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We discuss how the posterior probability distributions produced by machine learning models for analyzed objects can be
transformed into evidence-theoretical mass functions that model uncertainties associated with operating those distributions.
We investigate the mathematical properties of the introduced mass functions and their corresponding belief functions.
We also construct some uncertainty measures based on the functions considered and compare them with several classical
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1. Introduction
The Dempster–Shafer theory of evidence is a powerful
mathematical tool that allows for reasoning and
decision-making under uncertainty (Yager and Liu, 2008).
It was used successfully in many practical applications
(Bezerra et al., 2021). It was also combined in many
interesting ways with other approaches such as, e.g., the
theory of rough sets (Campagner et al., 2022).

The advantage of the theory of evidence is that it
makes it possible to operate on the mass functions (also
called the basic probability assignments) that allocate
probabilities to subsets of values, not only singletons.
This may be helpful in case we face incomplete or
insufficiently convincing information. On the other hand,
as discussed by Kałuża et al. (2023a), standard probability
distributions can be a source of non-trivial mass functions.
This may happen if some probabilities are too close to
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each other and, as a result, it is hard to choose among
them while making the decisions.

Transforming probabilities into mass functions—and
the evidence-theoretical belief and plausibility
functions—opens us new opportunities for uncertainty
modeling. This is important in machine learning,
wherein the inference is often based on the posterior
distributions produced by machine learning models.
Although the machine learning approaches usually focus
only on the most probable decisions, measuring the
uncertainty associated with the whole distributions can
be beneficial, e.g., for active learning (Settles, 2012)
or diagnostics of the machine learning models (Janusz
et al., 2023). In active learning, mass function-based
quantification of model uncertainty can be used to suggest
subsequently acquired targets. Those targets are then
used in training the next generation of machine learning
models, improving the quality of the final solution.

This paper extends our earlier work on transforming
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probabilities into masses (Kałuża et al., 2023a). In
Sections 2 and 3, we discuss the literature and compare it
with our way of defining the mass functions. In Sections 4
and 5, we characterize the corresponding belief functions
and uncertainty measures. In Sections 6 and 7, we share
new insights about the active-learning-related evaluation
of those measures and discuss further means of their
analysis. In Section 8, we conclude the paper and describe
possible future research areas.

2. Related work and our approach
Previously (Kałuża et al., 2023a), we investigated
the literature on the evidence-theoretical approaches to
uncertainty modeling in the area of active learning. This
area reflects more general trends in machine learning,
wherein the theory of evidence is adopted for specific
types of models or their ensembles. Here are three such
examples:

In the work of Vandoni et al. (2019), the
evidence-theoretical combination rule is applied to
aggregate the beliefs of multiple support vector machines
and to express the uncertainty of such combinations.
Hoarau et al. (2022) applied a modified k-nearest
neighbor model to work on the mass functions instead
of probabilities. In the work of Hemmer et al. (2020),
an evidence-theoretical extension of the neural network
architecture was utilized to measure the uncertainty of the
network predictions. Still, in all those cases, the non-zero
masses are assigned only to single decision classes or
the sets of all classes; therefore they do not express any
significantly richer information compared with standard
posterior probabilities.

Our intuition is that the mass functions should
reflect the differences between the most probable and the
consecutive less probable decision classes. As a reference,
let us consider the smallest margin measure (Nguyen
et al., 2022; Scheffer et al., 2001), equal to 1 − (p1 −
p2), where p1 and p2 denote respectively the posterior
probabilities of the most probable decision class (let us
call it Class 1) and the second most probable class (Class
2), obtained as a result of inference of a machine learning
model about an analyzed object. This measure reflects the
uncertainty of reasoning about Class 1 given that Class 2 is
“right behind it.” Some similar measures can be found in
the literature as well (Agrawal et al., 2021; Zhang, 2021).

However, we claim that the analysis of p1 − p2
is not enough, and it needs to be followed by further
differences, as displayed in Figs. 1 and 2. While p1 − p2
is regarded as our certainty about Class 1 against Class 2,
p2 − p3 can be interpreted as the one corresponding to
reasoning about Classes 1 and 2 against Class 3, and so
on. Consequently, we may attempt to assign non-zero
masses to the subsets {Class 1}, {Class 1,Class 2},
{Class 1,Class 2, . . . }, taking into account the quantities

pi − pi+1.
The remaining aspect is about equal probabilities.

