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A spectral method of the analysis of linear control systems is considered. Within the framework of this approach the
σ-entropy of input signals and the σ-entropy norm of systems are introduced. The invariance of the introduced norm makes
it possible to get invariant results of σ-entropy analysis.
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1. Introduction

The well-known H2 and H∞ theories of designing
optimal controllers minimizing the impact of the external
perturbations on the output of a time invariant linear
system rely on using the H2 and H∞ norms of the
matrix-valued transfer functions of closed-loop systems as
the performance criteria of the transfer functions. The H2

theory assumes that the system input receives a random
signal which is Gaussian white noise. The H∞ theory
assumes that the input perturbation is a quadratically
summable signal.

Despite the successes of the H2 andH∞ theories, the
application to practical problems was limited. On the one
hand, when the input disturbance is strongly correlated
noise, the H2 controller is unable to satisfy the desired
performance. On the other hand, if the input disturbance is
slightly correlated or Gaussian white noise, a robust H∞
controller leads to unnecessary energy losses. This leads
to a new problem: minimize the H2 norm under an H∞
norm bound. It is hoped that the H∞ norm bound yields
the desired level of robustness while the performance is
optimized simultaneously via the minimization of the H2

norm. To overcome drawbacks of the H2 and H∞ control
theories, the entropy functional was established (Mustafa
and Glover, 1990). Similar results for discrete-time
systems were obtained by Iglesias et al. (1990) as well
as Iglesias and Mustafa (1993).

Another approach to overcome drawbacks of H2 and
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H∞ control theories is to use an additional performance
index that describes a set of input disturbances with
bounded spectral density. This approach was first
introduced by Semyonov et al. (1994). The basic
concepts of the anisotropy-based control theory are the
anisotropy of the random vector, the mean anisotropy
of the random sequence, and the anisotropic norm of
the system (Diamond et al., 2001; Vladimirov et al.,
2005). Briefly, the anisotropy of the random vector is
defined as the minimal relative entropy (Kullback–Leibler
information divergence) between the probability density
functions of the random vector and the Gaussian signal
with zero mean and a scalar covariance matrix. Mean
anisotropy is defined as the limit of the ratio of the
anisotropy of the vector composed of n random vectors,
to the number n, as n tends to infinity. Mean anisotropy
characterizes “spectral color” of the input sequence, or its
difference from the Gaussian white noise that has zero
“spectral color.” The induced H2 norm of the system
with random input signals with limited mean anisotropy is
called the anisotropic norm of the time invariant system.

Within the framework of the anisotropy-based
control theory the following common control problems
were solved: optimal and suboptimal anisotropy-based
control with uncertainties (Kurdyukov and Maximov,
2005; Kurdyukov et al., 2006), the generalization of
the anisotropy-based control theory to descriptor systems
(Belov et al., 2018; Belov and Andrianova, 2016), the
anisotropy-based control theory in the case of a nonzero
mathematical expectation of the input signal (Kurdyukov
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et al., 2013; Kustov, 2014), the anisotropy-based theory
of filtering and control for time variance control systems
(Timin and Kurdyukov, 2015; 2016; Tchaikovsky and
Timin, 2017), anisotropy-based analysis in the case
of multiplicative disturbances (Kustov et al., 2016;
Yurchenkov et al., 2016).

Unfortunately, anisotropy-based control theory
found its application only for discrete-time linear
systems with stationary stochastic input signals. The
main purpose of this paper is to suggest a control
theory of continuous-time systems with norm-bounded
deterministic or stochastic perturbations on the analogy
of anisotropic control theory.

2. Basic concepts of anisotropic analysis

Let Lm
2 denote the set of square integrable R

m-valued
random vectors distributed absolutely continuously with
respect to the m-dimensional Lebesgue measure mesm.
For any w ∈ Lm

2 with the probability density function
f : Rm → R+, the anisotropy A(w) is defined by
Vladimirov et al. (2005) as the minimal informational
Kullback-Leibler divergence D(f‖pm,λ) with respect to
the Gaussian distributions pm,λ in R

m with zero mean and
scalar covariance matrices λIm:

A(w) = min
λ>0

D(f‖pm,λ)

=
m

2
ln

(
2πe

m
E[|w|2]

)
− h(w),

where E[·] is expectation and h(w) denotes the
differential entropy of w with respect to mesm (Cover and
Tomas, 1991).

Let Gm(Σ) denote the class of Rm-valued Gaussian
random vectors with zero mean (E[w] = 0) and a
nonsingular covariance matrix cov(w) = E[wwT] = Σ.

Lemma 1. (Vladimirov et al., 2005)

(a) The anisotropy A(w) is invariant with respect to
rotations and homotheties, i.e., A(λUw) = A(w)
for any λ ∈ R \ {0} and any orthogonal matrix
U ∈ R

m×m.

(b) For any positive definite matrix Σ ∈ R
m×m

min
{
A(w) : w ∈ Lm

2 , E[wwT] = Σ
}

= −1

2
ln det

mΣ

trΣ
;

furthermore, the minimum is attained only at w ∈
Gm(Σ).

(c) A(w) ≥ 0 is satisfied for any w ∈ Lm
2 and A(w) =

0 if and only if w ∈ Gm(λIm) for some λ > 0.

