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Network models aim to explain patterns of empirical relationships based on mechanisms that operate under various prin-
ciples for establishing and removing links. The principle of preferential attachment forms a basis for the well-known
Barabási–Albert model, which describes a stochastic preferential attachment process where newly added nodes tend to
connect to the more highly connected ones. Previous work has shown that a wide class of such models are able to recreate
power law degree distributions. This paper characterizes the cumulative degree distribution of the Barabási–Albert model
as an invariant set and shows that this set is not only a global attractor, but it is also stable in the sense of Lyapunov. Stability
in this context means that, for all initial configurations, the cumulative degree distributions of subsequent networks remain,
for all time, close to the limit distribution. We use the stability properties of the distribution to design a semi-supervised
technique for the problem of anomalous event detection on networks.
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1. Introduction

The problem of detecting anomalous events on networks
is of increasing interest for developing large-scale
applications on distributed platforms. Approaches range
from monitoring changes in network topology to defining
detection signatures (Chandola et al., 2009; Gogoi et al.,
2011; Savage et al., 2014; Ranshous et al., 2015; Yu
et al., 2016) based on spectral (Hirose et al., 2009),
information (Host-Madsen and Zhang, 2018) and distance
measures (Shoubridge et al., 2002; Koutra et al., 2016).
In the work of Koutra et al. (2016), for example,
anomalies are detected based on similarity functions that
capture a measure of affinity between nodes. Despite the
numerous approaches to detect network anomalies, none
of them makes use of a stability analysis of topological
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properties. In general, little attention has been paid to
designing algorithms based on formal criteria derived
from dynamic network models; yet such model-based
approaches enable us to evaluate the performance of
anomalous event detection algorithms under the effects of
topological variations.

A common approach in modeling networks has been
to characterize the evolution of topological properties
as an outcome of stochastic mechanisms (Barabási and
Albert, 1999; Caldarelli et al., 2002; Shao et al., 2006;
Moriano and Finke, 2012; Choromanski et al., 2013).
These mechanisms define how nodes tend to establish
and remove links, giving rise to particular measures or
measure distributions (Bianconi and Barabási, 2001; Chen
and Shi, 2004; Jackson and Rogers, 2007; Tong et al.,
2009). The Barabási–Albert (BA) model uses a linear
preferential attachment mechanism to generate networks
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in which the probability that a node (selected uniformly
at random) has a degree equal to k is proportional to k−3.
That is, for a random variable K that characterizes the
degree of a randomly selected node, the limit distribution
of K satisfies a power law. In particular, P [K = k] ∝
k−3 indicates high heterogeneity in the degree of nodes of
the BA model.

There exist important relationships between the
degree and other centrality measures (Lee, 2006; Valente
et al., 2008; Kudělka et al., 2015). Lee (2006) identifies
a strong correlation between the centralities of degree
and betweenness in empirical networks. Similarly,
Valente et al. (2008) show that the centralities of
degree and eigenvector are strongly correlated. Despite
growing efforts to define such relationships, addressing
the challenge of how to detect anomalous events based
on analytical properties of centrality measures requires
the development of a framework that explains (i) how
centrality measures emerge from particular mechanisms
and (ii) how they evolve under constantly acting
perturbations (e.g., edge perturbations).

Recent efforts have focused on the effect of edge
perturbations in static models. In particular, Segarra
and Ribeiro (2016) evaluate the condition of Lipschitz
continuity for different centrality measures. If a centrality
measure is Lipschitz continuous, then the addition or
removal of an edge results in a bounded variation in that
measure. For betweenness centrality, for example, this
condition is not satisfied, so small perturbations can lead
to unbounded differences in the betweenness measure
of a node. Characterizing how a network responds to
perturbations over time requires a dynamic model which
enables us to benchmark the effects of adding or removing
edges on particular measures and measure distributions.

This paper studies the response of the Lipschitz
continuous measure of degree centrality to edge
perturbations using the notion of stability in the sense
of Lyapunov. A perturbation represents a deviation, but
a plausible outcome, from an invariant measure in the
process of establishing edges; an anomaly indicates an
outcome that cannot be explained by the model. Stability
of the invariant, a set of states representing the probability
distribution function of the degree centrality, implies that
small perturbations from that set must remain small for
all time. The stability analysis enables us to introduce a
new approach to the problem of detecting anomalies on
networks.

