performance. Moreover, all the constraints
can be well satisfied during the whole process.

For the second scenario, the simulation results are
shown in Figs. 9–11. In Fig. 9, it is shown that an actuator
fault is detected at time instant k = 80 because ỹi0080 (1) �∈
Ỹ 000(1) is detected. Thus, at the FD time k = 80, the
active FI process is started as seen in Fig. 10. Similarly, in
Fig. 10, ỹi10k and ỹi20k correspond to the first and second
observers, respectively. It can be observed that ỹi1081 �∈
Ỹ 111
81 and ỹi2081 ∈ Ỹ 222

81 hold, which implies that the second
actuator fault is isolated at time instant k = 81. Once the
second fault is isolated, the system is reconfigured by the
corresponding MPC controller and state–input setpoint
pair. The results in Fig. 11 show that, although the
output performance has a slight degradation, the AFTC
strategy can generally obtain satisfactory performance and
the constraints are always well satisfied.

Remark 10. (Restarting of the FD mechanism) In
order to avoid false fault alarms, whenever the system is
reconfigured, a waiting time of 20 sampling times is set.
During the waiting time, the FD mechanism is frozen till
this period elapses. Then the FD mechanism is restarted
again to monitor a new mode.
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Fig. 8. System outputs and inputs of Scenario 1.

6. Conclusions

In this paper, an actuator FTC scheme combining
tube-based MPC and set-theoretic FDI was proposed.
In the scheme, FD is passive by using invariant
sets and FI is active by relying on MPC and tubes,
which is the most important contribution of this paper.
The use of tube-based MPC and set-theoretic FDI is
interesting because of their relatively low computational
complexity, FDI robustness and their proper combination
to implement the proposed active FI strategy. Thus, the
proposed FTMPC scheme owns robust FDI performance,
low computational complexity and less conservative FI
conditions. The key idea of this FTC scheme consists
in designing the input and state sets for active FI. In this
paper, these sets are chosen by off-line trial and error as a
pragmatic method, which can be improved if a systematic
designing method can be proposed for the input and state
FI sets in the future.

It should be emphasized that the proposed FTC
scheme cannot detect all faults. Thus, for undetectable
faults, the PFTC ability of this scheme can still tolerate
them to some extent even though a possible degree of
performance degradation may appear. Due to tube-based
MPC, the advantages of the proposed FTC scheme consist
in its relatively simple structure and less conservative
active FI. In the future, the authors will focus on designing
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Fig. 9. FD of Fault 2.

50 60 70 80 90 100 110 120
time (samples)

-4

-3

-2

-1

0

1

2

3

si
gn

al

�10-3

�� ���
� ���
�� ���
� ���

������ ���
������ ���

(a)

50 60 70 80 90 100 110 120
time (samples)

-4

-3

-2

-1

0

1

2

3

4

si
gn

al

�10-3

�� ���
� ���
�� ���
� ���

������ ���
������ ���

(b)

Fig. 10. FI of Fault 2.

state–input-constraint sets to further improve this FTC
scheme.
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Appendix

Definition A1. (Zonotopes) An r-order zonotope Z is
defined as Z = g ⊕ HB

r, where g and H are its center
and segment matrix (or generator matrix), respectively.

Definition A2. (Interval hull) The interval hull �Z of
a zonotope Z = g ⊕ HB

r ⊂ R
n is the smallest box

containing Z , i.e.,

�Z = {x : |xi − gi| ≤‖ Hi ‖1},
where Hi is the i-th row of H , xi and gi are the i-th
components of x and g, respectively.

Property A1. (Minkowski sum of zonotopes) Given two
zonotopes Z1 = g1 ⊕ H1B

r1 ⊂ R
n and Z2 = g2 ⊕

H2B
r2 ⊂ R

n, Z1 ⊕Z2 = (g1 + g2)⊕ [H1 H2]B
r1+r2 .

Property A2. (Multiplication of zonotopes) Given a
zonotope Z = g ⊕HB

r ⊂ R
n and a suitable matrix K ,

KZ = Kg ⊕KHB
r.

