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This paper is devoted to the analysis of fundamental limitations regarding closed-loop control performance of discrete-time
nonlinear systems subject to hard constraints (which are nonlinear in state and manipulated input variables). The control
performance for the problem of interest is quantified by the decline (decay) of the generalized energy of the controlled
system. The paper develops (upper and lower) barriers bounding the decay of the system’s generalized energy, which can
be achieved over a set of asymptotically stabilizing feedback laws. The corresponding problem is treated without the loss
of generality, resulting in a theoretical framework that provides a solid basis for practical implementations. To enhance
understanding, the main results are illustrated in a simple example.
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1. Introduction

Since its first appearance, the theoretical framework
introduced by Lyapunov became one of the substantial
tools for the analysis of control systems and evaluation
of control performance. The theory is built around
the utilization of positive definite, radially unbounded
functions that are defined over the state space of the
system of interest. As the core concept, these functions
bear the name of the inventor and are regarded as
Lyapunov functions. Since the related theory roots
in Lagrangian and Hamiltonian mechanics, Lyapunov
functions can be interpreted (and considered by many)
as the generalized energy of the system of interest.
Using these, Lyapunov recognized that the stability
and convergence properties of dynamical systems with
feedback are analogous to the gradual decline (decay) of
the generalized energy.

Consequently, this concept highlights the role of
feedback from a different perspective which may be
interpreted as follows: the primary role of feedback is to
reduce the generalized energy of the system of interest to
a global minimum. The decay of the generalized energy
implies asymptotic stability of the closed-loop system
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around the desired point in state space (usually around the
origin).

For a nonlinear dynamical system, the design of a
feedback law is a challenging task, and the controlled
system must satisfy many criteria. First and foremost,
asymptotic stability must be guaranteed; however,
among others, fast convergence is always desired.
Utilizing Lyapunov’s framework, the convergence
characteristics—thus the dynamic behavior of the
closed-loop system—can be characterized by the
decay rate of the generalized energy. To achieve fast
convergence, high decay rate is to be achieved which
depends on (a) system characteristics (e.g., state evolution
dynamics, constraints), (b) the applied feedback law and
(c) properties of the Lyapunov function which defines the
generalized energy.

The maximization of the decay rate is a timely
research topic and has been receiving much attention
from the control community (Prieur et al., 2011;
Feyzmahdavian et al., 2013; Aranda-Escolástico et al.,
2018; Hu et al., 2003; Buhl and Lohmann, 2009).
Here, the central problem of interest is the design
of a feedback law for a given dynamical system
which yields the “fastest possible” convergence. For
unconstrained linear time-invariant (LTI) systems the
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classical results relying on the theory of linear matrix
inequalities (LMIs) are summarized by Boyd et al. (1994).
However, in the presence of (state and control) constraints
and nonlinearities, the related problem involves more
challenges (Hu et al., 2003; Buhl and Lohmann, 2009).

In general, the utilization of the Lyapunov framework
for control synthesis and analysis of stability receives
considerably great attention from the research community.
These cover (i) the design of the control law (Al’brekht,
1961; Scokaert and Rawlings, 1998; Bemporad et al.,
2000; Grushkovskaya and Zuyev, 2014; Li et al., 2018)
and/or (ii) the design of Lyapunov functions (Fu, 1993;
Duda, 2012; Kaczorek, 2007; Lenka, 2019) for various
systems of interest. Depending on the application, the
design phases are executed in series (e.g., given an
optimality criterion design the control law) or in synergy
(e.g., given the system of interest design the Lyapunov
function and a stabilizing control law subject to some
performance criteria).

This paper, however, is fundamentally different from
most of the research related to the utilization/application
of the Lyapunov framework and approaches the problem
of interest from a different perspective. Here, the focus
is not on the design; that is, we are not interested in
constructing feedback laws and/or Lyapunov functions for
a system or a family of systems. Instead, our interest is
in the analysis of the performance under feedback. With
that said, the core problem which is addressed in this
paper is the determination of the maximum decay rate of
the generalized energy over a set of feedback laws where
the dynamical system, the Lyapunov function (i.e., the
function which characterizes the generalized energy) as
well as the set of feedback laws are given. A theoretical
framework is developed for general nonlinear, constrained
discrete-time systems to provide bounds for the fastest
admissible decay of generalized energy in case feedback
is used. The presented approach generalizes the authors’
recent work on the topic where linearity (affinity) was
assumed, and constrained, LTI systems were considered
(Selek and Ikonen, 2018).