The contribution of our work is twofold. First, we
characterize stability properties of the degree distribution
of the BA model. In particular, we show that the invariant
set of the limit behavior of the complementary cumulative
degree distribution is not only a global attractor, but is
also stable in the sense of Lyapunov (i.e., asymptotically
stable). To our knowledge, there are no previous
studies that describe the stability properties of the degree

distribution of the BA model. Second, we apply the
stability results to the problem of identifying the instances
at which network anomalies occur (i.e., outcomes that
cannot be explained by the BA model). An anomaly is
reported whenever the evolution of the average degree of
the network contradicts the properties of the Lyapunov
function (Ruiz and Finke, 2013).

The remainder of this paper is organized as
follows. Section 2 reviews some properties of the degree
distribution of the BA model which are needed to define
the invariant set. Section 3 presents the stability result.
Section 4 introduces three types of anomalous events,
each representing different types of anomalies. It also
defines conditions under which each type of event is
detected. Section 5 presents simulation results that
illustrate the evolution of the network and the performance
of the detection algorithm, and compares the performance
of the proposed algorithm with the approach of Koutra
et al. (2016). Finally, Section 6 draws some conclusions
and future research directions.

2. Barabási–Albert model

At time t, consider an undirected network Gt = (Vt, Et)
with a set of nodes Vt and a set of edges Et. Let K
denote a random variable that characterizes the degree of
a randomly selected node. Moreover, p(k) = P [K = k]
denotes the probability that K equals k. In some cases,
we characterize the probability that K is less than k,
which is denoted by F (k) = P [K < k] =

∑
x<k p(x).

The complementary cumulative distribution is denoted by
F̄ (k) = P [K ≥ k] = 1 − F (k). Let pt(k) specify the
probability p(k) at time t (similarly, Ft(k) = P [Kt <
k] and F̄t(k) = P [Kt ≥ k] refer to the cumulative
distributions at a particular time t). Finally, let k(u)
denote the degree of a node u, d0 =

∑
u∈V0

k(u) the total
degree of the initial network G0, and nt = |Vt| the number
of nodes in Gt. Note that nt = n0 + t.

Starting from a simple network G0 (i.e., without
parallel edges or self-loops), the evolution of Gt follows
two mechanisms (Barabási and Albert, 1999):

M1 Growth: A new node with m undirected edges is
added to the set of nodes.

M2 Attachment: The new node chooses m different
nodes, connecting to a node with degree k in Vt−1

with probability

π(k) =
k

∑
u∈Vt−1

k(u)
. (1)

Equation (1) is known as linear preferential
attachment. Note that the attachment mechanism depends
only on the degree of a node (new nodes tend to connect
to the more highly connected ones). Because the initial
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network is a simple one, the resulting network is also
simple.

To ensure a well-defined formation process, consider
the following assumption:

A1 The degree of any node u of the initial network G0
satisfies m ≤ k(u) ≤ d0/m.

Assumption A1 imposes bounds on the degree of the
nodes of the initial network. In particular, k(u) ≥ m
implies that n0 ≥ m, and k(u) ≤ d0/m that mk(u) ≤
d0 + 2tm for all t ≥ 0 and any node u ∈ Vt.

Note that Gt has total degree
∑

u∈Vt

k(u) = d0 + 2tm. (2)

The second term on the right-hand side of (2) corresponds
to the contribution by new nodes, which adds m edges
every time. Using (2), the expected degree of a node,
selected uniformly at random at time t, is characterized
as

E[Kt] =
d0 + 2tm

nt
,

and, as time approaches infinity,

lim
t→∞E[Kt] = 2m. (3)

Note that E[Kt] is strictly increasing if d0 < 2mn0,
strictly decreasing if d0 > 2mn0, and remains constant
if d0 = 2mn0.

Next, just like Dorogovtsev et al. (2000) or Barabási
and Pósfai (2016), we present expressions for the expected
number of nodes in the network with degree k ≥ m.
These expressions capture how mechanisms M1 and M2
affect nodes with degree k and k − 1 (either a new node
increases the degree of a node with degree k or a new
node increases the degree of a node with degree k − 1).
According to (1) and (2), the probability that at time t a
new node connects to a node with degree k is

mπ(k) =
mk

d0 + 2(t− 1)m
. (4)

Based on Assumption A1, note that mπ(k) ≤ 1.
Now, the expected number of nodes with degree k to
which a new node establishes an edge at time t is given
by mπ(k)nt−1pt−1(k) . Using (4), we have

mπ(k)nt−1pt−1(k) =
mknt−1pt−1(k)

d0 + 2(t− 1)m
.