Imagine a minor change in the probability distribution in
Figs. 1 and 2, wherein p1 would be equal to p2. (This
happens a bit “later” for p3 and p4, anyway.) Then the
certainty margin of pointing at Class 1 compared with
Class 2 would disappear. These two decision classes
would become in some sense indistinguishable from
each other, although on the other hand, reasoning about
the set {Class 1,Class 2} would still make sense if the
probability of Class 3 is significantly lower. This brings
us to the final idea of operating with unique probability
levels and sets of equally probable classes.

3. Mass functions based on pi − pi+1

We are now ready to formalize our approach. The idea is
to transform a given n-dimensional posterior probability
distribution p defined on a set of decision classes V (n =
|V |) into the mass functions that assign probabilities to
subsets of classes—some probability to the most probable
class (or classes), some probability to the most probable
and the second most probable classes, and so on. We want
to pay special atlention to multiple classes with the same
probability. Accordingly, let us change the meaning of
pi from the previous section and consider the descending
sequence of all unique positive probability values in p,

p1 > p2 > · · · > pk > 0, k ≤ n, (1)

together with the collection of sets X1 ⊂ X2 ⊂ · · · ⊂ Xk

X i = {j : p[j] ≥ pi}, i = 1, . . . , k, (2)

where p[j] denotes the probability of the j-th class.
We will call X i (i = 1, . . . , k) the layered sets and

denote their whole sequence as Xp. Previously (Kałuża
et al., 2023a), we proposed two ways of assigning the
elements of this sequence the quantities of the form pi −
pi+1 (we set pk+1 = 0 to simplify notation):

m�(X) =

⎧
⎪⎨

⎪⎩

(pi − pi+1)|X i| for X = X i,

i = 1, . . . , k,

0 for any other X ⊆ V,

(3)

mh(X) =

⎧
⎪⎨

⎪⎩

(pi−pi+1)
p1

for X = X i,

i = 1, . . . , k,

0 for any other X ⊆ V.

(4)

We call m� : 2V → [0, 1] and mh : 2V → [0, 1] the
pyramidal and height ratio mass functions, respectively.
As one can easily check, we have

∑
X⊆V m�(X) =

∑
X⊆V mh(X) = 1. Thus, according to the principles

of the theory of evidence (Yager and Liu, 2008), m� and
mh can indeed be called the mass functions.
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Fig. 1. Pyramidal mass function visualization. The marked area corresponds to m�({#1,#2,#3,#4}).
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Fig. 2. Height ratio mass function. Division of the two marked heights � equals mh({#1,#2,#3,#4}).

Figure 1 shows that m� assigns the masses that
correspond to horizontal slices of a probability histogram,
which might be thought of as the layers of a pyramid. A
mass from a given layer is assigned to a set of classes that
belong to the corresponding layered set. In this example,
the posterior distribution is defined over Classes 1–5 with
the corresponding probabilities 0.4, 0.2, 0.15, 0.15, 0.1.
Accordingly, we have

m�({#1}) = 0.2,

m�({#1,#2}) = 0.1,

m�({#1,#2,#3,#4}) = 0.2,

m�({#1,#2,#3,#4,#5}) = 0.5.

This example, firstly studied by Kałuża et al. (2023a),

motivated us to consider mh and compare it carefully with
m�. This is because m� tends to assign relatively large
masses to full sets of probable decision classes. On the
other hand, for mh we obtain the following:

mh({#1}) = 0.5,

mh({#1,#2}) = 0.125,

mh({#1,#2,#3,#4}) = 0.125,

mh({#1,#2,#3,#4,#5}) = 0.25.

Figure 2 visualizes the above calculation. In
principle, both mass functions follow the same idea of
operating with the consecutive “steps” of the ordered
probability distribution (histogram), re-scaling them in
two different ways—using cardinalities of the layered
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sets X i or simply normalizing all mass values by the
dominant probability p1. In the next sections, we will
see that both m� and mh may have advantages and
disadvantages, considering their theoretical properties and
practical usefulness. In particular, it will become clear that
our original worries about the nature of m� were quite
exaggerated.