The paper is organized as follows: Section 2 provides
the preliminaries, gives problem-related definitions and
formulates the problem of the fastest possible decay
rate of generalized energy for constrained nonlinear
discrete-time systems. Section 3 provide a controllability
analysis of the system of interest and formulates the
main results. Section 4 addresses the computational
aspects related to the implementation of the main results,
including the computation of the barrier which bound
the decay rate of the generalized energy. To enhance
understanding, the theoretical results developed in the
paper are put into practice in the form of a simple example
which is considered in Section 5. Finally, Section 6
provides a brief summary of the contents of the paper and
draws the conclusions.

1.1. Notation and preliminaries. The sets of real,
nonnegative real and positive real numbers are denoted
by R, R0 and R>0, respectively. The set of integers,
set of nonnegative and positive integers are denoted by
Z, N0 and N, respectively. Likewise, for any K ∈ N0,
N0:K := {0, 1, . . . ,K} and NK := {1, . . . ,K}. Given a
vector x ∈ R

n, ‖x‖2 and ‖x‖∞ denote its Euclidean and
maximum norm, respectively. Given two sets A and B,
A = B denotes the equality of sets, that is, if A ⊆ B and
B ⊆ A we write A = B. Correspondingly, A � B means
that A is a proper (strict) subset of B, i.e., A ⊆ B and
A �= B. Let A � R

n be a compact set and let

B(A) :=
{
x ∈ A | �r ∈ R>0, D(x, r) � A}

(1)

denote its boundary, where

D(x, r) :=
{
y ∈ R

n | ‖x− y‖2 ≤ r, r ∈ R0

}
(2)

is a closed ball on R
n centered at x with radius r.

2. Problem description

This section introduces the problem of interest. For
the sake of clarity, the problem description was divided
into three subsections which introduce the essential
components of the problem including (a) the dynamical
system of interest, (b) the generalized energy and (c) the
set of (stabilizing) feedback laws. Finally, the problem of
interest is defined at the end of the section.

2.1. Dynamical system. In this paper we consider
discrete time nonlinear systems of the form

xk+1 = f(xk, uk), k = 0, 1, . . . , (3a)

where xk ∈ R
n denotes the (finite dimensional) state

vector, uk ∈ R
m is regarded as manipulated input at time

k ∈ N0 and the function f : Rn × R
m → R

n defines the
state evolution on the following assumption.

Assumption 1. For zero manipulated input (uk = 0)
the recursion (3a) has a fixed point in the origin, that is,
f(0, 0) = 0.

The evolution of the system of interest is restricted
by Keq ∈ N equality and Kieq ∈ N inequality constraints,
so that

hi(xk, uk) = 0, ∀i ∈ NKeq , (3b)

gj(xk, uk) ≤ 0, ∀j ∈ NKieq , (3c)

∀k ∈ N0, where hi, gj : Rn × R
m → R. Defining the

feasible set

M :=
{
[x, u] ∈ R

n+m | hi(x, u) = 0, ∀i ∈ NKeq

gj(x, u) ≤ 0, ∀j ∈ NKieq

}
,

we also make the following assumption:
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Assumption 2. The feasible set M

(i) includes the origin in its interior (i.e., [0, 0] ∈ M),

(ii) is compact and simply connected.

Using this, the restrictions posed by the constraint
system (3b)–(3c) can be expressed in a more compact
form

[xk, uk] ∈ M, ∀k ∈ N0 (4)

which will be used throughout this paper to simplify the
notation. The orthogonal projection of M onto the space
of states Rn defines

X :=
{
x ∈ R

n | ∃u ∈ R
m, [x, u] ∈ M}

, (5)

which will include all state trajectories due to the fact that
(4) is a hard constraint. In other words, X is a positively
invariant set of system (3). What is more, it is supposed
to meet the following assumption:

Assumption 3. The set X is measurable on R
n.

To be able to analyze the performance of the system
of interest in the presence of (closed-loop) control,
one must ensure that (3) satisfies specific controllability
requirements. The problem addressed in this paper relies
on the concept of null-controllability which plays a central
role in the sequel and defined as follows:

Definition 1. System (3) is null-controllable on R ⊆ R
n,

(0 ∈ R) if ∀x0 ∈ R, there exists a finite K ∈ N0 and an
input sequence {u0, . . . , uK} such that xK+1 = 0 subject
to (3).

The study of null-controllability of system (3) is a
problem of its own and is not addressed by this paper.
Instead, the satisfaction of the controllability requirement
is ensured by the following assumption:

Assumption 4. System (3) is null-controllable on X .

It defines the fourth pillar of the presented
work. However, in comparison with Assumptions 1–3,
Assumption 4 might be too restrictive. In such cases, the
“relaxation” of the last assumption is possible, so that the
results are to be developed using a null-controllable subset
of X . Nevertheless, this is going to be omitted for the sake
of clarity.