Thus the expected number of nodes with degree k > m at
time t equals

ntpt(k) = nt−1pt−1(k)− mknt−1pt−1(k)

d0 + 2(t− 1)m

+
m(k − 1)nt−1pt−1(k − 1)

d0 + 2(t− 1)m
. (5)

The first term on the right-hand side of (5) corresponds to
the expected number of nodes with degree k at time t− 1.
The second and third terms correspond to the expected
numbers of nodes with degree k and k − 1 to which the
new node connects.

Since there are no nodes with a degree less than m
(i.e., pt(k) = 0 for all 0 < k < m and t ≥ 0), the
expected number of nodes with degree k = m at time t
equals

ntpt(m) = nt−1pt−1(m)− m2nt−1pt−1(m)

d0 + 2(t− 1)m
+ 1. (6)

The first term on the right-hand side of (6) represents the
expected number of nodes with degree m at time t − 1.
The second term corresponds to the expected number of
nodes with degree m that connect at time t with the new
node. Finally, the third term captures the effect of the node
joining the network with degree m.

Using (5) and (6), the following theorem guarantees
the convergence of pt = (pt(m), pt(m + 1), . . .) as t
approaches infinity.

Theorem 1. As t→∞, the limit of pt exists.

Proof. Proceeding by induction over k, we show that the
limit of pt(k) exists for all k ≥ m. Consider the base case
k = m. Using (6), note that

pt(m) =
nt−1

nt

(

1− m2

d0 + 2(t− 1)m

)

pt−1(m) +
1

nt

with initial condition p0(m). By induction, it can be
shown that

pt(m) =
d0 + 2mt

m(m+ 2)nt
+

(
m(m+ 2)n0p0(m)− d0

m(m+ 2)nt

)

×
(
Γ
(

d0

2m

)
Γ
(

d0

2m − m
2 + t

)

Γ
(

d0

2m − m
2

)
Γ
(

d0

2m + t
)

)

, (7)

where Γ(·) represents the gamma function.
Assumption A1 guarantees that pt(m) is well defined.
Applying the squeeze theorem, we know that

lim
t→∞

Γ
(

d0

2m − m
2 + t

)

Γ
(

d0

2m + t
) = 0.

Moreover,

lim
t→∞

1

m(m+ 2)nt
= 0.

Thus, using (7), we get

lim
t→∞ pt(m) =

2

m+ 2
.
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Assume that limt→∞ pt(k) exists for k > m + 1.
Using (5) for k + 1, the expected number of nodes with
degree k + 1 is

ntpt(k + 1) =

(

1− m(k + 1)

d0 + 2(t− 1)m

)

nt−1pt−1(k + 1)

+
mknt−1pt−1(k)

d0 + 2(t− 1)m
. (8)

Let at ∼ bt denote the asymptotic equivalence
between two positive sequences {at} and {bt}, that is,
at ∼ bt if and only if limt→∞ at/bt = 1. Since
pt−1(k) ∼ pt(k), using (8), we have that, for t large
enough,

pt(k + 1) ∼
mk

d0+2(t−1)mnt−1

nt −
(
1− m(k+1)

d0+2(t−1)m

)
nt−1

pt(k). (9)

Moreover, because limt→∞ pt(k) exists and the limit as
t→∞ of the coefficient of pt(k) in (9) equals k/(k + 3),
we get

lim
t→∞ pt(k + 1) =

k

k + 3
lim
t→∞ pt(k).

Therefore, limt→∞ pt(k) exists for all k ≥ m. �

Based on Theorem 1, it is possible to derive a closed
formula for the asymptotic value of the cumulative degree
distribution.

Corollary 1. The asymptotic value of the complementary
cumulative degree distribution equals

F̄∞(k) =
m(m+ 1)

k(k + 1)
.

Proof. Let p∞(k) = limt→∞ pt(k). Using Theorem 1,
we know that

p∞(k) =

⎧
⎪⎪⎨

⎪⎪⎩

k − 1

k + 2
p∞(k − 1) if k > m,

2

m+ 2
if k = m.

For k > m, p∞(k) is defined as a recurrence with initial
condition p∞(m). For k ≥ m, we have

p∞(k) =
2m(m+ 1)

k(k + 1)(k + 2)
. (10)

Note that (10) captures the asymptotic behavior of the
degree distribution of the BA model (Dorogovtsev et al.,
2000). Moreover, as t→∞,

F∞(k) = lim
t→∞P [Kt < k] =

k−1∑

j=m

2m(m+ 1)

j(j + 1)(j + 2)
.