Let W = {wk}−∞<k<+∞ be a stationary sequence
of vectors wk ∈ Lm

2 interpreted as a discrete-time random

signal. Assemble the elements of W associated with a
time interval [s, t] into a random vector:

Ws:t =

⎡
⎢⎣

ws

...
wt

⎤
⎥⎦ .

The mean anisotropy of the sequence W is defined
as the anisotropy production rate per time step:

A(W ) = lim
N→+∞

A(W0:N−1)

N
· (1)

Suppose W = GV is generated from the Gaussian
white noise sequence V by a stable shaping filter with
the transfer function G(z) ∈ Hm×m

2 . Then the spectral
density of W is given by

S(ω) = Ĝ(ω)Ĝ∗(ω), −π ≤ ω < π, (2)

where Ĝ(ω) = limr→1− G(reiω) is the boundary value
of the transfer function G(z). As shown by Vladimirov
et al. (2005), the mean anisotropy (1) can be calculated
in terms of spectral density (2) and the H2-norm of the
shaping filter G:

A(W ) = − 1

4π

π∫
−π

ln det
mS(ω)

‖G‖22
dω. (3)

The mean anisotropy functional (3) is always
nonnegative. It takes a finite value if the shaping filter
G has full rank, otherwise A(G) = +∞. The equality
A(G) = 0 holds true if and only if G is an all-pass system
up to a nonzero constant factor. In this case, the spectral
density (2) is equal to S(ω) = λIm for some λ > 0, so
that W is a Gaussian white noise sequence with zero mean
and a scalar covariance matrix.

Let F ∈Hp×m∞ be a linear discrete time invariant
system with an m-dimensional input W and a
p-dimensional output Z = FW . Consider the random
input sequence W = GV where V is the m-dimensional
Gaussian white noise sequence. Define

Ga =
{
G ∈ Hm×m

2 : A(G) ≤ a
}

as the set of shaping filters G that produce Gaussian
random sequences W with mean anisotropy (3) bounded
by a given parameter a ≥ 0.

The anisotropic norm of the system F is defined
(Vladimirov et al., 2005) as

∣∣∣∣∣∣F ∣∣∣∣∣∣
a
= sup

G∈Ga

‖FG‖2
‖G‖2 . (4)

The anisotropic norm of a given system F ∈ Hp×m∞
is a nondecreasing continuous function of the mean
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anisotropy level a, which satisfies (Vladimirov et al.,
2005):

1√
m
‖F‖2 =

∣∣∣∣∣∣F ∣∣∣∣∣∣
0
≤ ∣∣∣∣∣∣F ∣∣∣∣∣∣

a
≤ lim

a→+∞
∣∣∣∣∣∣F ∣∣∣∣∣∣

a
= ‖F‖∞.

Therefore, the H2 and H∞ norms are the limiting
cases of the anisotropic norm as a → 0 and a → +∞,
respectively.

3. Discrete systems with uncorrelated input

3.1. Stochastic input with bounded l2 norm.
Consider a linear discrete time invariant system:{

xk+1 = Axk +Bwk, x0 = 0,

zk = Cxk +Dwk, k = 0, 1, 2, . . . ,
(5)

where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, D ∈ R

p×m,
A is a stable matrix, xk ∈ R

n is the state, zk ∈ R
p is the

output vector, wk ∈ R
m is the input stochastic vector. Let

the sequence W = {wk}0�k<+∞ satisfy the conditions

E [wk] = 0, (6)

+∞∑
k=0

E
[|wk|2

]
< ∞, (7)

E
[
wT

j wi

]
= trE

[
wiw

T
j

]

= trSij =

{
trSi for i = j,
0 for i 	= j.

(8)

For the system (5) with the input sequence W that
satisfies (7), define the root mean square (RMS) gain Θ:

Θ =

∥∥zk∥∥2∥∥wk

∥∥
2

=

√√√√+∞∑
k=0

E
[|zk|2]

√√√√+∞∑
k=0

E
[|wk|2

]
, (9)

where ‖ · ‖2 is the l2 norm of a sequence and | · | is the
Euclidean norm of a vector.

Lemma 2. The gain Θ of the system (5) with the input
sequence W that satisfies (6)–(8) is given by

Θ2 =
tr
[(
BTΓB +DTD

)
S
]

trS
,

whereΓ is the observability Gramian, which is the solu-
tion of the Lyapunov equation

ATΓA−Γ + CTC = 0, (10)

and

S =

+∞∑
k=0

Sk.

Introduce the property of the input sequence, which
is called the σ-entropy:

S(S) = −1

2
ln det

mS

trS
· (11)

By means of the σ-entropy we define the σ-entropy
gain Θs of the system (5) with the input sequence (6)–(8)
as the maximum of the gain Θ wherein the σ-entropy (11)
of input sequences does not exceed a given value s:

Θ2
s = sup

S(S)≤s

Θ2 = sup
S(S)≤s

tr
[(
BTΓB +DTD

)
S
]

trS
· (12)

Theorem 1. For any s ≥ 0 the σ-entropy gain (12) is

Θ2
s =

m∑
i=1

λi

1− qλi

m∑
i=1

1

1− qλi

,

where λi are eigenvalues of the matrix Λ=BTΓB+DTD,
λmax is the largest eigenvalue of Λ and q ∈ [ 0, λ−1

max

)
is

the unique solution of the equation

−1

2
ln det

m(Im − qΛ)−1

tr[(Im − qΛ)−1]
= s.