2.2. Generalized energy. Let a function V : Rn →
R0 be defined over the state space of (3a) satisfying the
following properties:

(i) positive definiteness: V (x) > 0, ∀x ∈ R
n \ 0 and

V (x) = 0 otherwise;

(ii) for any v1, v2 ∈ R0 we have v1 < v2 ⇔ V(v1) �

V(v2), where

V(v) := {
x ∈ R

n | V (x) ≤ v
}

(6)

defines the level set of V (x);

(iii) the level set V(v) is compact and simply connected
∀v ∈ R0.

The function V (x) is regarded as generalized energy
throughout this paper.

2.3. Set of asymptotically stabilizing feedback laws.
By definition, any feedback law applied to (3) which
makes the solution xk = 0, ∀k ∈ N0 asymptotically stable
in the Lyapunov sense implies that the generalized energy
will approach zero and vice versa, that is,

lim
k→∞

xk = 0 ⇔ lim
k→∞

V (xk) = 0. (7)

Given this relation, the paper aims to study the
fundamental limitations on the gradual decline (decay) of
generalized energy which appears under (asymptotically
stabilizing) feedback. However, unlike many valuable
contributions of the related field, we are not interested in
the synthesis of a feedback law or laws which achieve
good (best) performance with respect to some criteria
quantifying the decay of the generalized energy. Here,
we are interested in determining the greatest lower bound
on the decay of the generalized energy over a set which
includes all stabilizing feedback laws. The related
problem is stated at the end of this section, but first, let
the set of stabilizing feedback laws be defined as follows:
Given x0 ∈ X ,

F(x0) :=
{
μ : Rn × R0 → R

m | lim
k→∞

V (xk) = 0, s.t.

uk = μ(xk, k),

xk+1 = f(xk, uk),

[xk, uk] ∈ M,

∀k ∈ N0

}
, (8)

where the mapping μ is regarded as feedback law or con-
trol policy.

Remark 1. The set F(x0) includes all feedback laws
(i.e., linear, nonlinear, optimal in some sense, the ones
which utilize full state information as well as the ones
which use partial state information through observations,
etc.) which steer (3) back to the origin from the initial
state x0 ∈ X .

Putting these together, a problem related to the decay
of the generalized energy over F(x0) is addressed and
defined as follows:
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Problem 1. Given an initial state x0 ∈ X , find a sequence
{V �

0 , V
�
1 , . . . }, (V �

τ ∈ R0, ∀τ ∈ N0) so that

V �
τ = sup

v∈R0

v, (9)

subject to

uk − μ(xk, k) = 0,

xk+1 − f(xk, uk) = 0,

hi(xk, uk) = 0,

gj(xk, uk) ≤ 0,

v − V (xτ ) ≤ 0,

∀i ∈ NKeq ,

∀j ∈ NKieq ,

∀k ∈ N0:τ ,

∀μ ∈ F(x0).

The variable V �
τ defines the greatest lower bound of

the generalized energy of the system of interest at time
τ ∈ N0 which can be achieved by means of feedback.
Consequently, for a given initial condition x0 ∈ X there
exists no feedback law μ : Rn → R

m such that V (xτ ) <
V �
τ (∀τ ∈ N0) subject to (3).

Since the computation of V �
τ requires solution of an

optimization problem at each time instant τ which can be
solved independently, the value of V �

τ is mapped to the
particular time instant τ and unaffected by the choice of
the lookahead horizon (e.g., finite or infinite). Using these,
the obtained sequence {V �

0 , V
�
1 , . . . } is referred to as the

fastest admissible decay of the generalized energy of the
system of interest.

It is essential to point out that a single stabilizing
feedback law which “produces” the optimal sequence
{V �

0 , V
�
1 , . . . } might not exist due to the fact that the

solution to Problem 1 is obtained over F(x0), that is, the
components of the optimal sequence can be determined
by different feedback laws.

3. Bounds of the fastest admissible decay

Similarly to the linear case (Selek and Ikonen,
2018), the solution to the outlined problem is case
specific. Its dependence on the initial state x0 makes
the generalization of the solution highly challenging.
However, as demonstrated by Selek and Ikonen (2018)
it is possible to derive an approximate solution with
no loss of generality, using barriers {V 0, V 1, . . . } and
{V 0, V 1, . . . } which bound {V �

0 , V
�
1 , . . . } such that

V i ≤ V �
i ≤ V i, V i, V i ∈ R0, ∀i ∈ N0.