4. Belief, plausibility, pignistic probability
Given the foundation provided by m� and mh, we can
now consider the belief and plausibility functions defined
as follows, for an arbitrary m : 2V → [0, 1]:

Bel(X) =
∑

Y :Y⊆X

m(Y ), (5)

Pl(X) =
∑

Y :X∩Y �=∅
m(Y ). (6)

We get the following characteristics for mh and m�:

Plh(X) =
∑

i:X∩Xi �=∅
mh(X

i)

=
∑

i:pX≥pi

mh(X
i) =

pX
p1

,
(7)

Belh(X) =
∑

i:Xi⊆X

mh(X
i)

= 1− Plh(X
′) = 1− pX′

p1
,

(8)

Pl�(X) =
∑

i:pX≥pi

m�(X i)

= ‖p↓X‖1,
(9)

Bel�(X) = 1− Pl�(X ′)
= 1− ‖p↓X′‖1, (10)

where

• X ′ = V \X is the set-theoretic complement of X ,

• the coefficients pX and pX′ denote the probabilities
of the most probable elements of X and X ′:

pX = max
j∈X

p[j], pX′ = max
j∈X′

p[j], (11)

• the coefficients ‖p↓X‖1 and ‖p↓X′‖1 denote the sums
of the coordinates of the vectors obtained by cutting
the distribution p down to the level of pX and pX′ :

p↓X = min(p, pX), p↓X′ = min(p, pX′). (12)

The above derivations are new compared to those
of Kałuża et al. (2023a), although they are quite
straightforward. As the non-zero masses are assigned

only to the sets X1 ⊂ X2 ⊂ · · · ⊂ Xk, the condition
Y : X ∩ Y 	= ∅ in (6) can be replaced by i : X ∩
X i 	= ∅, and further by i : pX ≥ pi in (7) and (9).
Further computations can be followed based on visual
interpretations in Figs. 1 and 2. In particular, the union of
“horizontal” layered set areas in Fig. 1 can be regrouped
into the union of “vertical” histogram bars cut down
to the level of the most probable class in X . This is
caused by the fact that X will always have a nonempty
intersection with all nonzero mass assignments with lower
probabilities. This is because they all contain the most
probable class in X .

An important property of the above functions is that
classes with the same probabilities are interchangeable.
In particular, when referring to the example studied in
Section 3, if a given X contains Class 3, then we can
replace it with Class 4 without changing the values of
Bel�(X), Pl�(X), Belh(X), and Plh(X).

Another observation is that it is hard for X to have
a high value of Bel�(X) or Belh(X). If X does not
contain the most probable classes, then the values of belief
functions drop to 0. Even if X is a singleton containing a
decision class with the highest probability, but there is one
more class with the same probability, then Bel�(X) and
Belh(X) equal to 0. In such a case, the mass functions
m� and mh focus on a pair of classes as they are equally
probable. In other words, there is no difference between
their probabilities so our certainty about pointing at one of
them against the other cannot be higher than 0.

In the rest of this section, we investigate how
well the introduced functions approximate the original
probabilities. For every j = 1, . . . , n, we have

Bel�({j}) ≤ p[j] ≤ Pl�({j}), (13)

p[j] ≤ Plh({j}). (14)

Again, this result is new compared to our previous work
(Kałuża et al., 2023a). For the plausibility functions,
due to Eqns. (7) and (9), we have Pl�({j}) =
‖min(p, p[j])‖1 and Plh({j}) = p[j]/p1. In the first
case, p[j] is just one of the coordinates that are summed up
in ‖·‖1. In the second case, p[j] ≤ p[j]/p1. For beliefs, we
have already noticed that the only chance for them to be
positive is when p[j] is the unique highest probability, i.e.,
p[j] = p1 and p{j}′ = p2. Then we obtain Bel�({j}) =
p1 − p2 ≤ p1 = p[j]. However, Belh({j}) ≤ p[j] does
not hold. Let us return to the example from Section 3 one
more time. Therein, Belh({#1}) = 1 − 0.2/0.4 = 0.5,
higher than 0.4.