The proofs of Lemma 2 and Theorem 1 are given
by Boichenko and Kurdyukov (2016; 2017).

3.2. Stochastic input with bounded power norm.
Consider the system (5) with an input stochastic sequence
W = {wk}0≤k<+∞ which satisfies the conditions

E [wk] = 0, (13)

lim
N→∞

{
1

N

N−1∑
k=0

E
[|wk|2

]}
< ∞, (14)

E
[
wT

j wi

]
= trSij =

{
trSi for i = j,
0 for i 	= j.

(15)

For the system (5) and the input sequence with the
power norm

∥∥w∥∥P define the RMS gain

Θ =

∥∥z∥∥P∥∥w∥∥P =

√√√√ lim
N→∞

{
1

N

N−1∑
k=0

E
[|zk|2]

}

√√√√ lim
N→∞

{
1

N

N−1∑
k=0

E
[|wk|2

]}
· (16)

Lemma 3. The gain Θ of the system (5) with the input
sequence (13)–(15) is given by

Θ2 =
tr
[(
BTΓB +DTD

)
S
]

trS
,
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whereΓ signifies the observability Gramian (10) and

S = lim
N→∞

{
1

N

N−1∑
k=0

Sk

}
. (17)

Note that the limit in (17) exists as a consequence of the
definitions (14) and (15).

Define the σ-entropy of the sequence (13)–(15) as

S(S) = −1

2
ln det

mS

trS
· (18)

Similar to (12), the σ-entropy gain Θs of the
system (5) with the input sequence (13)–(15) is equal to

Θ2
s = sup

S(S)≤s

Θ2 = sup
S(S)≤s

tr
[(
BTΓB +DTD

)
S
]

trS
· (19)

Theorem 2. For any s ≥ 0 the σ-entropy gain (19) is

Θ2
s =

m∑
i=1

λi

1− qλi

m∑
i=1

1

1− qλi

,

where λi are eigenvalues of the matrixΛ = BTΓB+DTD
and q ∈ [ 0, λ−1

max

)
is the unique solution of the equation

−1

2
ln det

m(Im − qΛ)−1

tr[(Im − qΛ)−1]
= s.

The proofs of Lemma 3 and Theorem 2 are similar
the proofs of Lemma 2 and Theorem 1.

3.3. Stochastic system with a nonzero initial condi-
tion. Consider a linear discrete time invariant system
with a nonzero initial condition:{

xk+1 = Axk +Bwk, x0 	= 0,

zk = C xk +Dwk, k = 0, 1, 2 . . . ,
(20)

where A ∈ R
n×n, B ∈ R

n×l, C ∈ R
p×n, D ∈ R

p×l,
xk ∈ R

n is the state and x0 ∈Ln
2 is a stochastic vector

of the nonzero initial condition, zk ∈R
p is the output

vector, wk ∈ R
l is an input stochastic vector. Let the

vector x0 and the sequence W = {wk}0≤k<+∞ satisfy
the conditions

E [wk] = 0, (21)

E
[
x0w

T
k

]
= 0, (22)

+∞∑
k=0

E
[|wk|2

]
< ∞, (23)

E
[
wT

j wi

]
= trSij =

{
trSi for i = j,
0 for i 	= j.

(24)

For the system (20) with the nonzero initial condition
x0 define the generalized RMS gain

Θ =

√√√√+∞∑
k=0

E
[|zk|2]

√√√√+∞∑
k=0

E
[|wk|2

]
+E
[|x0|2

]
· (25)

Lemma 4. The generalized gain Θ of the system (20)
with the nonzero initial condition x0 and the input se-
quence (21)–(24) is given by

Θ 2 =
tr
(
ΛS
)

trS
,

where Λ and S are the following square block-diagonal
matrices of order m = n+ l:

Λ =

[
Γ 0
0 BTΓB +DTD

]
,

S =

⎡
⎣ E [x0x0

T] 0

0
+∞∑
k=0

Sk

⎤
⎦·

Define the σ-entropy of the sequence {wk} and the
nonzero initial condition (21)–(24) as follows:

S(S) = −1

2
ln det

mS

trS
· (26)

Then the generalized σ-entropy gain Θs of the system
(20) with the nonzero initial condition and the input
sequence (21)–(24) may be defined as the supremum over
all the positive definite matrices S subject to the constraint
S(S) ≤ s:

Θ2
s = sup

S(S)≤s

Θ2 = sup
S(S)≤s

tr(ΛS)

trS
· (27)

Theorem 3. For any s ≥ 0 the generalized σ-entropy
gain (27) is equal to

Θ2
s =

m∑
i=1

λi

1− qλi

m∑
i=1

1

1− qλi

,

where λi are the eigenvalues of the matrix Λ and q ∈[
0, λ−1

max

)
is the unique solution of the equation:

−1

2
ln det

m(Im − qΛ)−1

tr[(Im − qΛ)−1]
= s.