Property A3. (Reordering of zonotopes) Given a
zonotope Z = g ⊕ HB

r ⊂ R
n and an integer s (with

n < s < r), denote by Ĥ the matrix resulting from the
reordering of the columns of the matrix H in decreasing
Euclidean norm. Z ⊆ g ⊕ [ĤT Q]Bs where ĤT is
obtained from the first s−n columns of the matrix Ĥ and
Q ∈ R

n×n is a diagonal matrix whose elements satisfy
Qii =

∑r
j=s−n+1 | Ĥij |, i = 1, . . . , n.

Property A4. (Intersection of a zonotope and a strip)
Given a zonotope Z = g ⊕ HB

r ⊂ R
n, a strip S =

{x ∈ R
n | |cx − d| ≤ σ} and a vector λ ∈ R

n,
then Z ∩ S ⊆ Ẑ(λ) = ĝ(λ) ⊕ Ĥ(λ)Br+1 holds, where
ĝ(λ) = g + λ(d− cg) and Ĥ(λ) = [(I − λc)H σλ].

Property A5. (Intersection of a zonotope and a polytope)
Given a matrix Λ ∈ R

n×m, a zonotope Z = g ⊕ HB
r,

and an H-polytope P = {x ∈ R
n : |Cx − d| ≤

[φ1, φ2, . . . , φm]T }, with C ∈ R
m×n, d ∈ R

m, φi ∈ R+

(i = 1, 2, . . . ,m), define a vector ĝ(Λ) = g +Λ(d− Cg)
and a matrix Ĥ(Λ) = [(I−ΛC)H ΛΦ], with a diagonal
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matrix Φ = diag(φ1, φ2, . . . , φm). Then a family of
zonotopes (parameterized by the matrix Λ) that contains
the intersection of the zonotope Z and the polytope P is
obtained as Z ∩ P ⊆ Ẑ(Λ) = ĝ ⊕ ĤB

r+m.

Definition A3. (RPI set) A set X is an RPI set of the
dynamics xk+1 = Axk + ωk if for xk ∈ X and ωk ∈ W ,
xk+1 ∈ AX +W ⊆ λX (0 < λ ≤ 1) always holds.

Definition A4. (Minimal RPI set) The minimal RPI
(mRPI) set of the dynamics xk+1 = Axk + ωk is defined
as an RPI set contained in any closed RPI set and the mRPI
set is unique and compact.

Theorem A1. (Construction of invariant sets) For the dy-
namics xk+1 = Axk + Bδk where A and B are con-
stant matrices and A is a Schur matrix, δk belongs to
Δ = {δ : |δ − δ◦| ≤ δ̄} with δ◦ and δ̄ constant, letting
A = V ΛV −1 be the Jordan decomposition, the set

Φ(θ) ={x ∈ R
n :

∣∣V −1x
∣∣ ≤ (I − |Λ|)−1

∣∣V −1B
∣∣ δ̄ + θ}

⊕ ξ◦ (A1)

is RPI and attractive for the state trajectories, with
θ any (arbitrarily small) vector with positive components,
where ξ◦ = (I −A)−1Bδ◦:

1. For any θ, the set Φ(θ) is (positively) invariant; that
is, if x0 ∈ Φ(θ), then xk ∈ Φ(θ) for all k ≥ 0.

2. Given θ ∈ R
n, θ > 0, and x0 ∈ R

n, there exists
k∗ ≥ 0 such that xk ∈ Φ(θ) for all k ≥ k∗.

Definition A5. (CI set) A set X ⊆ X is a CI set of the
dynamics xk+1 = Axk + Buk if, for any xk ∈ X , there
always exists uk ∈ U such that xk+1 ∈ X for all k ≥ 0.

Definition A6. (MCI set) A set XM ⊆ X is said to be
the MCI set of the dynamics xk+1 = Axk + Buk if it is
CI and contains all CI sets inside X .
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