Let us present one more result which seems to put
the pyramidal approach in favor of the height ratio one.
It refers to the concept of pignistic probabilities that have
been proposed to model the behavior of a rational person
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while betting at particular classes (Smets, 2005):

BetP (j) =
∑

X:j∈X

1

|X |
m(X)

1−m(∅) . (15)

Denote by BetP� the pignistic probabilities derived from
m�. Immediately from Eqn. (3), given that m�(∅) =
0, the coefficients |X i| get reduced, and the differences
pi− pi+1 collapse while summing them up, we obtain the
following equivalence, for j = 1, . . . , n:

BetP�(j) = p[j]. (16)

The analogous characteristics cannot be considered
for BetPh. In summary, given the findings (13)–(14)
and (16), one may claim that the mass function m� :
2V → [0, 1] provides stronger theoretical foundations
than in the case of mh : 2V → [0, 1]. Nevertheless,
as displayed in Eqns. (7)–(10), the belief and plausibility
functions associated with both m� and mh have elegant
and intuitive forms. Moreover, we will see in the next
sections that both m� and mh can validly model the
uncertainty, and finally, they can be efficiently applied
in the machine learning processes, in particular, in active
learning.

5. Measures of uncertainty revisited
In this section, we discuss some examples of uncertainty
measures that are built upon the proposed mass functions.
But first, let us recall some already-mentioned classical
measures (Agrawal et al., 2021; Nguyen et al., 2022;
Zhang, 2021). Actually, let us write them down using the
notation introduced in Section 3:

(i) entropy

Entr(p) = −
∑

j:p[j]>0

p[j] log(p[j]), (17)

(ii) the smallest margin

SMar(p) =

{
1− (p1 − p2) if |X1| = 1,

1 otherwise,
(18)

(iii) the ratio of confidence

RCon(p) =

{
p2 / p1 if |X1| = 1,

1 otherwise, (19)

(iv) the least confidence

LCon(p) = 1− p1. (20)

The formulas (17) and (20) are obvious. In particular
p1 in (20) denotes the highest posterior probability

according to the notation (1). The formulas (18) and
(19) seem more interesting. In both cases, the condition
|X1| = 1 means that there is a unique decision class with
the highest probability; therefore, we can reason about
it with nonzero certainty compared with less probable
classes. If |X1| > 1, then there is no way to point at the
most probable class with non-zero certainty because there
is at least one other class with the same probability. Thus,
the above new way of expressing the particular uncertainty
measures is consistent with their meaning in the literature.

Another fresh observation compared with those of
Kałuża et al. (2023a) is that the smallest margin and
the ratio of confidence can be rewritten using functions
considered in Section 4. Namely, it is easy to get that

SMar(p) = Pl�({#1})−Bel�({#1}), (21)

RCon(p) = Plh({#1})−Belh({#1}). (22)

This simple fact gives us an additional reason to claim that
the mass functions m� and mh are thoughtfully defined.
Moreover, it supports a more general intuition that there
is a potential in expressing uncertainty in the language of
differences between the plausibility and belief functions.
On the other hand, the above derivations illustrate that
classical uncertainty measures usually touch just a small
fraction of information about such differences.

Ślęzak (2002) proved that the average value of the
differences between Pl and Bel for arbitrary subsets of
events can be expressed in terms of the cardinalities of
sets assigned with nonzero masses:

1

2|V |
∑

X⊆V

(Pl(X)−Bel(X))

= 1−
∑

X⊆V

.
m(X)

2|X|−1
(23)

The above result motivates us to investigate the examples
of measures that attempt to model uncertainty as being
proportional to cardinalities and masses of positively
weighted sets in Xp. Below ∗ can stand for � or h:

(i) exponent evidence

Exp∗(p) = 1−
k∑

i=1

m∗(X i)

2|Xi|−1
, (24)

(ii) large exponent evidence

LEx∗(p) = 1−
k∑

i=1

m∗(X i)

4|Xi|−1
, (25)

(iii) log-plus evidence

Log∗(p) =
k∑

i=1

m∗(X i) log(|X i|+ 1). (26)
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The measures Exp� and Exph are inspired directly
by (23). As for LEx∗, its motivation is to empirically
check what the best mathematical relationship between
m∗(X i) and |X i| could be. Finally, log-plus evidence
is a slight modification of one of the known entropy
counterparts in the theory of evidence (Dubois and
Prade, 1987), wherein +1 under the logarithm softens
the difference between the weights of the values
corresponding to larger sets.