By induction, it can be shown that

k−1∑

j=1

2m(m+ 1)

j(j + 1)(j + 2)
=

m(m+ 1)(k − 1)(k + 2)

2k(k + 1)
,

which implies that, for k ≥ m,

F∞(k) =
m(m+ 1)(k − 1)(k + 2)

2k(k + 1)
− (m− 1)(m+ 2)

2

= 1− m(m+ 1)

k(k + 1)

and

F̄∞(k) = P [K ≥ k]

= 1− F∞(k) =
m(m+ 1)

k(k + 1)
. (11)

�

Equation (11) represents the complementary limit
distribution of the BA model. Next, we show that this
limit distribution is an invariant set, which is not only a
global attractor, but also a stable one. That is, adding
or removing edges to all initial configurations such that
F̄0(k) 	= F̄∞(k) for some k, yields complementary
cumulative degree distributions that remain, for all time,
close to F̄∞.

3. Stability properties of the
Barabási–Albert model

Define the state of the network at time t as an infinite
dimensional vector xt = (xt(1), xt(2), . . .), where
xt(k) = F̄t(k). Let X be the set of states such that the
only sequence that satisfies

∑∞
k=1 x(k) = 2m is the limit

distribution, that is, X is the set
{

x ∈ [0, 1]∞ :
∞∑

k=1

x(k) = 2m⇒ x(k) = F̄∞(k)

}

.

Based on (11), the state xe = (xe(1), xe(2), . . .)
represents the limit distribution F̄∞. Note also that
xe(k) > 0 for all k > 0. Furthermore, since

E[Kt] =

∞∑

k=1

xt(k), (12)

using (3) we know that

lim
t→∞E[Kt] = lim

t→∞

∞∑

k=1

xt(k) =
∞∑

k=1

F̄∞(k) = 2m,

that is,
∞∑

k=1

xe(k) = 2m. (13)
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Now, let

XB =

{

x ∈ X :

∞∑

k=1

x(k) = 2m

}

.

According to Lemma 3.1 of Khalil (2001), it can be
shown that XB is a non-empty invariant set. First, note
that xe ∈ XB . Second, because xt = F̄t and xe ∈ XB , if
xt = X(x0, t) denotes the state reached at time t starting
from x0 ∈ X , then xt → xe as t → ∞. This implies that
XB corresponds to a positive limit set of the BA model.
That is, there exists a sequence {ti} and an initial state
x0 ∈ X such that xe = X(x0, ti), for ti → ∞. We also
know that X(x0, ti + t) = X(X(x0, ti), t) for all t. Thus
we get

lim
ti→∞X(x0, ti + t) = lim

ti→∞X(X(x0, ti), t) = X(xe, t).

Because
lim

ti→∞X(x0, ti + t) = xe,

we have X(xe, t) = xe for all t. That is, XB is invariant.
Next, to prove the stability of XB , we first need to

define a metric between any pair of states in X .

Lemma 1. Consider the function ρ : X × X → R
+
0 ,

ρ(x, y) =

∣
∣
∣
∣
∣

∞∑

k=1

(x(k)− y(k))

∣
∣
∣
∣
∣
,

and define an equivalence relation on X as x being re-
lated to y if ρ(x, y) = 0. Let [x] denote the equivalence
class of x and X ∗ = {[x] : x ∈ X} the set of all equiv-
alence classes. Let ρ∗ : X ∗ × X ∗ → R

+
0 be defined as

ρ∗([x], [y]) = ρ(x, y). Then (ρ∗,X ∗) is a metric space.

Proof. Let w, x, y, z ∈ X . First, we show that ρ is a
pseudometric. In particular, note that ρ(x, y) ≥ 0 and
ρ(x, y) = ρ(y, x). To verify that ρ satisfies the triangle
inequality, note that

ρ(x, y) =

∣
∣
∣
∣
∣

∞∑

k=1

(x(k) − y(k))

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∞∑

k=1

(x(k) − z(k)) +
∞∑

k=1

(z(k)− y(k))

∣
∣
∣
∣
∣

≤ ρ(x, z) + ρ(z, y).