The proofs of Lemma 4 and Theorem 3 are given
by Boichenko (2017) as well as Boichenko and Belov
(2017).
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4. Continuous systems

4.1. Stochastic signal with bounded L2 norm.
Consider a linear time invariant system with the zero
initial condition (Kwakernaak and Sivan, 1972; Zhou
et al., 1996):{

ẋ(t) = Ax(t) +Bw(t), x(0) = 0,

z(t) = C x(t) +Dw(t),
(28)

where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, D ∈ R

p×m,
A is a stable matrix, x(t) ∈ R

n is a system state, z(t) ∈
R

p is an output signal, w(t) ∈ R
m is an input stochastic

signal. Let w(t) satisfy the condition

∥∥w(t)∥∥2
2
=

+∞∫
−∞

E
[|w(t)|2] dt < ∞, (29)

where ‖ · ‖2 is the L2 norm of a stochastic signal.
For the system (28) with the input signal (29), define

the gainΘ as the ratio of the L2 norm of the system output
z(t) to the L2 norm of the input signal w(t):

Θ =

∥∥z(t)∥∥
2∥∥w(t)∥∥
2

=

√√√√√
+∞∫

−∞
E
[|z(t)|2] dt

√√√√√
+∞∫

−∞
E
[|w(t)|2] dt

· (30)

Given a signal w(t), define its autocorrelation matrix
K(τ) as

K(τ) =

+∞∫
−∞

E
[
w(t+ τ)wT(t)

]
dt.

For the purpose of this paper, we further assume
that the Fourier transform of the signal’s autocorrelation
matrix function exists. This Fourier transform is called
the spectral density of w(t) and is defined as

S(ω) =
1

2π

+∞∫
−∞

K(τ) e−iωτ dτ.

The autocorrelation matrix K(τ) can be obtained
from S(ω) by the inverse Fourier transform,

K(τ) =

+∞∫
−∞

S(ω) eiωτ dω.

Then the L2 norm of a signal can be computed from
its spectral density matrix

∥∥w(t)∥∥2
2
= trK(0) =

+∞∫
−∞

trS(ω) dω.

Similarly, the L2 norm of an output signal z(t) is

∥∥z(t)∥∥2
2
=

+∞∫
−∞

trSz(ω) dω,

where Sz(ω) is the spectral density matrix of z(t) and for
the system (28) with the transfer matrix G(s) = C(sI −
A)−1B + D this spectral density matrix is (Zhou et al.,
1994)

Sz(ω) = G(iω)S(ω)G∗(iω).

Then the gain (30) can be written as

Θ2 =

+∞∫
−∞

tr
[
Λ(ω)S(ω)

]
dω

+∞∫
−∞

trS(ω) dω

, (31)

where Λ(ω) = G∗(iω)G(iω).
Define the σ-entropy of the input signal w(t):

S(S) = −1

2

+∞∫
−∞

ϕ(ω0, ω) ln det
S(ω)

+∞∫
−∞

trS(ω) dω

dω, (32)

where ϕ(ω0, ω) is the function which yields the
convergence of the integral

+∞∫
−∞

ln detS(ω) dω. (33)

For example, it could be

ϕ(ω0, ω) =
ω2
0

ω2
0 + ω2

or in the form of the Fermi–Dirac distribution

ϕ(ω0, ω) =
1

exp
ω2 − ω2

0

(�ω)2
+ 1

·

As a matter of fact, the condition

+∞∫
−∞

trS(ω) dω < ∞ (34)

prevents the convergence of the integral (33). Indeed,
suppose that S(ω) is a rational function. Then, in
accordance with (34), the asymptotics of S(ω) is equal
to

S(ω) ∼ 1

ωn
S∞, ω → ∞,



672 A.P. Kurdyukov and V.A. Boichenko

where S∞ is a positive definite matrix and n ≥ 2.
Consequently, the integral (33) diverges asymptotically.

For the system (28), define the σ-entropy norm∣∣∣∣∣∣F ∣∣∣∣∣∣
s

as the maximum of the gain (31) wherein the
σ-entropy (32) of input signals does not exceed a given
value s:

∣∣∣∣∣∣F ∣∣∣∣∣∣2
s
= sup
S(S)≤s

Θ2 = sup
S(S)≤s

+∞∫
−∞

tr
[
Λ(ω)S(ω)

]
dω

+∞∫
−∞

trS(ω) dω

· (35)

Theorem 4. For any s ≥ 0 the σ-entropy norm
∣∣∣∣∣∣F ∣∣∣∣∣∣

s
of the system (28) with the input signal (29) is

∣∣∣∣∣∣F ∣∣∣∣∣∣2
s
=

+∞∫
−∞

tr
ϕ(ω0, ω) Λ(ω)

[
I − qΛ(ω)

]−1

+∞∫
−∞

ϕ(ω0, ω) tr
[
I − qΛ(ω)

]−1
dω

dω,

where q ∈ [0,maxω λ−1
max(ω)

)
is the unique solution of

the equation

−1

2

+∞∫
−∞

ϕ(ω0, ω) ln det
ϕ(ω0, ω)

[
I−qΛ(ω)

]−1

+∞∫
−∞

ϕ(ω0, ω)tr
[
I−qΛ(ω)

]−1
dω

dω

= s. (36)

Proof. Equation (35) may be rewritten in the equivalent
form

∣∣∣∣∣∣F ∣∣∣∣∣∣2
s
= sup

S(ω)

⎧⎨
⎩

+∞∫
−∞

tr[Λ(ω)S(ω)] dω :

−1

2

+∞∫
−∞

ϕ(ω0, ω) ln detS(ω) dω ≤ s, (37)

+∞∫
−∞

trS(ω) dω = 1

⎫⎬
⎭ .