It must be pointed out that in practice the barriers
are computed ∀i ∈ N, since obviously V 0 = V 0 =
V (x0) given that the initial state x0 is known. The
development of the barriers rests on the concept of i-step

null-controllable sets which eliminate the dependence
of the approximate solution on the initial state while
introducing some conservatism in return. Informally, the
i-step null-controllable set X̄i ⊆ X or attraction domain
is a set of states which can be steered to the origin in finite
time using a control sequence which is at most i steps long
(Polyak and Shcherbakov, 2009). Precisely, we have the
following:

Definition 2. Let X̄ ⊆ X and X̄ \ 0 �= ∅. The set X̄
is i-step null-controllable if ∀x0 ∈ X̄ there exists a finite
i ∈ N and an input sequence {u0, . . . , ui−1} such that
xi = 0 subject to (3).

To be consistent with the definition, we say that X̄
is 0-step null-controllable if X̄ = {0}. Consequently,
by definition the i-step null controllable set for i = 0 is
(Darup and Mönnigmann, 2013),

X̄0 = 0

and the ones for i > 0 are determined by the following
(forward) iteration

X̄i :=
{
x ∈ X | ∃u ∈ R

m : f(x, u) ∈ X̄i−1, (10)

[x, u] ∈ M
}
.

The iteration above results in a nested sequence
of X̄i ⊆ X̄i+1 of null controllable sets. The nested
structure is a direct consequence of Definition 2. To
show this, consider x ∈ X̄i with the corresponding
control sequence {u0, . . . , ui−1}. Adding a zero to the
sequence {u0, . . . , ui−1, ui = 0} implies that x ∈ X̄i+1

by definition. Furthermore, adding a sequence of j ∈ N

zeros to {u0, . . . , ui−1} implies that x ∈ X̄i+j , thus
x ∈ X̄i ⇒ X̄i+j , ∀j ∈ N. Consequently X̄i ⊆ X̄i+1.

On the other hand, it is less obvious that the i-step
null-controllable sets must “grow” with i as stated by the
following lemma.

Lemma 1. If (3) is null controllable on X then ∀i ∈ N,
X̄i−1 � X ⇒ X̄i−1 � X̄i.

Proof. Since the set M includes the origin, X̄0 can be
controlled to itself, that is, if xk ∈ X̄0 there exists uk

(more precisely uk = 0) such that xk+1 ∈ X̄0 subject to
(3). Consequently, (10) implies that X̄0 ⊆ X̄1. On the
other hand, X̄1 �= X̄0 since (3) is null-controllable on X ;
thus, for i = 1, X̄0 � X̄1. Assume that X̄i−1 � X and
X̄i−1 � X̄i hold for every i ∈ Nj . Then, from (10) it
follows that X̄j ⊆ X̄j+1. If X̄j � X then (similarly to the
case of i = 1) X̄j+1 �= X̄j since (3) is null-controllable
on X ; thus X̄j � X̄j+1. Otherwise, from (10) it follows
that X̄j ⊆ X , ∀j ∈ N0; thus X̄j = X and X̄j ⊆ X̄j+1

implies that X̄j+1 = X̄j = X . By induction the outlined
statements complete the proof. �
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Fig. 1. Left: an example demonstrating the arrangement (nested sequence) of the null-controllable sets (X̄N(xk), X̄N(xk)−1,
X̄N(xk)−2) on the positively invariant set X . The state xk is marked by the dot and the set of states which are reachable
from xk in one step X̂ is hatched. Right: an example demonstrating the one-step ahead state transition. As pointed out by
Lemma 2, X̂ ⊆ X \ X̄N(xk)−2, which is colored in gray. Note that, in this particular case, X \ X̄N(xk)−2 is non-simply
connected. If the set includes its limit points, the boundary is highlighted by a continuous line; otherwise, a dashed line is used
to mark the boundary. The interiors are colored in both the cases.

Since the positively invariant set X defined by the
constraint system represents the “largest” feasible set on
the state space and the i-step null-controllable sets cannot
grow infinitively. This is a direct consequence of the proof
of Lemma 1 formally expressed as the following result.

Corollary 1. If (3) is null controllable on X then ∀i ∈ N,
X̄i−1 = X ⇒ X̄i = X .

Proof. See the proof of Lemma 1. �

Utilizing the outlined properties of the sequence of
i-step null-controllable sets, the minimum number of steps
required to reduce the generalized energy of the system of
interest to zero for any x ∈ X can be obtained by solving
the following optimization problem:

N(x) = min
{
i | x ∈ X̄i, i ∈ N0

}
, (11)

which makes x ∈ X N(x)-step null-controllable. Using
this, an important property concerning state transition is
to be highlighted by the following result:

Lemma 2. For all N(xk) ≥ 2, xk ∈ X̄N(xk) ⇒ xk+1 ∈
X \ X̄N(xk)−2 subject to (3).