In general, x 	= y does not imply that ρ(x, y) 	= 0
(i.e., ρ is a pseudometric). Second, we show that for the
equivalence relation over X , ρ∗ is well-defined; that is, if
([x], [y]) = ([z], [w]), then ρ∗([x], [y]) = ρ∗([z], [w]). In
particular, if ([x], [y]) = ([z], [w]), then [x] = [z] and
[y] = [w]. Because ρ satisfies the triangle inequality,
note that ρ(x, y) ≤ ρ(z, w) and ρ(z, w) ≤ ρ(x, y), that
is, ρ(x, y) = ρ(z, w), which implies that ρ∗([x], [y]) =

ρ∗([z], [w]). Finally, we verify sufficient conditions for
(ρ∗,X ∗) to be a metric space. Let [x], [y], [z] ∈ X ∗. In
particular, using the fact that ρ is a pseudometric, note that
ρ∗ satisfies the following:

1. For [x] 	= [y], we know that ρ∗([x], [y]) = ρ(x, y) =
|∑∞

k=1(x(k)− y(k))| > 0.

2. For x ∈ [x] and y ∈ [y], note that ρ∗([x], [y]) =
0 if and only if ρ(x, y) = 0; that is, if and only if
|∑∞

k=1(x(k)− y(k))| = 0, which implies that y ∈
[x] and x ∈ [y]. Therefore, ρ∗([x], [y]) = 0 if and
only if [x] = [y].

3. For x, y ∈ X , we know that ρ∗([x], [y]) =
ρ∗([y], [x]) because ρ(x, y) = ρ(y, x).

4. For x, y, z ∈ X ,

ρ∗([x], [y]) = ρ(x, y)

≤ ρ(x, z) + ρ(z, y)

= ρ∗([x], [z]) + ρ∗([z], [y]).

�
We use Lemma 1 to characterize the stability

properties of XB .

Theorem 2. The invariant set XB is globally asymptoti-
cally stable.

Proof. Note that XB = {xe}. Let

V(x) = ρ(x, xe) (14)

be a Lyapunov candidate function. Note that V(xe) = 0.
Moreover, according to the definition of X , we know that
[xe] = xe. Because X ∗ forms a partition of X , if x ∈ X
is such that x 	= xe, then xe /∈ [x]. Thus, for all x 	= xe,

V(x) = ρ(x, xe) = ρ∗([x], [xe]) > 0.

The following four conditions guarantee the
asymptotic stability of xe (Burgess and Passino, 1995).

Existence of a lower bound: For all ε1 > 0, there exists
a δ1 = ε1 > 0 such that for all x ∈ X , if ρ(x, xe) >
ε1, then V(x) > δ1.

Existence of an upper bound: For all ε2 > 0, there
exists a δ2 = ε2 > 0 such that for all x ∈ X , if
ρ(x, xe) < δ2, then V(x) ≤ ε2.

V is nonincreasing along all possible state trajectories:
Note that for all xt ∈ X we have

V(xt) = |E[Kt]− 2m|. (15)

Note also that if x0 /∈ XB , then d0 	= 2mn0 for all
x ∈ X . Consider the following cases based on the
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total degree of the initial network. If d0 < 2mn0,
then E[Kt] is strictly increasing for all t ≥ 0. Using
(12), (13) and (15), we know that

V(xt) = 2m− E[Kt]

and V(xt) − V(xt−1) = E[Kt−1] − E[Kt] < 0.
Similarly, if d0 > 2mn0, then E[Kt] is strictly
decreasing for all t ≥ 0 and

V(xt) = E[Kt]− 2m,

which implies that V(xt)− V(xt−1) < 0.

Convergence of V: Let x0 ∈ X such that∑∞
k=1 x0(k) 	= 2m (i.e., d0 	= 2mn0). Because

xt(k) = F̄t(k) and xe(k) = F̄∞(k), we have
limt→∞ xt = F̄∞. That is, xt → xe as t → ∞ and
so limt→∞ V(xt) = 0.

Because xt → xe as t → ∞ for all possible state
trajectories, XB = {xe} is globally asymptotically stable.

�

The next section establishes criteria for the detection
of events representing unexpected edges that cannot be
explained by the model. These criteria are derived based
on the properties of the Lyapunov function.

4. Effects of anomalous events on the
stability properties

We want to identify the instances at which anomalous
events take place. Let mi > 0 for i = 1, 2, 3, and consider
the following types of events:

T1 The new node connects to m1 	= m nodes based on
the M2 mechanism.

T2 Existing nodes create m2 additional edges.

T3 Existing nodes remove m3 edges.

The detection of anomalous events is based on two
criteria:

C1 V(xt)− V(xt−1) > 0,

C2 ntnt−1(V(xt−1)− V(xt)) > |d0 − 2mn0|.
C1 and C2 capture an evolution of the state xt which

contradicts the properties of the Lyapunov function V .
In particular, Criterion C1 implies a contradiction in the
stability properties. Criterion C2 reflects a decrease in V
by an amount larger than allowed. Note that it must be the
case that

V(xt−1)− V(xt) ≤ ρ(xt−1, xt) =
|d0 − 2mn0|

ntnt−1
.