The solution of the constrained optimization
problem (37) will be obtained by using the method of
Lagrange multipliers. The Lagrange function in this case

is equal to

L[S] =

+∞∫
−∞

tr[Λ(ω)S(ω)] dω

+ λ1

⎧⎨
⎩s+

1

2

+∞∫
−∞

ϕ(ω0, ω) ln detS(ω) dω

⎫⎬
⎭

+ λ2

⎧⎨
⎩1−

+∞∫
−∞

trS(ω) dω

⎫⎬
⎭ ,

where λ1, λ2 are the Lagrange multipliers. The necessary
optimality condition (Poznyak, 2008; Rockafellar, 1970;
Bertsekas, 2003; Boyd and Vandenberghe, 2004) requires
that the variation δL[S] be zero,

δL[S] =

+∞∫
−∞

tr
[
Λ(ω) δS(ω)

]
dω

+
λ1

2

+∞∫
−∞

ϕ(ω0, ω) tr
[
S(ω)

−1
δS(ω)

]
dω

− λ2

+∞∫
−∞

tr
[
δS(ω)

]
dω = 0.

Therefore, the spectral density S(ω) on which the
Lagrangian attains the maximum is

S(ω) = pϕ(ω0, ω)
(
I − qΛ(ω)

)−1
, (38)

where parameters

p =
λ1

2λ2
, q =

1

λ2

are determined from

+∞∫
−∞

trS(ω) dω = 1, (39)

− 1

2

+∞∫
−∞

ϕ(ω0, ω) ln detS(ω) dω = s. (40)

From (38) it follows that the matrices Λ(ω) and S(ω)
commute, i.e.,

Λ(ω)S(ω)− S(ω)Λ(ω) = 0.

In addition, they are Hermitian and positive definite:

Λ∗(ω) = Λ(ω) > 0,

S∗(ω) = S(ω) > 0.



A spectral method of the analysis of linear control systems 673

Therefore, there is a unitary matrix
(
U(ω)

)∗
=(

U(ω)
)−1

that simultaneously transforms these matrices
into diagonal forms (Gantmacher, 2000) and hence the
eigenvalues si(ω) of the matrix S(ω) are equal to

si(ω) = ϕ(ω0, ω)
p

1− qλi(ω)
,

where λi(ω) are positive eigenvalues of the matrix Λ(ω).
In order for the eigenvalues si(ω) to be positive, it is

necessary that the parameter q should be limited:

0 ≤ q < max
ω

λ−1
max(ω),

here λmax(ω) is the largest eigenvalue of Λ(ω).
From (38)–(39) it follows that

p =
1

+∞∫
−∞

ϕ(ω0, ω) tr
[
I − qΛ(ω)

]−1
dω

and hence the spectral density S(q, ω) on which the
gain (37) attains the maximum is equal to

S(q, ω) =
ϕ(ω0, ω)

[
I − qΛ(ω)

]−1

+∞∫
−∞

ϕ(ω0, ω) tr
[
I − qΛ(ω)

]−1
dω

· (41)

Since the spectral density S(q, ω) is proportional to
the resolvent R(μ) = (Λ− μI)−1 of the operator Λ,

S(q, ω) ∼ [Λ(ω)− 1

q
I
]−1

,

S(q, ω) is an analytic function on the half-open interval
q ∈ [ 0,maxω λ−1

max(ω)
)

and the variable q parameterizes
the spectral density set.

From (32) and (41) it follows that the σ-entropyS(q)
of the input signal, at which the gain (37) attains the
maximum, is

S(q) =

− 1

2

+∞∫
−∞

ϕ(ω0, ω) ln det
ϕ(ω0, ω)

[
I − qΛ(ω)

]−1

+∞∫
−∞

ϕ(ω0, ω) tr
[
I − qΛ(ω)

]−1
dω

dω.

Using (41), we define the function

F 2(q) =

+∞∫
−∞

tr
ϕ(ω0, ω) Λ(ω)

[
I − qΛ(ω)

]−1

+∞∫
−∞

ϕ(ω0, ω) tr
[
I − qΛ(ω)

]−1
dω

dω.

The functionsS(q) andF(q) are analytic and strictly
increasing in q. This allows the σ-entropy norm (37) to be
calculated as

∣∣∣∣∣∣F ∣∣∣∣∣∣2s = F 2(S−1(s)), where S−1 is the
functional inverse of S:

∣∣∣∣∣∣F ∣∣∣∣∣∣2
s
=

+∞∫
−∞

tr
ϕ(ω0, ω) Λ(ω)

[
I − qΛ(ω)

]−1

+∞∫
−∞

ϕ(ω0, ω) tr
[
I − qΛ(ω)

]−1
dω

dω

and q ∈ [0,maxω λ−1
max(ω)

)
is the unique solution of the

equation

−1

2

+∞∫
−∞

ϕ(ω0, ω) ln det
ϕ(ω0, ω)

[
I−qΛ(ω)

]−1

+∞∫
−∞

ϕ(ω0, ω)tr
[
I−qΛ(ω)

]−1
dω

dω

= s.