We might also consider some other formulas for
measures. However, many of them turn out equivalent to
the previous ones. For instance, one could think of a more
linear relationship. It would look as follows:

Lin∗(p) = 1−
k∑

i=1

m∗(X i)

|X i| . (27)

However, for a similar reason as in (16), we obtain

Lin�(p) = LCon(p). (28)

Therefore, although Linh would not correspond to the
other measures so trivially, we decided to skip Lin∗ in
our empirical analysis reported in the next section.

6. Experiments with active learning
As pointed out in Section 1, modeling the uncertainty of
the machine learning models’ outcomes may be useful
in many practical scenarios. One such scenario refers to
active learning, where intermediate models are utilized,
in the loop, to analyze not-yet-selected objects, and
uncertainties of their inference outcomes imply which
of those objects will be added to the training data sets
in the next iterations of learning. Given that active
learning is at the heart of our research interests (Kałuża
et al., 2023b), we empirically examined our framework
in this context. We were particularly interested in
investigating the efficiency of the active learning process
when using classical uncertainty measures (17)–(20) in
comparison with the examples of evidence-theoretical
measures (24)–(26) derived from our mass functions m�
and mh.

In our experiments, we considered four well-known
data sets (see Table 1) and we applied the following
standard active learning procedure for each of them:

1. Split the data set into a training pool and a holdout
test set. (For each data set, the split was half-to-half.
Moreover, it was stratified concerning the number of
objects supporting particular decision classes.)

2. Choose an initial training set at random. (We tested
two strategies for the size of the initial training
set: for vowel and car we selected simply 100
objects, while for pendigits and letter we wanted

to work more ambitiously with just 0.1% of the
training pool. As the initial set may influence the
results, we repeated all experiments 10 times with
different random choices of initial sets. Within each
repetition, we used the same initial set for each of the
uncertainty measures to compare them better.)

3. Train an initial machine learning model on the initial
training set. (We used RandomForestClassifier from
scikit-learn (Pedregosa et al., 2011), with default
parameters and the fixed initial random seed.)

4. Repeat the following till a desired number of training
objects is added to the initial set (in all cases we
wanted to add 100 more objects from the pool):

(a) Use the current machine learning model to
infer a posterior probability distribution over
decision classes for every object that belongs
to the training pool but does not belong to the
current training set. (One can easily derive such
probabilities from RandomForestClassifier.)

(b) Out of all such objects, select the one with the
highest value of uncertainty measure associated
with its posterior distribution. (If there are more
such objects, choose one randomly.)

(c) Add the selected object to the training set and
retrain the model. (RandomForestClassifier
was applied throughout the whole process.)

The results of our experimental evaluation are associated
with the balanced accuracy of the machine learning
models calculated on the holdout test sets averaged over
100 sample selection iterations. For every data set, we
created models for the following 11 methods:

• Entropy (17), Smallest Margin (18), Ratio of
Confidence (19), Least Confidence (20) used as the
uncertainty measure in Step 4(b) above.

• Exponent Evidence (24), Large Exponent Evidence
(25), Log-Plus Evidence (26) used as the uncertainty
measure, all of them in two modes, i.e, [�] and [h].

• Rand—replacing Step 4(b) above with a fully
random choice of an object. (Technically, this means
we immediately add 100 objects to the initial training
set and then train the final RandomForestClassifier.)

Table 2 summarizes our empirical findings. For each of
the above 11 scenarios, the obtained balanced accuracy
was averaged over 10 repetitions. Then we transformed
those average scores into ranks (the higher the average
accuracy compared to the others, the better the rank),
so it makes sense to report the average rank over four
considered data sets. These average scores have already
been reported in our previous work (Kałuża et al., 2023a)
but one can find herein the following additions:
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Table 1. Tabular data sets considered in the active learning experiments. In particular, the # classes column includes the number of
decision classes occurring in the data. Each data set was split: 50% of objects in the training pool (the source of objects being
added to the training data set) and 50% in the holdout test set. For example, the split of letter was 10000 vs. 10000.