Proof. From (10) it follows that the state xk ∈ X̄N(xk)

cannot be steered to X̄N(xk)−2 in one step since (11)
implies xk �∈ X̄N(xk)−1. In other words, if xk ∈ X̄N(xk)

there exists no uk ∈ R
m such that xk+1 ∈ X̄N(xk)−2

subject to (3). Since X is a positively invariant set of (3),
xk+1 ∈ X ; consequently, xk+1 ∈ X \ X̄N(xk)−2. �

A visual interpretation of Lemma 2 is given by Fig. 1
considering a two-dimensional state space. Lemma 2 is
used to construct one-step-ahead bounds for the decay of
the generalized energy as stated by the following result.

Theorem 1. For all xk ∈ X \ X̄1,

max
{
V (x) | x ∈ X̄N(xk)−1

}
(12)

≥ min {V (xk+1) | s.t. (3) }
≥ inf

{
V (x) | x ∈ X \ X̄N(xk)−2

}
.

Proof. From (11) it follows that xk ∈ X̄N(xk). Let X̂
denote the set of states which can be reached from xk in
one step subject to (3), that is,

X̂ :=
{
x ∈ X | ∃u ∈ R

m, x = f(xk, u), (13)

[xk, u] ∈ M,
}

where Assumption 4, (10) and Lemma 1 assure that X̂ �=
∅ and X̄N(xk)−1 ∩ X̂ �= ∅. Consequently,

max
{
V (x) | x ∈ X̄N(xk)−1

}
(14)

≥ max
{
V (x) | x ∈ X̄N(xk)−1 ∩ X̂

}

≥ min
{
V (x) | x ∈ X̂

}

since X̄N(xk)−1∩X̂ ⊆ X̄N(xk)−1 and X̄N(xk)−1∩X̂ ⊆ X̂ .

Similarly, Lemma 2 assures that X̂ ⊆ X \ X̄N(xk)−2

and (11) imply that X̄N(xk)−2 �= X , which gives

min
{
V (x) | x ∈ X̂

}
(15)

≥ inf
{
V (x) | x ∈ X \ X̄N(xk)−2

}

�
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Remark 2. Accordingly, it is obvious that, for all xk ∈
X̄1,

min {V (xk+1) | subject to (3) } = 0, (16)

due to the fact that the origin can be reached from X̄1 in
one step subject to (3).

The outlined theorem developed bounds for the
one-step-ahead decay of the generalized energy. However,
since Theorem 1 utilized the topological structure of the
i-step null-controllable sets, the same idea can be used
to construct the bounding barriers for an arbitrarily long
lookahead horizon, simply by considering feedback laws
which “enforce” state transition from X̄k to X̄k−1 at each
time step k.

The definition of the set of feedback laws (8)
implies that F(x0) includes control policies which steer
the system’s state back to the origin in minimum time.
It follows from (10) that a feedback law is minimum
time if, and only if, the sequence of states generated
by the feedback law satisfies {x0, x1, . . . , xN} ∈
{X̄N(x0), X̄N(x0)−1, . . . , X̄0}, that is, at each time instant
k, xk ∈ X̄N(x0)−k ⇒ xk+1 ∈ X̄N(x0)−(k+1) subject
to (3). Fortunately, it is easy to construct feedback
laws which satisfy the outlined criteria. As an example,
consider the feedback law of the form

uk = RND
(Ûk(xk)

)
, (17)

whereRND
(Ûk(xk)

)
denotes a randomly chosen element

of Ûk(xk) and

Ûk(xk) :=

{
u ∈ R

m | f(xk, u) ∈ X̄N(x0)−(k+1),

[xk, u] ∈ M,

}
.

With no doubt, (17) is minimum time and satisfies (8) thus
included in F(x0). Putting these together, let us introduce
the following notation: for any i ∈ Z such that X̄i �= X
let

V i :=

{
max

{
V (x) | x ∈ X̄i

}
if i ≥ 0,

0 otherwise
(18)

and

V i :=

{
inf

{
V (x) | x ∈ X \ X̄i

}
if i ≥ 0,

0 otherwise.
(19)

Thus given an initial state x0 ∈ X , the barriers
bounding the fastest admissible decay of the generalized
energy of (3) over F(x0) are defined by the following
result:

Corollary 2. Given x0 ∈ X and the corresponding set of
feedback laws F(x0), we have

V N(x0)−(k+2) ≤ V �
k+1 ≤ V N(x0)−(k+1), (20)

∀k ∈ N0 subject to (9).