�

4.2. Stochastic signal with bounded power norm.
Consider the system (28) with the input stochastic signal
w(t) which satisfies the condition:

∥∥w(t)∥∥P =

√√√√√ lim
T→∞

1

2T

T∫
−T

E
[∣∣w(t)∣∣2] dt < ∞, (42)

where ‖ · ‖P is the power norm of a stochastic signal.
For the system (28) with the input signal (42), define

the gainΘ as the ratio of the power norm of the system
output z(t) to the power norm of the input signal w(t):

Θ =

∥∥z(t)∥∥P∥∥w(t)∥∥P =

√√√√√ lim
T→∞

1

2T

T∫
−T

E
[∣∣z(t)∣∣2] dt

√√√√√ lim
T→∞

1

2T

T∫
−T

E
[∣∣w(t)∣∣2] dt

·

(43)
Define the autocorrelation matrix

K(τ) = lim
T→∞

1

2T

T∫
−T

E
[
w(t+ τ)wT(t)

]
dt.

Then the spectral density matrix is

S(ω) =
1

2π

+∞∫
−∞

K(τ) e−iωτ dτ,
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and the spectral density matrix of z(t) is (Zhou et al.,
1994)

Sz(ω) = G(iω)S(ω)G∗(iω).

Thus the gain (43) can be written as

Θ2 =

+∞∫
−∞

tr
[
Λ(ω)S(ω)

]
dω

+∞∫
−∞

trS(ω) dω

· (44)

In much the same way as in Section 4.1, define the
σ-entropy of the input signal w(t):

S(S) = −1

2

+∞∫
−∞

ϕ(ω0, ω) ln det
S(ω)

+∞∫
−∞

trS(ω) dω

dω (45)

and the σ-entropy norm
∣∣∣∣∣∣F ∣∣∣∣∣∣

s
of the system (28) as

the maximum of the gain (44) where the σ-entropy (45)
of input signals does not exceed a given value s:

∣∣∣∣∣∣F ∣∣∣∣∣∣2
s
= sup

S(S)≤s

+∞∫
−∞

tr
[
Λ(ω)S(ω)

]
dω

+∞∫
−∞

trS(ω) dω

· (46)

Theorem 5. For any s ≥ 0 the σ-entropy norm
∣∣∣∣∣∣F ∣∣∣∣∣∣

s
of the system (28) with the input signal (42) is

∣∣∣∣∣∣F ∣∣∣∣∣∣2
s
=

+∞∫
−∞

tr
ϕ(ω0, ω) Λ(ω)

[
I − qΛ(ω)

]−1

+∞∫
−∞

ϕ(ω0, ω) tr
[
I − qΛ(ω)

]−1
dω

dω,

where q ∈ [0,maxω λ−1
max(ω)

)
is the unique solution of

the equation

−1

2

+∞∫
−∞

ϕ(ω0, ω) ln det
ϕ(ω0, ω)

[
I−qΛ(ω)

]−1

+∞∫
−∞

ϕ(ω0, ω)tr
[
I−qΛ(ω)

]−1
dω

dω

= s.

The proof of Theorem 5 is similar to that of
Theorem 4.

4.3. Deterministic signal with bounded L2 norm.
Consider the system (28) with a deterministic input signal
w(t) which satisfies the condition

∥∥w(t)∥∥2
2
=

+∞∫
−∞

∣∣w(t)∣∣2 dt < ∞, (47)

where ‖ · ‖2 is the L2 norm of a deterministic signal.
For the system (28) with the input signal (47), define

the gainΘ as the ratio of the L2 norm of the system output
z(t) to the L2 norm of the input signal w(t):

Θ =

∥∥z(t)∥∥
2∥∥w(t)∥∥
2

=

√√√√√
+∞∫

−∞

∣∣z(t)∣∣2 dt
√√√√√

+∞∫
−∞

∣∣w(t)∣∣2 dt
· (48)

Define the autocorrelation matrix

K(τ) =

+∞∫
−∞

w(t+ τ)wT(t) dt.

Then the spectral density matrix is

S(ω) =
1

2π

+∞∫
−∞

K(τ) e−iωτ dτ, (49)

and the spectral density matrix of z(t) (Zhou et al., 1994)
has the form

Sz(ω) = G(iω)S(ω)G∗(iω).

Thereafter the gain (48) can be written as

Θ2 =

+∞∫
−∞

tr
[
Λ(ω)S(ω)

]
dω

+∞∫
−∞

trS(ω) dω

· (50)

It can be shown that the matrix (49) is equal to

S(ω) = 2π w(ω)w∗(ω)

where

w(ω) =
1

2π

+∞∫
−∞

w(t)e−iωt dt.

The rank of matrix S(ω) is equal to 1 and
the definition of the σ-entropy of a deterministic
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signal in the form (32) is incorrect because formally
ln detS(ω)=−∞ for any input signal with m> 1. But
the matrix S(ω) is Hermitian and hence it can be
diagonalized by a unitary matrix U(ω):

U(ω)S(ω)U∗(ω) =
[

s(ω) 0
0 0m−1

]
,

where 0m−1 is the null matrix of size (m−1)×(m−1).
Next add a small value which is proportional to ε(ω) > 0:

ε(ω) I + U(ω)S(ω)U∗(ω)

=

[
ε(ω)+s(ω) 0

0 ε(ω)Im−1

]
.