Data set name (with references) Description of decision problem # Classes # Attributes # Objects
Recognition of letters obtained from

letter (Frey and Slate, 1991) rectangular pixel displays using 26 16 20000
attributes such as e.g. edge counts

Tabular-attribute-based recognition
pendigits (Alpaydin and Alimoglu, 1998) of digits that were written down 10 16 10992

using a pressure-sensitive tablet

Car purchase evaluation
car (Bohanec, 1997) based on a hierarchical structure 4 6 1728

that describes some car properties

Recognition of steady state
vowel (Deterding, 1990) vowels of British English based 11 12 990

on attributes extracted from speech

Table 2. Balanced accuracy ranks delivered by particular uncertainty measures on particular data sets, and on average, in the active
learning process. The lower ranks the better. An average of the consecutive ranks was taken in case of a tie. The best average
rank is marked in bold (Exp� and LEx�). The cases when the measures considered performed worse than a random approach
are marked in italics (Entr on letter and pendigits, as well as LCon, LExh, Logh, and Log� on letter).

Data set name Entr SMar RCon LCon Exph LExh Logh Exp� LEx� Log� Rand
letter 9 1.5 1.5 11 4 8 7 3 5 10 6
pendigits 11 1.5 1.5 8 6 3 5 7 4 9 10
car 3 9 10 4 7 8 5 2 6 1 11
vowel 8 9 10 4 1 3 6 5 2 7 11
Average of all 7.75 5.25 5.75 6.75 4.5 5.5 5.75 4.25 4.25 6.75 9.5

• Separate ranks are reported first for every data set.

• Previously (Kałuża et al., 2023a), we considered
one more uncertainty measure (called log-divide evi-
dence). However, its mathematical properties turned
out to be questionable. We therefore decided to
exclude it from the analysis. On the other hand, we
include the ranks of random sampling (Rand) as the
baseline.

The summary of ranks obtained by each uncertainty
measure across all data sets is available in Table 2. The
results of applying Entr are quite disappointing and it
was even worse than Rand on two data sets. SMar
and RCon seem to be a bit unstable. They are the best
(delivering exactly the same balanced accuracy) on two
data sets but also the worst, not counting Rand, on the
other two. LCon is on average slightly better than Entr,
although it is worse than Rand on the letter data set.

Compared with the above, the evidence-theoretical
uncertainty measures lead toward quite good outcomes,
except (26). We are satisfied especially with the efficiency
of Exp� given its strong mathematical foundations.

Actually, Exp� and LEx� deliver the best ranks on
average. Exph is not much worse and yields the best
score on vowel. On the other hand, LExh (like several
other measures) behaves worse than Rand on letter.

7. Further study of measure properties
Although the results described in the previous section are
promising, certainly more research is needed to validate
the performance of the mass functions m� and mh,
embedded into multiple uncertainty measures, examined
for different data sets and machine learning tasks (Janusz
et al., 2023; Nguyen et al., 2022).

We also need to continue studying the mathematical
properties of the proposed measures. Previously (Kałuża
et al., 2023a), we conducted a deepened analysis of
the dynamics of the considered uncertainty measures
subject to changes in the input distributions. Figure 3,
prepared using Matplotlib (Hunter, 2007) and mpltern
(Ikeda, 2024) libraries, refers to some of our findings. An
analogous study could be done using combinatorial tools
that were recalled in the work of Cattaneo (2023).
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Fig. 3. Simplex visualization of six uncertainty measures in the three-decision-class scenario. Top left: Entr, top right: SMar,
mid left: RCon, mid right: LCon, down left: Exp�, down right: Exph. High uncertainty distributions are light and lower
uncertainty distributions become darker. The areas around uniform distributions are the most uncertain but the “shapes” of the
uncertainty decrease toward deterministic distributions vary from measure to measure. Small black arrows show the gradients
of descent. Some figures contain white cross artifacts—the places where the arrow directions cannot be uniquely specified.
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Fig. 4. Comparison of the gradient properties of the investigated measures, averaged over the points (distributions) located on a uniform
grid over the 2D simplex. The axes correspond to the X/Y characteristics introduced in Section 7. The scale is between 0 and 1,
where the cosine similarity equal to 1 means a total alignment of the uncertainty gradient with the vector connecting the nearest
simplex vertex with the given point (X) or the given point with the simplex center (Y), while 0 indicates perpendicular vectors.