Proof. Since F(x0) includes minimum time feedback
laws, the inequality (20) is a direct consequence of
Theorem 1 together with Remark 2. See proof of
Theorem 1. �

The derivation of (20) was based on the observation
that the set of feedback laws include minimal time
controllers. Knowing this it is natural to formulate the
question of what if the optimization defined by (9) is
executed on a subset of F(x0) which is defined, for
example, so that the minimum time control laws are
removed from F(x0). In other words, in what degree
(20) is affected in case the original problem (Problem 1)
is defined over an arbitrary subset of F(x0). The
corresponding problem is defined as follows.

Problem 2. Given an initial state x0 ∈ X , find a sequence
{V �

0 , V
�
1 , . . . }, (V �

τ ∈ R0, ∀τ ∈ N0) so that

V �
τ = sup

v∈R0

v, (21)

subject to

uk − μ(xk, k) = 0,

xk+1 − f(xk, uk) = 0,

hi(xk, uk) = 0,

gj(xk, uk) ≤ 0,

v − V (xτ ) ≤ 0,

∀i ∈ NKeq ,

∀j ∈ NKieq ,

∀k ∈ N0:τ ,

∀μ ∈ F̂(x0) ⊆ F(x0).
First and foremost, it is obvious that in case the

subset F̂(x0) ⊆ F(x0) includes at least one minimum
time feedback law, (20) is unaffected. In the opposite case,
the answer to the formulated question lies in equations
(13), (14) and (15). Considering a one-step lookahead,
in the absence of minimum time feedback laws there
exists a set of time instances {k1, . . . , ki} for which state
transitions from the set X̄N(xki

) to X̄N(xki
)−1 do not

occur. For such cases from (13) and (14) it is obvious
that X̄N(xk)−1 ∩ X̂ = ∅. Thus (14) becomes meaningless
implying that the upper bound becomes invalid. On
the other hand, the lower bound is valid for any cases
since the condition X̂ ⊆ X \ X̄N(xk)−2 holds under
any circumstances. This conclusion holds for lookahead
horizons of arbitrary size as well.
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The obtained results can be interpreted as follows:
it is possible to choose feedback laws that reduce the
generalized energy of the system slower than the upper
barrier. On the contrary, there exists no admissible
feedback law (i.e., μ ∈ F(x0)) which reduces the
system’s generalized energy faster than the lower barrier
as stated by the following result.

Theorem 2. Given x0 ∈ X and an arbitrary set of feed-
back laws F̂(x0) ⊆ F(x0), we have

V N(x0)−(k+2) ≤ V �
k+1, (22)

∀k ∈ N0 subject to (21).

Proof. Inequality (22) is a direct consequence of
Theorem 1. See the proof of Theorem 1. �

The sequence {V N(x0)−2, V N(x0)−3, . . . , }
provided by (22) is going to be referred to as the
greatest feasible lower bound of the system’s generalized
energyV (xk+1) at any time instant k ∈ N. In this context,
the term feasible lower bound reflects the condition that
there are cases when the system’s generalized energy gets
infinitely close to the barrier at a particular time instant
(or time instants) although in other cases the lower barrier
might be conservative. However, there are no cases such
that the system’s generalized energy crosses (lower than)
the barrier.

4. Computational aspects

This section is devoted to the analysis of the optimization
problem which defines the lower barrier. Formula
(19) requires the solution of the following optimization
problem:

inf
{
V (x) | x ∈ X \ X̄i

}
. (23)

Unlike simple cases where the problem above can
be solved analytically, general high dimensional systems
require numerical approaches to render a solution to (23).
Here, among others the nonconvexity of the optimization
domain and/or the objective function might be an issue;
however, the main challenge is introduced by the fact that
X \ X̄i might not be simply connected. For example,
Fig. 1 (right) presents a typical case in a two-dimensional
state space where the optimization domain is not simply
connected (the domain is highlighted by gray color).

The topological properties of the optimization
domain (e.g., simply connected or not) depends on the
“arrangement” of the i-step null-controllable sets X̄i

versus the positively invariant set X . Regarding this, two
cases are distinguished: (a) sets X and X̄i share a common
boundary and (b) sets X and X̄i do not share a common
boundary. To assign mathematical content to these cases,
the following definition is formulated:

Definition 3. Let Y � Z be two compact and simply
connected sets which are measurable on R

n. The sets Y
and Z share a common boundary if

∀x ∈ B(Y) �r ∈ R>0 : D(x, r) � Z (24)

Correspondingly, the sets Y and Z do not share a common
boundary if

∀x ∈ B(Y) ∃r ∈ R>0 : D(x, r) � Z. (25)

The graphical interpretation of the outlined cases can
be seen in Fig. 2. The reason to distinguish the outlined
two cases roots in the fact that unlike (24), property
(25) allows a change in the optimization domain and
the reformulation of the related optimization problem.
More precisely, (25) implies that (23) can be defined
as a maximization problem over a simply connected set
(replacing the minimization problem over a non-simply
connected one).