Algorithm 1. Detection of anomalies in the BA model.

Input: A sequence of networks G = {G0,G1, . . . ,Gt}
and the Lyapunov function V given in (14).

Output: A Boolean array A
1: n0 ← |V0| and d0 ←

∑
u∈V0

k(u)
2: Calculate V(x0)
3: for j from 1 to t do
4: nj ← nj−1 + 1
5: Calculate V(xj)
6: Vj ← V(xj)− V(xj−1)
7: if Vj > 0 or −njnj−1Vj > |d0 − 2mn0| then
8: A[j]← true
9: n0 ← nj and d0 ←

∑
u∈Vj

k(u)
10: else
11: A[j]← false
12: end if
13: end for
14: return A

Algorithm 1 describes the steps to identify the
instances at which anomalous events take place in a
sequence of undirected networks G = {G0,G1, . . . ,Gt}.
Recall that Gj = (Vj , Ej), for all j ≥ 0. Line 1
counts the total number of nodes and sums the degrees
of all nodes in G0. Computing these values requires
a complexity O(|V0|) and O(|E0|). Line 2 calculates
V(x0), which, based on (15), runs in O(|E0|). These
instructions are evaluated in a single instance. Next, note
that instructions in lines 4, 6, and 7 are basic operations
that run in O(1). These instructions are evaluated t
times. Based on (15), for each j from 1 to t, line 5
runs in O(|Ej |). The instructions in lines 8, 9, and 11
are evaluated a finite number of times bounded by t. In
particular, the instructions in lines 8, 11, and the first
condition in line 9 run in O(1). The second instruction
in line 9 runs in O(|Ej |). For j ≥ 0, we can suppose
that |Ej | ≈ |E0| +mj, so in the worst scenario the time
required for Algorithm 1 is given by

c

t∑

j=1

|Ej | = c

t∑

j=1

(|E0|+mj)

= c

(

t|E0|+m
t(t+ 1)

2

)

∈ O(t|E0|+ t2),

for some constant c > 0.
Next, the following theorem presents conditions on

mi which guarantee that Algorithm 1 detects anomalous
events of each type.

Theorem 3. Let

f1(t) =
2nt(2mn0 − d0) + d0 − 2mn0

2nt−1
,

f2(t) =
d0 − 2mn0

2nt−1
.



Lyapunov-based anomaly detection in preferential attachment networks 369

An anomaly of type T1 is detected by C1 for

1. d0 < 2mn0 if m1 > f1(t) +m or m1 < f2(t) +m,

2. d0 > 2mn0 if m1 > f2(t) +m or m1 < f1(t) +m;

by C2 for

1. d0 < 2mn0 if m < m1 < 2mn0 − d0 +m,

2. d0 > 2mn0 if 2mn0 − d0 +m < m1 < m.

An anomaly of type T2 is detected by C1 for

1. d0 < 2mn0 if m2 > f1(t),

2. d0 > 2mn0 if m2 > f2(t);

and by C2 for d0 < 2mn0 if m2 < 2mn0 − d0.

Finally, an anomaly of type T3 is detected by C1 for

1. d0 < 2mn0 if m3 > −f2(t),
2. d0 > 2mn0 if m3 > −f1(t);

and by C2 for d0 > 2mn0 if m3 < d0 − 2mn0.

Proof. See Appendix. �

The next section presents simulations of the model
and the performance of the proposed detection algorithm.

5. Simulations

First, we show the asymptotic behavior of the degree
distribution and the Lyapunov function over time.
Figure 1 illustrates the evolution of xt(k) for k ∈
{m, . . . , 7} using an initial network G0 with m = 2,
n0 = 4, d0 = 8. Note that the asymptotic values are
derived using (11). Simulations correspond to an average
of 100 runs of the model. Figure 2 depicts the evolution of
the Lyapunov function V for m = 2, 3, 4. Note that V is
a decreasing function and approaches to 0 for large values
of t.

Second, we illustrate the regions of anomaly
detection for the initial network G0. According to
Theorem 3, Fig. 3 shows the regions in which anomalies
of type T1, T2, and T3 can be detected. A labeled region
represents the criterion that detects an anomaly of size m1,
m2, or m3; regions without a label indicate the sizes of
anomalies which cannot be detected by Algorithm 1. Note
that the algorithm detects anomalies of almost any size.