In general, a “good” uncertainty measure should
increase whenever we move the input distribution p
toward the uniform distribution and decrease whenever we
move it toward the deterministic (one-zero) distribution
which is nearest to p. However, we realize that this
intuition is not so easy to formalize. Figure 3 seems to
support it for the classical measures (17)–(20), as well
as for Exp, which is our favorite evidence-theoretical
uncertainty measure because of the result (23). On the
other hand, all these measures differ in more complicated
scenarios, e.g., when we get closer to the distributions for
which only one of the probabilities is zeroed.

Let us approach the above discussion from a new
perspective compared with our previous work (Kałuża
et al., 2023a). For a given p, we can consider two
characteristics:

X Draw the arrow from the nearest simplex vertex
to p and calculate its cosine similarity to the
gradient-based direction of the fastest decrease of the
values of the considered uncertainty measure.

Y Draw the arrow from p to the simplex center and
calculate the same for the uncertainty increase.

Figure 4 illustrates the average similarities X and Y
calculated for a uniformly drawn sample of distributions,
for all 10 uncertainty measures considered in our
experiments, i.e., (17)–(20), as well as (24)–(26)

computed for both m� and mh. As we are interested
in maximizing both X and Y, the five cases forming the
Pareto front, i.e., Entr, Log�, Exp�, LCon, and Logh
(which is almost the same as LEx�), are of special
importance, with Exp� looking as the most balanced
“middle point.”

Up to now, the measure Exp (24) in combination
with the mass function m� (3) seemed to be the
most convincing basis for uncertainty modeling. This
is because of the mathematical properties of m�
and Exp, the experimental evaluation in Section 6,
and just-discussed gradient characteristics. However,
everyone knows that there are no perfect measures and
perfect approaches. Consequently, let us admit that the
proposed uncertainty measure Exp� did not obtain the
best results for many of the datasets. Therefore, it may be
treated as a safe choice, but it may not produce as an good
results as uncertainty measure attuned to the particular
problem.

8. Conclusions and future directions
Our goal in this paper was to study new formulations of
the evidence-theoretical mass functions together with the
corresponding belief functions and uncertainty measures
that allow for analyzing posterior probability distributions
produced by the machine learning models. This research
is a continuation of our previous publication (Kałuża
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et al., 2023a), with significant extensions related to
the mathematical properties and applications in active
learning (Nguyen et al., 2022; Settles, 2012).

The proposed evidence-theoretical functions are
constructed by transforming the posterior probabilities
into masses depending on the differences between the
consecutive probability levels, assigned to the subsets of
decision classes exceeding those levels. In this way we
obtain the mass functions that reflect the uncertainty of
choosing between decisions with too similar (or equal)
posterior probabilities. The uncertainty grows when
relatively larger subsets of decisions are labeled with
larger masses. Such situations are known to be correlated
with large differences between the evidence-theoretical
plausibility and belief functions (Ślęzak, 2002). That was
also the motivation for us to consider new uncertainty
measures that pay attention to both the masses and the
cardinalities of subsets labeled with those masses.

There are several interesting directions for further
research to consider. First of all, based on the results
gathered in this paper, it is clear that there is no uniquely
best uncertainty measure for every data set and every
task. Even if we narrow ourselves down to the field of
active learning, the experiments presented in Section 6
need to be continued to understand better which measures
and mass functions fit best the data sets of different
characteristics. Moreover, the conducted experiments
show the results for one classification quality metric. It
would be valuable to further investigate properties of the
presented uncertainty measures and consider additional
metrics commonly used in the field, such as the ROC
AUC or F1-score. Going broader, it may turn out that
the uncertainty measures that seem relatively good for
active learning, are not so well-applicable in the other
practical scenarios such as, e.g., the machine learning
model diagnostics (Janusz et al., 2023) or the elimination
of redundant attributes (Pięta and Szmuc, 2021).

Another question is how to infer the posterior
probabilities and mass functions from modern models.
In our experiments, we used the RandomForestClas-
sifier ensemble (Pedregosa et al., 2011) to generate
distributions, and the masses m� or mk were derived from
them as the next step. Instead, we can transform to m�
or mk the distributions obtained from separate ensemble
components and use the Dempster–Shafer combination
rule to get the final representation. Such an approach
would be analogous to some earlier works using the
combination rule for the machine learning ensembles
(Vandoni et al., 2019). On the other hand, as mentioned
in Section 2, our way of inducing mass functions from
posterior distributions is more informative so we can
anticipate higher efficiency of the final models.
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