The related lemma which states the reformulation
rests on the following property of the energy function.

Remark 3. By the definition of V , for any v1 < v2
(v1, v2 ∈ R0) we have

∀x ∈ B(V(v1)) ∃r ∈ R>0 : D(x, r) � V(v2). (26)

To show this, assume that ∃x ∈ B(V(v1)) for which
�r ∈ R>0 such that D(x, r) � V(v2). Definition 1 and
V(v1) � V(v2) imply that x ∈ B(V(v2)). Since x ∈
B(V(v1)) ⇒ V (x) = v1 and x ∈ B(V(v2)) ⇒ V (x) =
v2, we get v1 = v2 which is a contradiction.

Using this, the equivalent optimization problem is
defined as follows.

Lemma 3. If X̄i �= X and ∀x ∈ B(X̄i) ∃r ∈ R>0 :
D(x, r) � X then

inf
{
V (x) | x ∈ X \ X̄i

}

= max
{
v ∈ R0 | V(v) ⊆ X̄i

}
.

Proof. If ∀x ∈ B(X̄i) ∃r ∈ R>0 such that D(x, r) � X ,
it follows from (10) that X̄i are compact and include the
origin in their interior. This implies that ∀i ∈ N0 ∃v ∈ R0

such that V(v) � X̄i.
Let v� := max

{
v ∈ R0 | V(v) ⊆ X̄i

}
and V � =

min
{
V (x) | x ∈ B(X̄i)

}
. Since B(X̄i) ⊆ X̄i it follows

from the definitions of v�, V � and Remark 3 that V � ≤
v�.

Let us assume that V � < v� which implies
that x� = argmin

{
V (x) | x ∈ B(X̄i)

} ∈ V(v�).
From Remark 3 it follows that ∃r ∈ R>0 such that



636 I. Selek and E. Ikonen

Fig. 2. Example on the left: the difference of two compact sets that do not share a common boundary. The resulting set is non-simply
connected. Example on the right: the difference of two compact sets of sets that share a common boundary. In this particular
case, the resulted set is simply connected but non-convex. In case the set includes its limit points, the boundary is highlighted
by a continuous line; otherwise, the dashed line is used to mark the boundary. The interiors are colored in both cases.

D(x�, r) � V(v�) and, consequently, D(x�, r) � X̄i

since V(v�) ⊆ X̄i. On the contrary, �r ∈ R>0

such that D(x�, r) � X̄i since x� ∈ B(X̄i).
Consequently, min

{
V (x) | x ∈ B(X̄i)

}
= max

{
v ∈

R | V(v) ⊆ X̄i

}
and since inf

{
V (x) | x ∈ X \ X̄i

}
=

min
{
V (x) | x ∈ B(X̄i) ∪ X \ X̄i

}
the proof is

completed. �

The reformulation of the optimization problem
enables the execution of the optimization over a simply
connected set. Thus it provides some benefits from the
perspective of practical implementation. On the other
hand, in practice, the maximization problem might still
involve substantial challenges.

5. Example system

For the sake of clarity, here, a simple first-order
discrete-time integrator is considered as an example. The

Fig. 3. “Box” constraint (feasible set M) of system (27).

dynamics of the system are described by

xk+1 = xk + uk, (27a)

subject to the following constraints:

‖xk‖2 ≤ Kū, (27b)

‖uk‖2 ≤ ū, (27c)

xk, uk ∈ R, (27d)

where ū ∈ R>0 andK ≥ 3, K ∈ N. System (27b) defines
a “box” on R

2 which is depicted in Fig. 3.
The generalized energy of the system is defined

by the quadratic expression V (x) = x2 and the initial
condition x0 is parameterized by a positive constant δ ∈
[0, ū] such that x0(δ) = (K − 1)ū+ δ.

To obtain the barriers which bound the fastest
admissible decay of the generalized energy of the outlined
system, first the i-step null-controllable sets must be
characterized. Using the definition determined by (10)
in this simple case, these can be derived analytically
resulting in the following expression:

X̄i = {x ∈ R | ‖x‖2 ≤ iū} , ∀i ∈ N0:K . (28)

Figure 4 depicts the arrangement of the i-step
null-controllable sets (bottom) and the generalized energy
(top) of the system over the feasible region of the state
space.