Third, we evaluate the performance of Algorithm 1
for a sequence of 200 networks considering the
occurrence of 15 anomalies; five of them being anomalies
of type T1 which occur at {50, 80, 110, 140, 170}, five of
type T2 (at {60, 90, 120, 150, 180}), and five of type T3
(at {70, 100, 130, 160, 190}). The size of an anomaly is a
randomly selected number between 3 and 6. Based on the
evolution of the model, Algorithm 1 reports all anomalies
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Fig. 1. Evolution of the complementary cumulative density
function of the degree of nodes for k ∈ {m, . . . , 7} and
G0 with n0 = 4, d0 = 8 and m = 2. The marks repre-
sent the asymptotic values for the distributions obtained
from (11).
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Fig. 2. Lyapunov function V for m = 2, 3, 4.

with a true positive rate (TPR) equal to 1 and a false
positive rate (FPR) equal to 0. Figure 4(a) illustrates how
the detection procedure identifies anomalies at various
instances based on the differences ntnt−1(V(xt−1) −
V(xt)). Note that an increase in V represents detection of
anomalies based on C1, and a decrease—detection based
on C2. Note also that, if no anomalies occur, then the
expression ntnt−1(V(xt−1)− V(xt)) remains constant.

Finally, we compare the proposed algorithm with the
approach of Koutra et al. (2016), which uses network
similarity for detecting anomalies. Let Gi = (V,Ei) and
Gi+1 = (V,Ei+1) be two consecutive networks, where
V = Vi ∪ Vi+1. In the work of Koutra et al. (2016), the
following steps determine the similarity value between Gi
and Gi+1:

S1 Affinity score: For � = i, i+ 1, compute the matrix of
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Fig. 3. Regions in which anomalous events of type T1 (a), T2 (b), and T3 (c) can be detected in the BA model with Algorithm 1 using
an initial network G0 with m = 2, n0 = 4 and d0 = 8. Labeled regions represents the criterion than can be applied to detect
an anomaly of size m1, m2, or m3. Closed no-labeled regions illustrate the sizes of anomalies which cannot be detected.

node affinity

S� = (I� + ε2�D� − ε�A�)
−1,

where I� is the identity matrix, A� the adjacency
matrix of G�, ε� = (1 +maxu∈G�

k(u))
−1, and

D� the diagonal matrix in which the main diagonal
coincides with the vector of node degrees of G�.

S2 Distance: The distance d(Gi,Gi+1) between Gi and
Gi+1 is given by the sum of all elements of the matrix
(√

Si −
√
Si+1

)2
.

S3 Similarity: The similarity si between Gi and Gi+1 is

si =
1

1 + d(Gi,Gi+1)
.

Now, we evaluate the performance of anomaly
detection using similarity values in the sequence G. Let
Mi denote the median of the sample s1, . . . , si and σi

its standard deviation. Furthermore, let ζji = Mi + jσi

represent a threshold around the median Mi, for j =
±1, 2, 3. Figure 4(b) depicts the similarity values between
consecutive networks, including the thresholds ζji for each
i = 1, . . . , 200 and j = ±1, 2, 3. Table 1 shows
true and false positives rates, which illustrates that, as
the thresholds increase, the true and false positives rates
decrease.

Table 1. Rate of true and false positives using similarity be-
tween consecutive networks.

ζ±1 ζ±2 ζ±3

TPR 1 0.83 0.58
FPR 0.24 0.04 0.004

6. Conclusions

Our work characterizes the stability properties of
networks generated by the Barabási–Albert model. In
particular, at time t, we define the state of the system as
an infinite dimensional vector xt = (xt(1), xt(2), . . .),
where xt(k) represents the probability of a randomly
selected node having a degree greater than or equal to k.
We show that the sum of all possible state component is
always less than the average degree of the network; that
is, for all t < ∞, we determine that

∑∞
k=1 xt(k) <

2m. Using this relationship, we show that the limit of
the complementary cumulative degree distribution is not
only a global attractor but also a stable invariant (in the
sense of Lyapunov). We then use the Lyapunov function
of the stability analysis to determine the occurrence of
anomalous events across the network. Understanding the
stability properties of other centrality measures, as well
as the effect of variations of preferential attachment rules,
remains a future research direction.
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Appendix

Proof. (Theorem 3) Let

f1(t) =
2nt(2mn0 − d0) + d0 − 2mn0

2nt−1
,

f2(t) =
d0 − 2mn0

2nt−1
.

We show the detection of anomalous events of type T1.
The proof of detection of anomalous events of types T2
and T3 follows a similar argument.