This matrix is nonsingular and since

ln det[ε(ω) I + S(ω)]

= ln[ε(ω) + s(ω)] + (m− 1) ln ε(ω),

we could define the σ-entropy as

S(S) = −1

2

+∞∫
−∞

ϕ(ω0, ω) ln det
ε(ω)I + S(ω)
+∞∫

−∞
trS(ω) dω

dω,

(51)
where ε(ω) satisfies the condition

+∞∫
−∞

ϕ(ω0, ω)
∣∣ln ε(ω)∣∣dω < ∞. (52)

For the system (28) and the input signal (47),
define the σ-entropy norm

∣∣∣∣∣∣F ∣∣∣∣∣∣
s

as the maximum of
the gain (50) where the σ-entropy (51) does not exceed
a given value s:

∣∣∣∣∣∣F ∣∣∣∣∣∣2
s
= sup

S(S)≤s
ε(ω)→0

+∞∫
−∞

tr
[
Λ(ω)S(ω)

]
dω

+∞∫
−∞

trS(ω) dω

· (53)

Theorem 6. For any s ≥ 0 the σ-entropy norm (53) is

∣∣∣∣∣∣F ∣∣∣∣∣∣2
s
=

+∞∫
−∞

tr
ϕ(ω0, ω) Λ(ω)

[
I − qΛ(ω)

]−1

+∞∫
−∞

ϕ(ω0, ω) tr
[
I − qΛ(ω)

]−1
dω

dω,

where q is the unique solution of the equation

−1

2

+∞∫
−∞

ϕ(ω0, ω) ln det
ϕ(ω0, ω)

[
I−qΛ(ω)

]−1

+∞∫
−∞

ϕ(ω0, ω)tr
[
I−qΛ(ω)

]−1
dω

dω

= s. (54)

Proof. Equation (53) may be rewritten in the form

∣∣∣∣∣∣F ∣∣∣∣∣∣2
s
= sup

S(ω)

⎧⎨
⎩

+∞∫
−∞

tr
[
Λ(ω)S(ω)

]
dω :

−1

2

+∞∫
−∞

ϕ(ω0, ω) ln det
[
ε(ω)I+S(ω)

]
dω≤ s,

+∞∫
−∞

trS(ω) dω = 1

⎫⎬
⎭ .

The Lagrange function in this case is

L[S]=

+∞∫
−∞

tr
[
Λ(ω)S(ω)

]
dω

+λ1

⎧⎨
⎩s+

1

2

+∞∫
−∞

ϕ(ω0, ω) ln det
[
ε(ω)I+S(ω)

]
dω

⎫⎬
⎭

+λ2

⎧⎨
⎩1−

+∞∫
−∞

trS(ω) dω

⎫⎬
⎭ ,

On the analogy of the proof of Theorem 4, the
spectral density S(ω) at which the Lagrangian attains the
maximum is

S(ω) = pϕ(ω0, ω)
(
I − qΛ(ω)

)−1 − ε(ω)I.

Now ε(ω) → 0 and according to the proof of Theorem 4

∣∣∣∣∣∣F ∣∣∣∣∣∣2
s

=

+∞∫
−∞

tr
ϕ(ω0, ω) Λ(ω)

[
I − qΛ(ω)

]−1

+∞∫
−∞

ϕ(ω0, ω) tr
[
I − qΛ(ω)

]−1
dω

dω,

where q is the unique solution of the equation:

−1

2

+∞∫
−∞

ϕ(ω0, ω) ln det
ϕ(ω0, ω)

[
I−qΛ(ω)

]−1

+∞∫
−∞

ϕ(ω0, ω)tr
[
I−qΛ(ω)

]−1
dω

dω

= s.

�

4.4. Deterministic signal with bounded power norm.
Consider the system (28) with the input deterministic
signal w(t) which satisfies the condition:

∥∥w(t)∥∥P =

√√√√√ lim
T→∞

1

2T

T∫
−T

∣∣w(t)∣∣2 dt < ∞. (55)
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where ‖ · ‖P is the power norm of a deterministic signal.
For the system (28) with the input signal(55), define

the gainΘ as the ratio of the power norm of the system
output z(t) to the power norm of the input signal w(t):

Θ =

∥∥z(t)∥∥P∥∥w(t)∥∥P =

√√√√√ lim
T→∞

1

2T

T∫
−T

∣∣z(t)∣∣2 dt
√√√√√ lim

T→∞
1

2T

T∫
−T

∣∣w(t)∣∣2 dt
· (56)

Define the autocorrelation matrix

K(τ) = lim
T→∞

1

2T

T∫
−T

w(t + τ)wT(t) dt.

Then the spectral density matrix is

S(ω) =
1

2π

+∞∫
−∞

K(τ) e−iωτ dτ

and the spectral density matrix of z(t) (Zhou et al., 1994)
is

Sz(ω) = G(iω)S(ω)G∗(iω).

Thus the gain (56) can be written as

Θ2 =

+∞∫
−∞

tr
[
Λ(ω)S(ω)

]
dω

+∞∫
−∞

trS(ω) dω

· (57)

On the analogy of Section 4.3, define the σ-entropy
of the input signal w(t):

S(S) = −1

2

+∞∫
−∞

ϕ(ω0, ω) ln det
ε(ω)I + S(ω)
+∞∫

−∞
trS(ω) dω

dω (58)

and the σ-entropy norm
∣∣∣∣∣∣F ∣∣∣∣∣∣

s
of the system (28) as

the maximum of the gain (57) where the σ-entropy (58)
of input signals does not exceed a given value s:

∣∣∣∣∣∣F ∣∣∣∣∣∣2
s
= sup

S(S)≤s
ε(ω)→0

+∞∫
−∞

tr
[
Λ(ω)S(ω)

]
dω

+∞∫
−∞

trS(ω) dω

· (59)