To highlight the arrangement (pyramid shape) of
the null-controllable sets, these are drawn underneath
the state space as i grows. Consequently, the i-th null
controllable set on the state space is obtained by applying
orthogonal projection onto the axis parameterized by
the variable x. By applying projection, the boundaries
of the null-controllable sets (i.e., x = iū) uniformly
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Fig. 4. Energy function (up) and the arrangement of i-step null
controllable sets (down) of the discrete time integrator
(27a). The initial state x0(δ) is highlighted by the cross.

discretize the state space over the feasible region with a
discretization increment of ū.

Using this, (18) and (19) can be evaluated on the
generated grid resulting in

V i = V i =

{
(iū)2 if 0 < i < K,

0 otherwise,
(29)

∀i ∈ Z, i < K . Here, the equality V i = V i is unique,
which is implied by the unidimensionality of the state
space. From a mathematical perspective, the equality is a
direct consequence of Lemma 3 in one dimension. Given
x0(δ) and applying (20), we get

(K − (k + 2))2ū2 ≤ V (xk+1)

≤ (K − (k + 1))2ū2
(30)

for all k ∈ N. The obtained result is easy to verify since
given xk the largest possible step towards the origin is ū.
For example, consider a minimum-time feedback law of
the form

uk =

⎧
⎪⎨

⎪⎩

−xk if xk ∈ X̄1,

−|xk|
xk

ū otherwise.
(31)

which enforces the maximum step towards the origin at
each time instant. Applying the outlined feedback law to
(27a) with initial condition x0(δ), the state at time instant

k ∈ N is determined by the following equality:

xk =

{
0 if xk−1 ∈ X̄1,

(K − 1)ū+ δ − kū otherwise.
(32)

Putting these together, we get

lim
δ→0

V (xk+1)− V K−(k+2) = 0, ∀k ∈ N, (33)

lim
δ→ū

V (xk+1)− V K−(k+1) = 0, ∀k ∈ N.

Using Fig. 4, the obtained result can be easily
verified. Starting from the initial state (denoted by the
cross) (31), always applies the maximum possible step
towards the origin. Thus, the energy of the system at
any time instant gets infinitely close to the lower barrier
as parameter δ approaches zero. Since the feedback law
considered in the example is minimum time, the upper
barrier is valid as well and approached as parameter δ
tends to ū.

To have a clear view on the validity of the upper
barrier, consider the subset F̂(x0) of F(x0) including
only one feedback law

uk =

⎧
⎪⎨

⎪⎩

−xk if xk ∈ X̄1,

− 1

P
|xk|
xk

ū otherwise,
(34)

where P ∈ N, P > 2 is a large positive integer. Similarly
to (31), the outlined law forms a stable system with (27a)
and reduces the generalized energy to zero. The decay
rate, however, is much slower than it was inthe first case
due to the step scaling parameter P . For simplicity,
assume that δ = ū, which implies that x0 = Kū.
Applying (34) to (27a), the state at time instant k ∈ N

is determined by the following equality:

xk =

{
0 if xk−1 ∈ X̄1,

Kū− k
P ū otherwise.

(35)

Using this, it is easy to verify that

V K−(k+1) < V (xk+1) (36)

for P ≥ 2. As outlined in the previous section, here, the
upper barrier is invalid (i.e., it does not bound the fastest
admissible decay of generalized energy from above) since
F̂(x0) does not include a minimum-time feedback law.
Consequently, the conservativeness of the lower barrier
becomes prominent as P → ∞,

lim
P→∞

min
(
V (xk+1)− V K−(k+2)

)

= (K2 − (K − 2)2)ū2

and, similarly,

lim
P→∞

max
(
V (xk+1)− V K−(k+2)

)
= (Kū)2.
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6. Summary and conclusions

This paper addressed the convergence properties of
nonlinear systems under the effect of feedback subject
to state and input constraints. The convergence of
closed-loop systems over a set of feedback laws was
characterized by the decay of the system’s generalized
energy. Without the loss of generality, barriers were
developed which bound the fastest admissible decay of
generalized energy. It was shown that the upper barrier
is valid under the condition that the set of feedback
laws includes minimum-time control policies while the
lower barrier is universal, that is, there is no admissible
feedback law which reduces the system’s energy faster
than the outlined bound. The generality of the results
was achieved by using controllability and reachability sets
which depend (only) on system characteristics (i.e., state
evolution dynamics and constraints).

It must be emphasized that the presented results
are solely theoretical. Their implementation for case
studies might involve substantial challenges. This is
induced by the fact that the required calculations (e.g.,
null-controllable sets, optimization problems) might lead
to computationally intractable problems, depending on the
features (dimensionality, a specific type of nonlinearity,
constraints, etc.) of the underlying problem. On the
other hand, the developed results provide a solid basis for
practical considerations.
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