Note that if an anomalous event of type T1 occurs at
time t, then

V(xt)− V(xt−1) =

∣
∣
∣
∣
d0 − 2mn0 + 2(m1 −m)

nt

∣
∣
∣
∣

−
∣
∣
∣
∣
d0 − 2mn0

nt−1

∣
∣
∣
∣ .

Consider the following four cases:

If d0 < 2mn0 and d0 − 2mn0 + 2(m1 −m) ≥ 0, then

V(xt)− V(xt−1) =
2nt(d0 − 2mn0) + 2nt−1(m1 −m)

ntnt−1

− d0 − 2mn0

ntnt−1
. (A1)

If d0 < 2mn0 and d0 − 2mn0 + 2(m1 −m) < 0, then

V(xt)− V(xt−1) =
d0 − 2mn0 − 2nt−1(m1 −m)

ntnt−1
.

(A2)

If d0 > 2mn0 and d0 − 2mn0 + 2(m1 −m) ≥ 0, then

V(xt)− V(xt−1) =
2mn0 − d0 + 2nt−1(m1 −m)

ntnt−1
.

(A3)

If d0 > 2mn0 and d0 − 2mn0 + 2(m1 −m) < 0, then

V(xt)− V(xt−1) =
2nt(2mn0 − d0)− 2nt−1(m1 −m)

ntnt−1

− 2mn0 − d0
ntnt−1

. (A4)

First, consider the detection based on Criterion C1.
Using (A1), we have that V(xt) − V(xt−1) > 0 if and
only if

m1 > f1(t) +m. (A5)

Note that f1(t) +m is a decreasing function and tends to
2mn0 − d0 +m as t tends to infinity, so

f1(t) +m > 2mn0 − d0 +m.

We have

m1 >
2mn0 − d0 + 2m

2

and
m1 > f1(t) +m.

Because

2mn0 − d0 +m >
2mn0 − d0 + 2m

2
,

in this case the solution is given by (A5).
Using (A2), we know that V(xt) − V(xt−1) > 0 if

and only if
m1 < f2(t) +m. (A6)

Note that f2(t) +m is an increasing function and tends to
m as t tends to infinity, so

f2(t) +m < m.

We have

m1 <
2mn0 − d0 + 2m

2

and
m1 < f2(t) +m.

Because

m <
2mn0 − d0 + 2m

2
,
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in this case the solution is given by (A6). Thus, using
(A5) and (A6), an anomaly of type T1 is detected by
Criterion C1 for d0 < 2mn0 if

m1 > f1(t) +m or m1 < f2(t) +m.

Using a similar argument, based on (A3) and (A4) it
can be shown that an anomaly of type T1 is detected by
Criterion C1 for d0 > 2mn0 if

m1 > f2(t) +m or m1 < f1(t) +m.

Second, consider the detection based on
Criterion C2. Using (A1), we have that
ntnt−1(V(xt−1) − V(xt)) > |d0 − 2mn0| if and
only if

m1 < 2mn0 − d0 +m.

Thus, in this case m1 must satisfy

2mn0 − d0 + 2m

2
≤ m1 < 2mn0 − d0 +m. (A7)

Using (A2), we have ntnt−1(V(xt−1) − V(xt)) >
|d0− 2mn0| if and only if m1 < m. In this case m1 must
satisfy

m < m1 <
2mn0 − d0 + 2m

2
. (A8)

Thus, using (A7) and (A8), an anomaly of type T1 is
detected by Criterion C2 for d0 < 2mn0 if

m < m1 < 2mn0 − d0 +m.

Using a similar argument, based on (A3) and (A4), it
can be shown that an anomaly of type T1 is detected by
Criterion C2 for d0 > 2mn0 if

2mn0 − d0 +m < m1 < m.

Now, note that if an anomalous event of type T2
occurs at time t, then

V(xt)− V(xt−1) =

∣
∣
∣
∣
d0 − 2mn0 + 2m2

nt

∣
∣
∣
∣

−
∣
∣
∣
∣
d0 − 2mn0

nt−1

∣
∣
∣
∣ , (A9)

and if an anomalous event of type T3 occurs at time t, then

V(xt)− V(xt−1) =

∣
∣
∣
∣
d0 − 2mn0 − 2m3

nt

∣
∣
∣
∣

−
∣
∣
∣
∣
d0 − 2mn0

nt−1

∣
∣
∣
∣ . (A10)

Following similar arguments as in the proof of
detection of anomalous events of type T1, using (A9) and
(A10) we get the other results. �
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