Theorem 7. For any s ≥ 0 the σ-entropy norm
∣∣∣∣∣∣F ∣∣∣∣∣∣

s
of the system (28) with the input signal (55) is equal to

∣∣∣∣∣∣F ∣∣∣∣∣∣2
s

=

+∞∫
−∞

tr
ϕ(ω0, ω) Λ(ω)

[
I − qΛ(ω)

]−1

+∞∫
−∞

ϕ(ω0, ω) tr
[
I − qΛ(ω)

]−1
dω

dω,

where q ∈ [0,maxω λ−1
max(ω)

)
is the unique solution of

the equation

−1

2

+∞∫
−∞

ϕ(ω0, ω) ln det
ϕ(ω0, ω)

[
I−qΛ(ω)

]−1

+∞∫
−∞

ϕ(ω0, ω)tr
[
I−qΛ(ω)

]−1
dω

dω

= s.

The proof of Theorem 7 is similar that of Theorem 6.

4.5. N norm. The obtained results are valid for deter-
ministic or stochastic signals with the bounded L2 or
power norm. Let us generalize this results and consider
the system (28) and the deterministic or stochastic input
signal with the bounded L2 or power norm:

∥∥w(t)∥∥2
N
= N

(
wT(t)w(t)

)
< ∞,

where ‖ · ‖N is the N norm of a signal and N stands
for the linear operator, which transforms the Euclidean
norm

∣∣w(t)∣∣2 = w(t)Tw(t) into the L2 or power norm of
the deterministic or stochastic signal in accordance with
following rule:

N(·)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞∫
−∞

dt deterministic signal, L2 norm,

lim
T→∞

1

2T

T∫
−T

dt deterministic signal, P norm,

+∞∫
−∞

E[·] dt stochastic signal, L2 norm,

lim
T→∞

1

2T

T∫
−T

E[·] dt stochastic signal, P norm.

Define the gain ΘN of the system

Θ2
N =

∥∥z(t)∥∥2
N∥∥w(t)∥∥2
N

,

and further the autocorrelation matrix

KN(τ) = N
(
w(t+ τ)wT(t)

)
,
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the spectral density matrix

SN(ω) =
1

2π

+∞∫
−∞

KN(τ) e
−iωτ dτ,

the N norm of the input signal

∥∥w∥∥2
N
=

+∞∫
−∞

trSN(ω) dω

and, finally, the σ-entropy

S(SN) = −1

2

+∞∫
−∞

ϕ(ω0, ω) ln det
ε(ω)I + SN(ω)
+∞∫

−∞
trSN(ω) dω

dω.

Thus the σ-entropy norm
∣∣∣∣∣∣F ∣∣∣∣∣∣

s
can be written as

∣∣∣∣∣∣F ∣∣∣∣∣∣2
s

= sup
S(S)≤s
ε(ω)→0

+∞∫
−∞

tr
[
Λ(ω)SN(ω)

]
dω

+∞∫
−∞

trSN(ω) dω

· (60)

Theorem 8. For any s ≥ 0 the σ-entropy norm (60) is

∣∣∣∣∣∣F ∣∣∣∣∣∣2
s
=

+∞∫
−∞

tr
ϕ(ω0, ω) Λ(ω)

[
I − qΛ(ω)

]−1

+∞∫
−∞

ϕ(ω0, ω) tr
[
I − qΛ(ω)

]−1
dω

dω,

where q ∈ [0,maxω λ−1
max(ω)

)
is the unique solution of

the equation:

−1

2

+∞∫
−∞

ϕ(ω0, ω) ln det
ϕ(ω0, ω)

[
I−qΛ(ω)

]−1

+∞∫
−∞

ϕ(ω0, ω)tr
[
I−qΛ(ω)

]−1
dω

dω

= s.

The proof of this theorem is exactly the same as that
of Theorem 6.

Fig. 1. Generalized σ-entropy gain.

5. Numerical example

Consider the numerical realization of the linear discrete
system (20) with the nonzero initial condition:

A =

⎡
⎣ 0.23596 −0.85556 −0.68156

−0.77842 0.00756 −0.26014
1.09960 −0.93759 −0.22880

⎤
⎦ ,

B =

⎡
⎣ −0.52481 1.8551

1.12830 −0.2773
0.55014 1.06661

⎤
⎦ ,

C =

[ −2.09920 0.37147 0.69535
0.63848 −0.37418 0.87763

]
,

D =

[
1.03360 0.60107
0.41979 −0.67402

]
.

This discrete system is stable (the spectral radius
ρ(A) = 0.6602 < 1) and Fig. 1 shows the results
of calculating the generalized σ-entropy gain Θs as a
function of σ-entropy s.

6. Conclusion

In this paper the σ-entropy and the N norm of signals are
introduced. The advantages of these important concepts
are the following:

• The definition of the N norm of the input signal is
consistent with the definition of the spectral density
matrix:

∥∥w∥∥2
N
=

+∞∫
−∞

trSN(ω) dω.

• All the differences that are a consequence of the
choice of the L2 or power norm of the deterministic
or stochastic input signal are encapsulated in the
matrix S(ω).
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• The encapsulation of differences in the choice of the
input signal makes it possible to determine in an
invariant way (e.g., independently of the norm) the
σ-entropy of the input signal and the σ-entropy norm
of the system.

• The invariance of the σ-entropy norm yields invariant
results of σ-entropy analysis.
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